Передача информации по оптоволокну. Передача сигналов по оптоволокну: принципы. Более высокое качество передачи сигналов

Viber OUT 09.04.2019
Viber OUT

Оптоволоконные кабели применяются для высокоскоростной передачи данных во множестве отраслей, особенно в сфере телекоммуникаций. Но что именно представляет собой оптоволоконный кабель? Как он работает? Как он сконструирован? В этой статье мы постараемся дать ответы на все эти вопросы.

Что такое оптоволоконные кабели?

В целом оптоволоконные кабели мало чем отличаются от кабелей других типов. За тем исключением, что для передачи данных в них используется не энергия (электроны), а свет (фотоны). Оптоволоконная передача данных – это общий термин, обозначающий передачу информации в форме света.

Как устроены оптоволоконные кабели?

В основе оптоволоконного кабеля лежит сердцевина, состоящая из кварцевого стекла или пластикового волокна. Именно эта сердцевина служит основным проводником света внутри кабеля. Между сердцевиной кабеля и его оболочкой находится еще один слой, называемый «пограничным» (boundary layer). Он служит для того, чтобы отражать свет. Индекс отражения света (refractive index) напрямую влияет на скорость передачи светового луча.

Далее находится сама оболочка сердцевины, которая также выступает в качестве проводника лучей света, однако имеет меньший индекс отражения, нежели сердцевина . Оболочку покрывает следующий слой, называемый «буферным» (buffer). Его функцией является предотвращение образования влажности внутри сердцевины и оболочки.
И наконец, финальный слой – внешнее покрытие кабеля, которое защищает кабель от механических повреждений.

Как оптоволоконные кабели передают лучи света?

Для передачи данных по оптоволокну, входящий электрический сигнал конвертируется в световой импульс при помощи специального электрооптического конвертера. После этого световой луч начинает движение по кабелям. В финальной точке своего маршрута луч попадает в оптоэлектронный конвертер, где преобразуется в электронные сигналы.
Различные типы оптоволоконных кабелей имеют различный диаметр сердцевины. Сердцевины с большим диаметром могут передавать больше лучей. Оптоволоконные кабели можно изгибать, однако следует убедиться, что кабель не изогнут слишком сильно, поскольку в этом случае передача световых лучей внутри кабеля может быть нарушена.

Какие бывают типы оптоволоконных кабелей?

Существует несколько типов оптоволоконных кабелей. Рассмотрим их все.

Multi-mode fibres with step-index profile (Многомодовые кабели со ступенчатым показателем преломления)

Многомодовые кабели со ступенчатым показателем преломления являются самыми простыми оптоволоконными кабелями. Они состоят из стеклянного ядра, имеющего постоянный индекс отражения. Данный тип кабеля позволяет одновременно передавать несколько лучей, которые отражаются с различной интенсивностью и передаются по зигзагообразной траектории. Однако индекс отражения остается постоянным.
По причине того, что лучи многократно преломляются под различными углами, скорость передачи данных снижается. Кабели данного типа обеспечивают пропускную способность до 100 MHz и позволяют передавать сигналы на расстояние до 1 километра. Диаметры ядра кабелей данного типа обычно составляют: 100, 120 или 400 µm.
Multi-mode fibres with graded index (Многомодовые кабели с градиентным показателем преломления).

Также как и предыдущий тип кабеля, данный кабель позволяет одновременно передавать множество сигналов, однако сигналы внутри оптоволокна преломляются не зигзагом, а по параболической траектории, что позволяет существенно увеличить скорость передачи данных. К минусам данных кабелей можно отнести более высокую стоимость. Кабели данного типа обычно применяются для построения сетей высокоскоростной передачи данных.
Диаметры ядра: 50 µm, 62,5 µm, 85 µm, 100 µm, 125 µm, 140 µm.

