Суть нелинейных искажений состоит в том что. Искажения сигналов в усилителях электрических сигналов. Операционный усилитель как белый треугольник

Nokia 14.03.2019
Nokia

Марс – планета Солнечной системы, открытая человечеством одной из первых. К настоящему времени из всех восьми планет именно Марс изучен наиболее подробно. Но это не останавливает исследователей, а напротив, вызывает всё больший интерес к «Красной планете» и её изучению.

Почему так называется?

Своё название планета получила от Марса – одного из самых почитаемых богов древнеримского пантеона, который, в свою очередь, является отсылкой к греческому богу Аресу, покровителю жестокой и вероломной войны. Это имя выбрано совсем не случайно – красноватая поверхность Марса напоминает цвет крови и поневоле заставляет вспомнить повелителя кровопролитных сражений.

Названия двух спутников планеты также несут глубокий смысл. Слова «Фобос» и «Деймос» в переводе с греческого означают «Страх» и «Ужас», именно так звали двух сыновей Ареса, которые, по легенде, всегда сопровождали своего отца в бою.

Краткая история изучения

Впервые человечество начало наблюдать за Марсом отнюдь не через телескопы. Ещё древние египтяне заметили Красную планету как блуждающий объект, что подтверждается древними письменными источниками. Египтяне впервые рассчитали траекторию движения Марса относительно земли.

Затем эстафету переняли астрономы Вавилонского царства. Учёным из Вавилона удалось более точно определить расположение планеты и измерить время её движения. Следующими были греки. Им удалось создать точную геоцентрическую модель и с её помощью понять движение планет. Затем учёные Персии и Индии смогли оценить размер Красной планеты и её расстояние до Земли.

Огромный прорыв сделали европейские астрономы. Иоганн Кеплер, взяв за основу модель Николая Каперника, смог рассчитать эллиптическую орбиту Марса, а Христиан Гюйгенс создал первую карту его поверхности и заметил ледяную шапку на северном полюсе планеты.

Появление телескопов стало расцветом в изучении Марса. Слайфер, Барнард, Вокулёр и многие другие астрономы стали величайшими исследователями Марса до выхода человека в космос.

Выход человека в космос позволил изучать Красную планету более точно и подробно. В середине 20 века с помощью межпланетных станций были сделаны точные снимки поверхности, а сверхмощные инфракрасные и ультрафиолетовые телескопы позволили измерить состав атмосферы планеты и скорость ветров на ней.

В дальнейшем последовали всё более точные исследования Марса со стороны СССР, США, а затем и других государств.

Изучение Марса продолжается и по сей день, а полученные данные только подогревают интерес к его изучению.

Характеристики Марса

  • Марс является четвёртой от Солнца планетой, соседствует с Землёй с одной стороны, а с Юпитером – с другой. По размеру же он является одним из самых маленьких и превосходит только Меркурий.
  • Длина экватора Марса составляет чуть больше половины от экватора Земли, а площадь его поверхности приблизительно равна площади суши Земли.
  • На планете происходит смена времён года, однако их длительность очень сильно различается. К примеру, лето в северной части является длинным и холодным, а в южной части – коротким и более тёплым.
  • Длительность суток вполне сопоставима с земными – 24 часа и 39 минут, то есть чуть-чуть больше.

Поверхность планеты

Недаром второе название Марса – «Красная планета». Действительно, издалека его поверхность выглядит красно-рыжеватой. Такой оттенок поверхности планеты придаёт красная пыль, которая содержится в атмосфере.

Однако вблизи планета резко меняет свой цвет и выглядит уже не красной, а желто-коричневой. Иногда к этим цветам могут примешиваться и другие оттенки: золотистый, рыжеватый, зеленоватый. Источник этих оттенков – цветные минералы, которые также присутствуют на Марсе.

Основную часть поверхности планеты составляют «материки» - чётко видимые светлые участки, и совсем небольшую – «моря», тёмные и плохо видимые области. Большинство «морей» располагается в южном полушарии Марса. Природа «морей» подвергается спорам исследователей до сих пор. Но теперь учёные больше всего склоняются к следующему объяснению: тёмные области – это просто неровности на поверхности планеты, а именно кратеры, горы и холмы.