Single-mode fibres (Одномодовые кабели)


Одномодовые оптоволоконные кабели имеют очень небольшой диаметр ядра и позволяют одновременно передавать только один сигнал. Отсутствие преломлений положительно сказывается на скорости и дистанции передачи данных. Одномодовые кабели стоят достаточно дорого, но обеспечивают отличные показатели пропускной способности и дальности передачи данных, до100(Gbit/s)км.

Каковы преимущества использования оптоволоконных кабелей?
По сравнению с обычными кабелями оптоволокно обеспечивает такие преимущества как:
Устойчивость к радиопомехам и перепадам напряжения
Повышенный уровень прочности
Высокоскоростная передача данных на большие расстояния
Устойчивость к электромагнитным помехам
Совместимость с кабелями других типов

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Давно известно, что медные линии ограничены по своим возможностям. Килогерцовый спектр телефонных каналов можно передать на десятки километров. Мегагерцовый спектр видеосигнала - на сотни метров. И это в оптимальных условиях, при отсутствии помех. А если рядом, скажем, электростанция или трамвайный парк, все становится намного, намного хуже. Конечно, есть способы, позволяющие немного побороться с законами природы, но кардинальное улучшение при современном уровне технологии возможно лишь при переходе на оптические линии связи, нечувствительные к помехам и шумам. Конечно, волоконные линии также имеют свои ограничения, но они существенно выше, чем у медных линий. И уж заведомо оптический кабель в любом случае совершенно нечувствителен к электромагнитным помехам. Более того, существуют полностью диэлектрические кабели, которые можно подвесить совместно с высоковольтной линией электропередачи.

Какие же ныне существуют устройства для передачи по волокну видеосигнала?


Во-первых, видео можно оцифровать и передавать по сетям Ethernet, которые тоже на расстояния более 100 м ныне существуют только в оптоволоконном виде. Недостатком этого способа являются существенные искажения сигнала, значительно затрудняющие последующий анализ изображения. Достоинством - совместимость и широкий выбор разнообразных устройств, предназначенных для построения компьютерных сетей.


Второй вариант - применить специализированные устройства для передачи видео по волокну. Сегодня они обеспечивают заметно более высокое качество передачи. Какими же бывают устройства для передачи видео по волокну?

Самые дешевые и давно известные используют прямую передачу НЧ-видеосигнала по оптическому волокну. В таком случае сигнал на приемном конце также подвержен затуханию, причем неравномерному по частотному спектру. Конечно, такое затухание начинает сказываться значительно позже - самый плохой волоконный кабель в сочетании с некогерентным светодиодным излучателем обеспечивает полосу пропускания в районе 200 МГц на километр. Это означает, что один НЧ видеосигнал можно передать на 10-20 км без существенных искажений в частотной области. Правда, есть еще один параметр, который необходимо знать, - просто затухание, которое для дешевых устройств на длине волны в районе 900 нм составляет около 3 дБ на километр. К сожалению, сам по себе запас (так называемый оптический бюджет) пары передатчик/приемник составляет всего лишь около 50 дБ. Поэтому уже на 10 км линии остаточное отношение сигнал/шум составит не более 20 дБ, что принято считать границей для хоть сколько-нибудь приемлемого сигнала. Наконец, уровень сигнала (затухание) при прямой передаче неизбежно будет колебаться в зависимости от погоды, натяжения соединителей, усталости (старения) волокна. У самых дешевых устройств, не имеющих даже АРУ в приемнике, это приводит к существенным колебаниям сигнала на выходе. Конечно, большинство мониторов имеет встроенные цепи АРУ, которые сами отработают по крайней мере +-6дБ, но многие устройства вроде цифровых рекордеров могут оказаться весьма капризными.

Понятно, что такие устройства, с передачей НЧ видеосигнала по определению одноканальные (передают по одному волокну только один канал видео). Стоит отметить, что даже в таком случае общая стоимость системы может оказаться ниже, чем с применением медного кабеля, - ведь волокна, особенно если один кабель содержит много волокон, существенно дешевле (и несоизмеримо компактнее) медного коаксиального кабеля.