Крайне любопытен следующий факт: поверхность двух полушарий Марса очень различается.

Северное полушарие в большей мере состоит из гладких равнин, его поверхность ниже среднего уровня.

Южное полушарие по большей части покрыто кратерами, его поверхность выше среднего уровня.

Строение и геологические данные

Изучение магнитного поля Марса и вулканов, которые располагаются на его поверхности, привели учёных к интересному выводу: когда-то на Марсе, как и на Земле, происходило движение плит литосферы, которое сейчас, однако, не наблюдается.

Современные исследователи склонны думать, что внутреннее строение Марса состоит из следующих компонентов:

  1. Кора (примерная толщина - 50 километров)
  2. Силикатная мантия
  3. Ядро (приблизительный радиус - 1500 километров)
  4. Ядро планеты является частично жидким и содержит вдвое больше лёгких элементов, чем ядро Земли.

Всё об атмосфере

Атмосфера Марса очень разрежённая, и в основном состоит из углекислого газа. Кроме этого, в её состав входят: азот, водяной пар, кислород, аргон, угарный газ, ксенон и многие другие элементы.

Толщина атмосферы составляет примерно 110 километров. Атмосферное давление у поверхности планеты меньше земного более чем в 150 раз (6,1 Миллибар).

Температура на планете колеблется в очень широком диапазоне: от -153 до +20 градусов по Цельсию. Самые низкие температуры имеют место на полюсе в зимнее время, самые высокие – на экваторе в полуденное время. Средние температуры составляют около -50 градусов по Цельсию.

Интересно то, что тщательный анализ марсианского метеорита «ALH 84001» натолкнул учёных на мысль, что очень давно (миллиарды лет назад) атмосфера Марса была более плотной и влажной, а климат – более тёплым.

Есть ли жизнь на Марсе?

Однозначного ответа на этот вопрос нету до сих пор. В настоящее время существуют научные данные, которые становятся аргументами в пользу обеих теорий.

  • Присутствие в почве планеты достаточного количества питательных веществ.
  • Большое количество метана на Марсе, источник которого неизвестен.
  • Наличие водяного пара в грунтовом слое.
  • Мгновенное испарение воды с поверхности планеты.
  • Уязвимость к бомбардировке «Солнечным ветром».
  • Вода на Марсе является слишком солёной и щёлочной и непригодна для жизни.
  • Интенсивное ультрафиолетовое излучение.

Таким образом, учёные не могут дать точного ответа, так как количество необходимых данных слишком невелико.

  • Масса Марса меньше массы Земли в 10 раз.
  • Первый человеком, увидевшим Марс через телескоп, был Галилео Галилей.
  • Изначально Марс был римским богом урожая, а не войны.
  • Жители Вавилона называли планету «Нергал» (в честь своего божества зла).
  • В древней Индии Марс носил имя «Мангала» (индийского бога войны).
  • В культуре Марс стал самой популярной планетой Солнечной системы.
  • Дневная доза радиации на Марсе равняется годовой дозе на Земле.

Общая ошибка, которая обычно делает оценки климатических условий конкретной планеты, - путать давления с плотностью. Хотя с теоретической точки зрения мы все знаем разницу между давление и плотность, в действительности он берется для сравнения атмосферного давления на земле с атмосферное давление данной планеты без мер предосторожности.

В любой земной лаборатории, где гравитация примерно такой же, Эта предосторожность не нужен и часто использует давление как «синоним» плотность. Некоторые явления обрабатываются безопасно с точки зрения стоимости «давления/температуры», как например фасы диаграм (или Диаграмма состояний), где в действительности было бы более правильно было бы говорить о «коэффициент плотности и температуры» или «под давлением/температуры», в противном случае мы не понимаем присутствие жидкой воды в отсутствие гравитации (и затем невесомости) в космических аппаратов на орбите в космосе!

На самом деле, технически атмосферное давление составляет «вес», которое оказывают определенное количество газа над нашими головами на все, что находится под. Однако реальная проблема заключается в том, что вес обусловлено не только плотность но очевидно тяжести. Если мы например уменьшение тяжести Земли 1/3, Очевидно, что такое же количество газа, что выше нас будет иметь одну треть своего первоначального веса, Несмотря на количество газа остается точно то же самое. Так, то, в сравнении климатические условия между двумя планетами бы более правильно говорить к плотности, а не давление.

Мы очень хорошо понимаем этот принцип путем анализа функционирования Торричелли барометр, Первый документ, который был измеряется земли атмосферное давление. Если мы заполним закрыт Тюбе ртути на одной стороне и множество вертикально с открытым концом погруженной в бак, наполненный ртутью также, Вы заметите, формирования вакуумной камеры в верхней части соломы. Торричелли фактически отметил, что внешнее давление, відсутні в соломе, Это было для поддержки столбца ртути высокой примерно 76 см. Путем расчета продукт удельной ртути, ускорение силы тяжести Земли и высота колонны ртути, можно вычислить вес выше атмосферы.

Из Википедии по адресу: http:/// Вики/Tubo_di_Torricelli it.wikipedia.org

Эта система, блестящий для своего времени, Однако сильные ограничения при применении в «Земляне». На самом деле, как настоящий гравитации в двух из трех факторов формулы, Любая разница в гравитации производит квадратичной разница в ответ барометр, затем, один и тот же столбец воздуха, на планете с 1/3 оригинальные гравитации, будет производить, для барометр, Торричелли, под давлением 1/9 исходное значение.
Ясно, Помимо инструментальная артефактов, факт остается фактом: тот же столбец воздуха будет иметь вес пропорциональны тяжести, планеты на которых время от времени мы будем иметь это так просто барометрическое давление не является абсолютным показателем плотности!
Этот эффект систематически игнорируется в анализе атмосферы Марса. Мы говорим легко давления в гПа и сделки непосредственно с земли, полностью игнорируя давление гПа, что гравитация на Марсе о 1/3 что земли (для точности 38%). Те же ошибки вы сделали, когда вы посмотрите на фасы диаграм воды, чтобы продемонстрировать, что на Марсе, вода не может существовать в жидкой форме. В частности, тройной точки воды, на земле 6.1 гПа, но на Марсе, где гравитация это 38% что земли, Если вы делаете в hPa, было бы абсолютно 6.1 но для 2.318 гПа (Хотя барометр, ознаменует Торричелли 0.88 гПа). Этот анализ, однако, это всегда, на мой взгляд обманным путем, систематически избегать, Восстановление обозначение в те же значения земли. Же указание 5-7 ГПА для марсианской атмосферное давление явно не указаны ли в виду земной гравитации или Марс.
На самом деле 7 hPa на Марсе должна иметь плотность газа на земле будет измерения о 18.4 гПа. Это абсолютно избежать во всех современные исследования, Скажем, в второй половине 60 Далее, В то время как ранее строго указано, что давление было одной десятой от земли но с плотностью 1/3. С чисто научной точки зрения был рассмотрен реальный вес столба воздуха, что приводит как 1/3 его фактический вес на земле, но что на самом деле плотность была сопоставима с 1/3 что земли. Как прийти в последних исследованиях существует эта разница?

Может быть потому что это проще рассуждать о невозможности сохранить жидкой фазы воды?
Есть другие ключи для этого тезиса: Каждый атмосфера на самом деле производит рассеяния света (рассеяние) преимущественно в синем, что даже в случае Марс могут легко анализироваться. Хотя атмосфера Марса кучу пыли, чтобы сделать его красноватый, разделение синий компонент цвета панорамного изображения Марса, Вы можете получить представление о плотности атмосферы Марса. Если мы сравним земной небо снимки, сделанные на разных высотах, а потом с разной степенью плотности, Мы понимаем, что номинальный размер, в котором мы должны найти 7 гПа, т.е. 35.000 m, небо полностью черный, Сальво ярмарка горизонт полоса, где на самом деле мы все еще видим в слоях нашей атмосферы.