Следующий тип устройств для передачи видео по волокну - с частотной модуляцией. Поскольку передача идет на несущей, бывают изделия многоканальные. Так как полоса передаваемого сигнала значительно шире, чем у видеосигнала (если в одно волокно уместить 4 канала, полоса обычно занимает 150 МГц), то на дешевом кабеле с дешевым излучателем допустимая дальность получается примерно 1 км (помните, выше я уже упоминал, что такой параметр, как широкополосность волокна, может составлять всего 200 МГц*км). Потому такие изделия даже для передачи одного канала нередко выполняют с узкополосными или лазерными передатчиками, предназначенными для одномодового волокна.

В чем достоинства ЧМ-передатчиков? Передача с частотной модуляцией значительно менее чувствительна к нестабильности линии передачи, так же как радио в УКВ-ЧМ диапазоне значительно чище от помех, нежели в АМ диапазонах. Тем не менее, сегодня эти изделия почти не выпускаются, они вытеснены цифровыми передатчиками.

Итак, третий тип передатчиков, наиболее распространенный в наше время, - цифровые. Обращаю внимание, это вовсе не то же самое, что всевозможные IP-камеры. В этих устройствах не осуществляется цифровое сжатие сигнала, оцифрованный сигнал передается непосредственно, невзирая на то, что он составляет около 150 Мбит/сек. на один канал.

Достоинством цифровых передатчиков является полное отсутствие помех до тех пор, пока сигнал доходит успешно. Правда, как только сигнал начинает сравниваться с шумами, на экране это выглядит как ужасный сумбур, полностью скрывающий изображение. Такова уж особенность цифровой передачи: пока сигнал больше, чем шум, передача практически идеальна. Но как только приемник начинает ошибаться в отдельных битах, оказывается, что ошибки практически равновероятно могут случиться и в младшем бите (его почти не видно), и в старшем (а это значит, что картинка будет белой вместо черной, или наоборот), или, что еще хуже, ошибки в служебных битах синхронизации приведут к тому, что биты случайно перемешаются и получится примерно то же самое, как если пытаться по телевизору принять радиостанцию «Маяк».

Своей популярностью цифровые системы обязаны быстрому удешевлению компонентов для компьютерных сетей. 100-мегабитные и гигабитные оптические сети распространены настолько широко, что компоненты для их производства стали значительно дешевле, чем теоретически более простые, но менее распространенные низкочастотные излучатели.

Кроме того, для цифровой передачи совершенно необязательно обеспечивать линейность передаточной характеристики излучателя, он работает в двоичном режиме: либо включен на полную мощность, либо полностью выключен, что также снижает требования к нему. Потому-то цифровые передатчики ныне составляют основную массу предлагаемых на рынке.

Каковы особенности их применения? Во-первых, как вы уже, наверное, заметили, цифровой сигнал сам по себе очень широкополосен. Один канал видео занимает 150 мегабит в секунду, т. е. примерно 70 МГц. Упоминавшиеся выше некогерентные излучатели на длине волны 800-900 нм даже один канал могут передать максимум на 1-2 км. Для цифровой передачи обычно используются лазеры, подобные тем, что стоят в CD-проигрывателях. Тем не менее даже лазеры с трудом могут обеспечить эффективную передачу по многомодовому волокну. Тем более если они работают на длине волны 850 нм. Многомодовое волокно не предназначено для передачи широкополосных сигналов. Многомодовое волокно не предназначено для работы с лазерными излучателями. И хотя на практике это возможно (сейчас даже выпускается многомодовое волокно, сертифицированное на работу с гигабитным Ethernet), дальность передачи обычно не превышает 1 км. Производители нередко указывают, что их устройства могут работать на 2, 5 или даже 10 км по многомодовому волокну. Как правило, это означает, что излучатели применены качественные - лазеры на 1300 нм. Однако качество работы системы в целом в таком случае будет ограничено не излучателем, а кабелем. Хуже того, поскольку производители волокна не предназначают его для такого применения - практически невозможно получить от них необходимые параметры волокна для расчета проектной дальности (тот самый параметр - мегагерцы на километр, который существенно зависит от состава излучения и определяется производителем для основных излучателей, для которых волокно предназначено). Вам может повезти, и все будет работать. А может оказаться, что даже мощный лазерный излучатель будет работать всего на 2-3 км, и то сигнал будет нарушаться при изменении погодных условий (от температуры иногда незначительно, на десятые доли децибела, повышаются потери в соединителях. Это обычно несущественно, но если вы работаете на пределе возможностей волокна - и это может оказаться последней соломинкой).