Слева: Съемка марсианского пейзажа, сделанные зондом следопыта 22 Июнь 1999. Источник: http://photojournal.JPL. nasa.gov/catalog/PIA01546 право: Синий канал рисунок рядом; Обратите внимание, интенсивность неба!

Слева: Сидней - город Юго-Восточной Австралии, Столица штата Новый Южный Уэльс, на 6 m. Право: Синий канал рисунок рядом.

Слева: Сидней, но всегда во время песчаной бури. Право: Синий канал рисунок рядом; как вы можете видеть, Подвесные пыли уменьшить яркость неба, а не увеличить его, Вопреки тому, что утверждается в случае НАСА Mars!

Очевидно, что фотографии марсианского неба, отфильтрованные синяя полоса, гораздо ярче, почти сопоставима с изображений, снятых на горе Эверест, чуть меньше чем 9.000 m, где смотреть, если атмосферное давление составляет 1/3 нормальный уровень моря давление.

Еще одним свидетельством серьезных пользу марсианский плотности атмосферы выше, чем объявленные, была предоставлена феномен пыль Девилс. Эти «мини Торнадо» способны поднять песка столбцов до нескольких километров; Но как это возможно?
НАСА, сам пытался имитировать их, в вакуумной камере, Имитация марсианского давления 7 гПа, и они не смогли моделировать явления, если не поднимает давление по меньшей мере 11 раз! Начальное давление, даже при использовании очень мощный Вентилятор, не мог снять что-нибудь!
На самом деле, 7 ГПа, действительно просто, Учитывая тот факт, что помимо возвышается над уровнем моря снижается быстро сразу для дробных значений; но тогда все явления наблюдается вблизи горы Олимп, что это означает 17 км высоты, Как можно будет?

Это известно из телескопических наблюдений, Марс имеет очень активную атмосферу, особенно в отношении формирования облака и туманы, не только песчаных бурь. Наблюдения Марса в телескоп в самом деле, Вставка синий светофильтр, Вы можете выделить все эти атмосферные явления далеко не незначительной. Утром и вечером туман, орографические облака, в телескоп с средней мощности СМИ всегда наблюдались полярные облака. Любой человек может к примеру, с обычной графической программы, отдельные три красных уровни, Грин, синий цвет изображения Марса и проверить как это работает. Образ, соответствующий красный канал предоставит нам хорошая Топографическая карта в то время как синий канал покажет полярных ледяных шапок и облака.. Это легко сделать это как на снимки, сделанные с помощью малых телескопов, Оба на снимки с космического телескопа. Кроме того, в изображения, полученные с космического телескопа, Вы заметили синий границы, вызванных атмосферы, что затем появляется синий и красный не, как показано на месте изображения.

Типичные изображения Марса, принятые космический телескоп Хаббла. Источник: http://Science.NASA.gov/Science-News/Science-at-NASA/1999/ast23apr99_1/

Красный канал (слева), Зеленый канал (Центр) и синий канал (право); Обратите внимание, экваториальных облако.

Еще один интересный момент - анализ полярных месторождений; пересечение высотные данные и gravitometrici, Это было невозможно определить, что полярный месторождения различаются сезонно примерно 1.5 метров на Северный полюс и 2.5 метров на Южном полюсе, с средней плотности населения в то время максимальная высота примерно 0.5 g/см 3 .

При этом плотность, 1 мм снега в CO 2 производит давление 0.04903325 гПа; Теперь, даже если предположить наиболее оптимистичный марсианского давления, приведенные выше 18.4 гПа, игнорируя тот факт, что CO 2 представляет 95% и не 100% атмосфера Марса, Если мы все condensassimo атмосферы на земле будет получить слой 37.5 см толщиной!
С другой стороны, 1.5 футов снега углекислого газа с плотностью 0.5 g/см 3 производит давление 73.5 ГПа и 2.5 метров вместо 122.6 гПа!

Время эволюция поверхности атмосферное давление, записано два Викинг Ландерс 1 и 2 (Викинг Ландер 1 Он приземлился в Хриса космизм в 22.48° n, 49.97° Западной долготы, 1.5 Км ниже среднего уровня. Викинг Ландер 2 Он приземлился в утопии космизм в 47.97° n, 225.74° Западной долготы, 3 Км ниже среднего уровня), в течение первых трех лет марсианской миссии: 1й год (точки), 2й год (сплошная линия) и 3 года (Пунктирная линия) укладываются в том же графе. Источник Тилман и гость (1987) (Смотрите также Тиллман 1989).

Рассмотрим также, что, Если масса сезонные сухого льда был похож между двумя полушариями не должна вызывать сезонные вариации глобального атмосферного давления, Так как распад полярной шапки всегда будет компенсироваться конденсации на полу в другом полушарии.

Но мы знаем, что уплощение марсианской орбиты создает разница почти 20° c средняя температура двух полушарий, с вершины до 30° C пользу Широта-30 ° ~. Имейте в виду, что 7 ГПа CO 2 ICES-123 ° c (~ 150° K), Хотя на 18.4 гПа (правильное значение для гравитации Марса) ЛЬДОВ до ~-116 ° C (~ 157° K).

Сравнение данных, собранных миссией Маринер 9 в течение весны бореальных (Ls = 43 – 54°). Показано сплошной линией на графике выше температуры (в Кельвинах) обнаружен эксперимент IRIS. Штрих пунктирные кривые показывают местные ветра (в m s-1) как вытекает из теплового баланса ветра (Поллак и. 1981). Средний график показывает температуру моделирования (K) за тот же сезон., В то время как нижней граф представляет моделирование ветров (в m s-1). Источник: «Метеорологической изменчивости и годового поверхностного давления цикла на Марсе» Фредерик Hourdin, Ле Ван Фу, Франсуа забыть, Olivier Talagrand (1993)

По данным Маринер 9 только на Южном полюсе мы находим необходимых погодных условий, Хотя согласно повреждает глобального съемщика (MGS), связанные с землей, Возможно присутствие в обоих полушариях.

Минимальные температуры в градусах Цельсия почвы Марса, взятые из тепловых спектрометр (TES) на борту Mars Global Surveyor (MGS). В горизонтальной и вертикальной Широта Долгота солнца (Ls). Синяя часть таблицы приведены минимальная температура, Среднегодовой максимум и всегда со ссылкой на ежедневных минимальных температур.

Затем, Подведение итогов, атмосфера, как представляется, достичь минимальной температуры-123 ° C нуля-132 ° C; Я отмечаю, что в-132 ° 2 не должно превышать давление 1.4 ГПа без льда!

Граф давления паров двуокиси углерода; среди других утилит этого графа, можно определить максимальное давление СО2 может достигать до конденсации (в данном случае на льду) при данной температуре.

Но вернемся к сезонной полярной депозиты; как мы уже видели, по крайней мере на ночь, на широте 60°, как кажется, существуют условия для формирования сухого льда, но то, что действительно происходит во время полярной ночи?

Давайте начнем с двух совершенно разных состояния: конденсат от поверхности для охлаждения массы воздуха или «холодные».

Для первого случая, Предположим, что температура почвы опускается ниже замораживания предел двуокиси углерода; почва начнет покрывать слоем льда все больше и больше, до здесь тепловой изоляции, вызванной льда, сам будет достаточно остановить процесс. В случае сухого льда, будучи хорошим теплоизолятором, Он просто очень мало, Поэтому само это явление не является достаточно эффективной для того, чтобы оправдать наблюдаемых ледовых накоплений! Как доказательство этого, на Северный полюс и Южный полюс принадлежит запись-132 ° C, где минимум составляет-130 ° C (По словам TES MGS). Я также интересую как надежное обнаружение-132 ° c с марсианской орбиты и спектроскопических путь, потому что при этой температуре сама почва должна быть завуалированной от процесса конденсации!