Итак, если для вас существенны дальность передачи, следует использовать одномодовые передатчики. Тем более что по цене они несущественно отличаются от многомодовых (порой они вообще не отличаются по конструкции, хотя у некоторых производителей в многомодовых применяются чуть более дешевые излучатели, забракованные при прохождении контроля на нормативы для одномодового применения). Кстати, одномодовый волоконный кабель дешевле, чем многомодовый. Это и понятно, ведь волокно диаметром 9 микрон просто-напросто содержит в себе намного меньше чистого стекла, чем волокно диаметром 50 микрон.

Почему же вообще до сих пор еще применяется многомодовое волокно? Дело в том, что его чуть легче соединять, особенно в случае ремонта. Существуют быстромонтируемые механические соединители, позволяющие обходиться без сварки, без клея, без полировки. Эти соединители относительно дороги (долларов 10), потому их не применяют при массовом монтаже, но в случае ремонта такой соединитель более чем уместен. Напомню, что все проблемы с дальностью у цифровых устройств обусловлены именно полосой передаваемых частот, а вовсе не затуханием сигнала по амплитуде, а потому несколько большие потери на механическом соединении по сравнению со сваркой несущественны.

Для одномодового волокна такие соединители также существуют, но они еще дороже, требуют значительно более аккуратного обращения и вносят еще большее затухание. Как же выбрать? Если требуется передать на километр-два, можно использовать многомодовые устройства. Если вы ожидаете частые повреждения и необходимо осуществлять ремонт не очень квалифицированным персоналом, лучше использовать многомодовое волокно, соответственно, спроектировав систему или проверив образцы волокна перед закупкой на заводе. Во всех остальных случаях одномодовые устройства обеспечат несоизмеримо более качественную работу. Для сравнения скажу, что если для многомодового волокна широкополосность составляет 200-500 МГц*км в диапазоне 850 нм и в лучшем случае 2000 МГц*км в диапазоне 1300 нм, то для одномодового волокна широкополосность, как правило, принимает значения в районе 20 000 МГц*км, т. е. типичный 4-канальный передатчик уверенно работает примерно на 50 км.

На что еще следует обратить внимание при выборе цифрового передатчика видео по волокну. Разрядность. Ее часто указывают в рекламе. Если не указана, значит, 8 бит. Если 10 или 12 бит, производитель не преминет это подчеркнуть. Насколько важна разрядность? Для цветного сигнала иногда может оказаться важна. Однако не менее (а может быть, даже более) важна и частота дискретизации, которую вы вряд ли найдете в описаниях устройств. И нередко повышение разрядности происходит именно за счет понижения частоты дискретизации. Впрочем, повторюсь, это важно лишь для цветного сигнала. Да и проверить качество передачи очень легко. Поскольку цифровой сигнал либо передается, либо нет, качество можно проверить даже на метровом куске волокна, прямо на столе. Воспользуйтесь стандартной телевизионной цветной таблицей или просто полосатой таблицей разных цветов, хорошей видеокамерой и монитором и посмотрите, насколько хуже изображение с предлагаемым передатчиком по сравнению с прямым соединением камеры с монитором. На реальном объекте качество будет такое же, как и на коротком куске волокна.