Во втором случае, Если воздушная масса (в данном случае CO 2 почти чистый) достигает точки росы, как только температура падает, его давление не превышает предел, установленный «давление пара» для этого газа при этой температуре, вызывает немедленное земли конденсации массы любой избыток газа! На самом деле, эффективность этого процесса действительно драматического; Если мы должны были имитировать аналогичное мероприятие на Марсе, Нам также нужно будет учитывать цепь событий, которые создадут.

Мы понижаем температуру Южного полюса, например до-130 ° C, начальное давление 7 гПа; давление прибытия должно быть ~ 2 ГПа, вызывая осадки снега сухого льда ~ 50 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 10 см толщиной. Конечно такой перепад давления будет оперативно воздух из прилегающих районов, с эффектом от нижней (цепочки) давление и температура из соседних районов, но конденсации вклад всех в снегу. Сам процесс также стремится сделать тепловой энергии (затем повышение температуры) в то же, Но если температура остается на уровне-130 ° C, процесс конденсации остановится только тогда, когда все планеты достигнет равновесия давление 2 гПа!

Это небольшой моделирование используется для понимания взаимосвязи между минимальных температур и изменения атмосферного давления, разъяснение почему минимальная температура и давление связаны. Из представленных графиков атмосферного давления, записаны два Викинг Ландерс мы знаем, что для викингов 1 давление изменяется от минимального 6.8 ГПа и максимум 9.0 гПа, среднее значение 7.9 . Для викингов 2 Допустимые значения – от 7.4 HPA на 10.1 ГПа в среднем 8.75 гПа. Мы также знаем, что VL 1 Он приземлился 1.5 Км и VL 2 3 Км, оба под средний уровень Марса. Учитывая, что средний уровень Марс 6.1 гПа (происходит с тройной точки воды!), Если мы масштаб значений, указанных выше среднее значение 6.1 гПа, Затем оба варьируются от менее 5.2 ± 0.05 ГПа и максимум 7 ± 0.05 гПа. Тогда как минимальное значение 5.2 ГПа, низкая температура, мы получаем ~-125 ° C (~ 148° K), уже в явные разногласия с вашими данными. Теперь, в то время как падение давления от 7 HPA на 5.2 Осаждают HPA 18,4 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 3.7 см толщиной, и что поверхность Южной полярной шапке ~ 1/20 Общая поверхность Марса (определенно приближаясь по умолчанию!), 3.7 см X 20 = 74 см, Это гораздо меньшее значение в пределах полярных отложений обнаружена!

Поэтому существует очевидное противоречие между тепловой данных и данных о погоде, Если один не поддерживает другие! Столь низкая температура приведет к сильным давлением колебания (даже между днем и ночью!) или даже более низкое общее давление! С другой стороны, однако 7 абсолютно недостаточно для учета такого явления, как пыль Девилс номинальное HPA, овраги, распространения света небес или величины переходных полярных месторождений, которые вы объяснили лучше намного выше атмосферного давления 7 гПа.

Пока что, были рассмотрены только аспекты, связанные с двуокиси углерода, считается одним из основных компонентов атмосферы (~ 95%); Но если мы введем даже вода в этом анализе, обозначение 7 ГПа становится совершенно нелепо!
Например, следы, оставленные поток жидкой воды (увидеть кратер Ньютон) где вода должна только быть пара государства, с учетом очень низкого давления и температуры до около 27 ° C!
В такой ситуации можно смело сказать, что давление (в наземных условиях) не может быть меньше, чем 35 гПа!

Марс, четвертая по удаленности от Солнца планета, уже длительное время является объектом пристального внимания мировой науки. Эта планета очень похожа на Землю за одним, маленьким, но судьбоносным, исключением - атмосфера Марса составляет не более одного процента от объема земной атмосферы. Газовая оболочка любой планеты является определяющим фактором, формирующим ее внешний вид и условия на поверхности. Известно, что все твердые миры Солнечной системы сформировались примерно в одинаковых условиях на расстоянии 240 млн. километров от Солнца. Если условия формирования Земли и Марса были практически одинаковыми, то почему же сейчас эти планеты настолько разные?

Все дело в размерах - Марс, сформированный из того же материала, что и Земля, имел когда-то жидкое и горячее металлическое ядро, как и наша планета. Доказательство - множество потухших вулканов на Но «красная планета» гораздо меньше Земли. А значит, и остывала она быстрее. Когда жидкое ядро окончательно остыло и затвердело, завершился процесс конвекции, а вместе с ним исчез и магнитный щит планеты - магнитосфера. Вследствие чего планета осталась беззащитной перед губительной энергией Солнца, и атмосфера Марса была практически полностью унесена солнечным ветром (гигантским потоком радиоактивных ионизированных частиц). «Красная планета» превратилась в безжизненную унылую пустыню…

Сейчас атмосфера на Марсе представляет собой тонкую разряженную газовую оболочку, не способную противостоять проникновению убийственной которая выжигает поверхность планеты. Тепловая релаксация Марса на несколько порядков меньше, чем аналогичный показатель, например, Венеры, чья атмосфера намного плотнее. Атмосфера Марса, имеющая слишком малое значение теплоемкости, формирует более резко выраженные среднесуточные показатели скорости ветра.

Состав атмосферы Марса характеризуется очень высоким содержанием (95%). Также атмосфера содержит азот (около 2,7%), аргон (примерно 1,6%) и незначительное количество кислорода (не более 0,13%). Атмосферное давление Марса в 160 раз превышает аналогичный показатель у поверхности планеты. В отличие от земной атмосферы, газовая оболочка здесь носит ярко выраженный изменчивый характер, обусловленный тем, что полярные шапки планеты, содержащие огромное количество углекислого газа, тают и намерзают в течение одного годового цикла.

По данным, полученным с исследовательского космического аппарата «Mars Express», атмосфера Марса содержит некоторое количество метана. Особенность этого газа заключается в его быстром разложении. Это значит, что где-то на планете должен находиться источник пополнения метана. Варианта здесь может быть всего два - либо геологическая активность, следы которой пока не обнаружены, либо жизнедеятельность микроорганизмов, что способно перевернуть наше представление о наличии очагов жизни в Солнечной системе.

Характерным эффектом марсианской атмосферы являются пылевые бури, которые могут бушевать месяцами. Это плотное воздушное покрывало планеты состоит преимущественно из углекислоты с незначительными вкраплениями кислорода и водяного пара. Такой затяжной эффект обусловлен крайне низкой гравитацией Марса, что позволяет даже сверхразряженной атмосфере поднимать с поверхности и удерживать длительное время миллиарды тонн пыли.

Основные характеристики Марса

© Владимир Каланов,
сайт
"Знания-сила".

Атмосфера Марса

Состав и другие параметры атмосферы Марса к настоящему времени определены достаточно точно. Атмосфера Марса состоит из углекислого газа (96%), азота (2,7%) и аргона (1,6%). Кислород присутствует в ничтожном количестве (0,13%). Водяные пары́ представлены в виде следов (0,03%). Давление на поверхности составляет всего 0,006 (шесть тысячных) от давления на поверхности Земли. Марсианские облака́ состоят из паро́в воды и углекислого газа и выглядят примерно как перистые облака́ над Землёй.

Цвет марсианского неба красноватый из-за присутствия в воздухе пы́ли. Крайне разреженный воздух слабо переносит тепло, поэтому в разных районах планеты велика́ разница температур.

Несмотря на разреженность атмосферы, нижние её слои представляют достаточно серьёзную преграду для космических аппаратов. Так, конусные защитные оболочки спускаемых аппаратов «Маринер-9» (1971 г.) при прохождении марсианской атмосферы от самых верхних её слоёв до расстояния 5 км от поверхности планеты нагревались до температуры 1500°C . Марсианская ионосфера простирается в пределах от 110 до 130 км над поверхностью планеты.