Обратите внимание на температурный диапазон работы передатчиков. Именно передатчиков, поскольку они обычно устанавливаются недалеко от видеокамер, на улице, где-то равномерно вдоль многокилометрового периметра объекта. Смотрите, чтобы вам не пришлось строить для передатчиков теплую избушку. Кстати, передатчики Ethernet по волокну, как правило, предназначены именно для теплых избушек, а редкие версии с индустриальным диапазоном температур значительно дороже обычных. Какие еще бывают особенности?

Не столь существенные для работы, но порой значительно облегчающие жизнь. Например, устройства могут монтироваться в 19” стойку, что бывает удобно в переполненном центральном пункте.

Устройства могут питаться от выносного блока питания (это популярно у импортных устройств) или непосредственно от 220 В. Смотрите, что вам удобнее. Выносные блоки питания нередко таковы, что их можно воткнуть только непосредственно в розетки, а это лишние разъемные соединения, что не повышает надежность системы.

Бывают универсальные устройства, которые легко монтируются как на стенку, так и в стойку, которые работают как по одномодовому, так и по многомодовому волокну, могут работать как от 220 вольт, так и от внешнего низковольтного питания. Но такая универсальность важна разве что дистрибуторам, чтобы не хранить на складе большой ассортимент устройств. В каждом конкретном проекте более или менее известно, что конкретно нужно, и уж менять кабель в процессе эксплуатации точно никто не будет.

В сетях передачи данных оптоволоконный кабель дает целый ряд пре­имуществ: не испытывает влияния электромагнитных помех, передает сигнал с очень высокой скоростью на дальние расстояния без повторителей и др. Для того чтобы совместить оптоволоконный кабель с существующим сетевым оборудованием, соединенным медными проводами, требуются конвертеры, например такие, как оптоволоконные конвертеры фирмы ADFweb.

ООО «Крона», г. Санкт-Петербург

Немного о терминах

Конвертер – это преобразователь. Не очень понятно, отчего английское слово converter потеснило свой русский эквивалент. Однако уже довольно давно в технике такое название получают разнообразные устройства, между которыми единственное сходство – функция преобразования. Почему при этом конвертеры не называть преобразователями, отчего прижилось иностранное слово, одному русскому языку известно.

Преимущества оптоволоконного кабеля

В сетях передачи данных, построенных на базе технологий Ether­net, сигнал может передаваться как по медным, так и по оптоволоконным проводам, только в первом случае это осуществляется с помощью электричества, а во втором – с помощью света. Свет не только позволяет передавать информацию на большее расстояние с большей скоростью, но и придает оптическому волокну абсолютный иммунитет к любым видам электромагнитных помех.

Традиционные медные провода чувствительны к внешним электромагнитным помехам, искажающим сигнал. А ведь источников, способных генерировать эти помехи, множество! Поэтому, чтобы электроника не зависала и не давала сбоев, шину передачи данных приходится тщательно отделять от шины питания.

Кроме того, сигнал, проходящий по медным проводам, достаточно быстро затухает, поэтому необходимы повторители, или, если опять употребить термин-кальку, репитеры, – устройства, обновляющие его. Ставить повторители приходится довольно близко друг от друга – примерно через каждую сотню метров. Если же учесть расстояния, которые способна покрывать промышленная сеть, становится ясно, что таких устройств требуется множество.

Оптоволокно обеспечивает быстрое и простое надежное соединение, при этом позволяя создать абсолютную электрическую и гальваническую изоляцию. Поэтому при использовании оптического кабеля не приходится отделять шину передачи данных от шины питания, а кроме того, нет опасности, что повредится вся сеть устройств, если из строя выйдет один узел (например, при попадании молнии). Все компоненты сети при подключении через оптический кабель полностью изолированы друг от друга, поэтому при электрическом повреждении одного из узлов сети это повреждение не распространяется на остальные узлы. Ну и наконец, гораздо проще диагностировать состояние сети и мгновенно локализовать ее неисправный компонент.

Оптоволоконный кабель может использоваться для сетей разного типа, он позволяет соединять узлы на очень большом расстоянии. А кроме того, у оптоволокна гораздо больше «пропускная способность», чем у медной жилы, иными словами, по оптоволоконному кабелю можно передать гораздо больший объем информации за единицу времени, что играет существенную роль в масштабах промышленного предприятия.

Итак, если суммировать сказанное, то к преимуществам соединения с помощью оптического кабеля можно отнести:

Невосприимчивость к электромагнитным и электростатическим помехам;

Высокую скорость приема/передачи информации;

Соединение абонентов на большом расстоянии;

Безопасность и функциональность.

Сказать, что оптоволоконный кабель всегда и во всем выигрывает у медного, нельзя. У медного кабеля есть свои преимущества. Например, он дешевле и не такой хрупкий, как оптоволокно. Тем не менее существует целый ряд областей промышленности, где применение оптоволоконного кабеля полностью себя оправдывает:

Нефтегазовый комплекс;

Электростанции, в том числе атомные;

Телекоммуникации;

Удаленные системы управления и мониторинга;

Медицина.

Всё это привело к тому, что сегодня многие предприятия переходят на оптоволоконную инфраструктуру. При этом очень часто требуется устройство, позволяющее совместить оптоволоконный кабель с существующим сетевым оборудованием, приспособленным для «медной» инфраструктуры.

Для того чтобы перевести уже существующие сети на оптоволокно, разработаны конвертеры, позволяющие подключать устройства с RS-, Ethernet- и другими выходами к оптоволоконным кабелям. Конвертеры дают возможность пробрасывать существующие сети/шины (LAN/Ethernet, CAN, последовательные порты RS‑232, RS‑485) через оптоволоконные кабели, гарантируя их надежность и функциональность. Причем эти сети можно пробрасывать через одно и то же соединение одновременно. Допускается использовать топологию сети с любыми комбинациями оптоволоконных кабелей, как одномодовых, так и мультимодовых.

Оптоволоконные конвертеры фирмы ADFweb

Компания КРОНА представляет оптоволоконные конвертеры ADFweb двух типов: «экономичные» и «продвинутые».

Преобразователи экономичной серии, HD67072, HD67074 и HD67075, позволяют соединять устройства с RS- или USB-портами через мультимодовый оптоволоконный кабель по четырем разным топологиям сети:

Point To Point (прямое соединение, точка – точка): одно устройство с помощью оптоволоконного кабеля подключается к другому напрямую;

Single Loop (кольцо): несколько устройств соединяются оптоволоконным кабелем последовательно с закольцовыванием, то есть подключением первого к последнему;

Double Loop (кольцо с резервированием): несколько устройств соединяются последовательно с помощью двух пар оптоволоконных кабелей. При этом соединения закольцовываются в двойное кольцо. Такое соединение является сверхнадежным;

Multi-Drop (в линию): несколько устройств последовательно соединяются двумя оптоволоконными кабелями. В этом случае отсутствует необходимость закольцовывать соединение.


Рис. Конвертер HD67702 фирмы ADFweb

Конвертеры продвинутой серии, HD67701 и HD67702, допускают соединение как через мультимодовый, так и через одномодовый кабель. Они позволяют соединять устройства, имеющие Ethernet-, CAN-, RS‑232‑или RS‑485‑порты, по тем же четырем топологиям сети, что были перечислены выше.