О движении Марса

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает −2,9m (при максимальном сближении с Землёй), уступая по яркости лишь Венере, Луне и Солнцу, но бо́льшую часть времени Юпитер для земного наблюдателя является более ярким, чем Марс. Марс движется вокруг Солнца по эллиптической орбите, то удаляясь от светила на 249,1 млн. км, то приближаясь к нему до расстояния 206,7 млн. км.

При внимательном наблюдении за движением Марса можно заметить, что в течение года направление его движения по небосклону меняется. Кстати, это заметили ещё древние наблюдатели. В определённый момент кажется, что Марс движется в обратном направлении. Но это движение лишь кажущееся с Земли. Никакого обратного движения по своей орбите Марс, естественно, совершать не может. А видимость обратного движения создается потому, что орбита Марса по отношению к орбите Земли внешняя, а средняя скорость движения по орбите вокруг Солнца у Земли выше (29,79 км/с), чем у Марса (24,1 км/с). В момент, когда Земля начинает обгонять Марс в своём движении вокруг Солнца, и создаётся впечатление, что Марс начал обратное или, как называют астрономы, ретроградное движение. Схема обратного (ретроградного) движения хорошо иллюстрирует это явление.

Основные характеристики Марса

Наименование параметров Количественные показатели
Среднее расстояние до Солнца 227,9 млн. км
Минимальное расстояние до Солнца 206,7 млн. км
Максимальное расстояние до Солнца 249,1 млн. км
Диаметр экватора 6786 км (Марс почти вдвое меньше Земли по размерам - его экваториальный диаметр составляет ~53 % земного)
Средняя орбитальная скорость вращения вокруг Солнца 24,1 км/с
Период вращения вокруг собственной оси (Сидерический экваториальный период вращения) 24ч 37 мин 22,6 с
Период обращения вокруг Солнца 687 сут
Известные естественные спутники 2
Масса (Земля = 1) 0,108 (6,418×10 23 кг)
Объём (Земля = 1) 0,15
Средняя плотность 3,9 г/см³
Средняя температура поверхности минус 50°С (перепад температур составляетот −153 °C на полюсе зимой и до +20 °C на экваторе в полдень)
Наклон оси 25°11"
Наклон орбиты по отношению к эклиптике 1°9"
Давление на поверхности (Земля = 1) 0,006
Состав атмосферы СО 2 - 96%, N - 2,7%, Ar - 1,6%, O 2 - 0,13%, H 2 O (пары) - 0,03%
Ускорение свободного падения на экваторе 3,711 м/с² (0,378 земного)
Параболическая скорость 5,0 км/с (для Земли 11,2 км/с)

Из таблицы видно, с какой высокой точностью определены основные параметры планеты Марс. Это не вызывает удивления, если иметь ввиду, что для астрономических наблюдений и исследований теперь используются самые современные научные методы и высокоточная аппаратура. Но совсем с другим чувством мы относимся к таким фактам из истории науки, когда учёные прошлых веков, часто не имевшие в своём распоряжении никаких астрономических приборов, кроме самых простых телескопов с небольшим увеличением (максимум в 15-20 раз), производили точные астрономические вычисления и даже открывали законы движения небесных тел.

Для примера вспомним, что итальянский астроном Джандоменико Кассини уже в 1666 году (!) определил время вращения планеты Марс вокруг своей оси. Его вычисления дали результат 24 часа 40 минут. Сравните этот результат с периодом вращения Марса вокруг своей оси, определённым с помощью современных технических средств (24 часа 37 мин. 23 секунды). Нужны ли тут наши комментарии?

Или такой пример. в самом начале XVII века открыл законы движения планет, не располагая ни точными астрономическими приборами, ни математическим аппаратом для вычисления площадей таких геометрических фигур как эллипс и овал. Страдая от дефекта зрения, он проводил точнейшие астрономические измерения.

Подобные примеры показывают большое значение активности и воодушевления в науке, а также преданности делу, которому человек служит.

© Владимир Каланов,
"Знания-сила"

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Рекомендуем почитать

Наверх