Продвинутая серия, разумеется, обойдется дороже отчасти из-за применения одномодового кабеля. Многомодовое волокно имеет более широкий диаметр сердечника, из-за чего световая волна распространяется в нем с меньшей скоростью и быстрее затухает. В одномодовом волокне диаметр сердечника настолько мал (8 мкм), что в нем распространяется только один луч, генерируемый лазером, по единственному пути – моду. Благодаря этому скорость сигнала чрезвычайно высока (от 10 Гб), а скорость его затухания – всего 0,5 дБ/км. Такой кабель дороже, потому что создан по более сложным технологиям, однако на крупных предприятиях эти затраты себя оправдывают.

Дополнительно устройства продвинутых серий обладают следующими возможностями:

Имеют распределенный ввод/вывод;

Создают карту привязки выходов к входам;

Обеспечивают чтение статуса входов/выходов через стандартные Modbus-команды.

Конвертеры продвинутой серии предоставляют доступ к диагностическим данным через стандартные Modbus-регистры, что позволяет легко интегрировать их с существующими системами управления (например, подключить к SCADA-системе).

Важным достоинством конвертеров серий HD67701 и HD67702 является то, что с их помощью по одному оптическому волоконному кабелю в одно и то же время можно «пробросить» до 6 уже существующих сетей, включая 4 последовательные сети (например, Modbus RTU), одну сеть CAN (например, CANopen) и одну сеть Ethernet (например, PROFINET или Modbus TCP).

Имеется возможность объединить данные конвертеры с модулями ввода/вывода, которые содержат по 4 дискретных входа и выхода. Благодаря этим модулям можно пробрасывать «сухие» контакты через оптоволоконный кабель на большое расстояние.

Инновационной является возможность создания карты привязки входов к выходам: один вход подключается к нескольким выходам. Таким образом, с помощью двух блоков входных и выходных сигналов, между которыми проведен оптоволоконный кабель, «нажав кнопку», включаешь несколько насосов, которые находятся от этой кнопки на расстоянии 50 км.

Введение

В настоящее время телекоммуникационная индустрия претерпевает беспрецедентные изменения, связанные с переходом от голосоориентированных систем к системам передачи данных, что является следствием бурного развития Internet технологий и разнообразных сетевых приложений. Поэтому одним из основных требований, предъявляемых к транспортным сетям для передачи данных, является возможность быстрого увеличения их пропускной способности в соответствии с ростом объемов трафика.

Цифровая связь по оптическим кабелям, приобретающая всё большую актуальность, является одним из главных направлений научно-технического прогресса.

Преимущества цифровых потоков в их относительно лёгкой обрабатываемости с помощью ЭВМ, возможности повышения отношения сигнал/шум и увеличения плотности потока информации.

Преимущества оптических систем передачи перед системами передачи работающими по металлическому кабелю заключается в:

Возможности получения световодов с малым затуханием и дисперсией, а значит увеличение дальности связи;

Широкой полосе пропускания, т.е. большой информационной ёмкости;

Оптический кабель не обладает электропроводностью и индуктивностью, то есть кабели не подвергаются электромагнитным воздействием;

Пренебрежимо малых перекрестных помех;

Низкой стоимостью материла оптического кабеля, его малый диаметр и масса;

Высокой скрытности связи;

Возможности усовершенствования системы при полном сохранении совместимости с другими системами передачи.

Линейные тракты волоконно-оптических систем передачи строятся как двухволоконные однополосные одно кабельные, одноволоконные одно полосные однокабельные, одноволоконные многополосные одно кабельные (со спектральным уплотнением).

Учитывая, что доля затрат на кабельное оборудование составляет значительную часть стоимости связи, а цены на оптический кабель в настоящее время остаются достаточно высокими, возникает задача повышения эффективности использования пропускной способности оптического волокна за счёт одновременной передачи по нему большего объёма информации.

Цель работы - рассмотрение различных способов увеличения пропускной способности оптического волокна.

Принципы передачи сигналов по оптическому волокну и основные параметры оптических волокон

Принципы передачи сигналов по оптическому волокну

В основе применения оптических волоконных сетей лежит принцип распространения световых волн по оптическим световодам на большие расстояния. При этом электрические сигналы, несущие информацию, преобразуются в световые импульсы, которые с минимальными искажениями передаются по волоконно-оптическим линиям связи (ВОЛС). Большое распространение подобные системы получили благодаря целому ряду достоинств, которые есть у ВОЛС по сравнению с системами передачи, использующие медные кабели или радиолинии в качестве среды передачи. К числу преимуществ ВОЛС следует отнести широкую полосу пропускания, обусловленную высокой несущей частотой - до 10 14 Гц. Такая полоса дает возможность передавать потоки информации со скоростью несколько терабит в секунду. Важным преимуществом ВОЛС являются также такие факторы, как малое затухание сигналов, позволяющее, при использовании современных технологий, строить участки оптических систем в сто и более километров без ретрансляторов, высокая помехозащищенность, связанная с малой восприимчивостью оптического волокна к электромагнитным помехам, и многое другое.

Оптические волокна - один из основных компонентов ВОЛС. Они представляют собой комбинацию материалов, имеющих различные оптические и механические свойства.

Внешняя часть волокна изготавливается обычно из пластмасс или эпоксидных композиций, сочетающих высокую механическую прочность и большой коэффициент преломления света. Этот слой обеспечивает механическую защиту световода и его устойчивость к воздействию внешних источников оптического излучения.

Основная часть волокна состоит из сердцевины и оболочки. Материалом сердцевине служит сверхчистое кварцевое стекло, которое и является основной средой передачи оптических сигналов. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала сердцевины больше, чем у оболочки. Таким образом, при оптимально подобранном соотношении коэффициентов преломления материалов происходит полное отражение светового луча внутрь сердцевины.

Для передачи свет вводится под небольшим углом в торец оптического волокна. Максимальный угол проникновения светового импульса в сердечник волокна б 0 называется угловой апертурой оптического волокна. Синус угловой апертуры называется числовой апертурой NA и рассчитывается по формуле:

Из приведенной формулы следует, что числовая апертура световода NA зависит только от показателей преломления сердцевины и оболочки - n 1 и n 2 . При этом всегда выполняется условие: n 1 >n 2 (рисунок 1).


Рисунок 1 - Распространение света в оптическом волокне. Числовая апертура световода.

Если угол падения света б больше, чем б 0 , то луч света полностью преломляется и не попадает в сердечник оптического волокна (рис.2а). Если угол б меньше, чем б 0 , то происходит отражение от границы материалов сердечника о оболочки, и световой луч распространяется внутри сердечника (рис.2б).

Рисунок 2 - Условия распространения света в оптическом волокне

Скорость распространения света в оптическом волокне зависит от коэффициента преломления сердечника волокна и определяется как:

где С - скорость света в вакууме, n - коэффициент преломления сердечника.

Типичные коэффициенты преломления материала сердечника лежат в пределах 1,45 - 1,55.

Для того, чтобы передавать свет по оптическим волноводам, необходим источник строго когерентного света. Для увеличения дальности передачи ширина спектра передатчика должна быть как можно меньше. Для этой цели особенно подходят лазеры, которые, благодаря индуцированному излучению света, позволяют поддерживать постоянную разность фаз при одинаковой длине волн. В связи с тем, что диаметр сердцевины волокна сравним с длиной волны оптического излучения, в световоде возникает явление интерференции. Это может быть док5азано тем, что свет распространяется в стекле сердцевины только под определенными углами, а именно в направлениях, в которых введенные световые волны при их наложении усиливаются. Возникает так называемая конструктивная интерференция. Разрешенные световые волны, которые могут распространяться в оптическом волокне, называются модами (или собственными волнами). В соответствии с типами распространения световых лучей, оптические волокна делятся на многомодовые, то есть использующие ряд световых волн, и одномодовые, в которых происходит распространение только одного светового луча. Для описания процессов распространения света в оптических волокнах используются несколько основных параметров.



Рекомендуем почитать

Наверх