Переменный ток 3 фазный. Соотношение между линейными и фазными токами и напряжениями. «Y» при асимметричной нагрузке

Для Windows Phone 01.05.2019
Для Windows Phone

Под термином “фаза” в энергетике принято понимать отдельную часть электрической цепи многофазной системы или-же, момент времени в синусоидальном выражении векторов тока или напряжения.

Основная особенность многофазных (n) систем состоит в объединении отдельных схем с одинаковыми электрическими параметрами ЭДС, напряжения и тока, которые разнесены по времени на одинаковые интервалы периода ∆t=T/n выражаемые, также в угловых величинах фазы ∆ωt=360/n (в градусах) либо ∆ωt=2π/n (в радианах).

Трехфазные цепи . В энергетике применяются три объединенных электрических схемы (фазы), n=3 . Соответственно все цепи разнесены на 120 угловых градусов. Для их обозначения в соответствии с ГОСТ-ом используются:

Заглавные латинские буквы А, В, С в качестве основного обозначения;
- арабские цифры 1, 2, 3 для дополнительной маркировки;
- заглавные латинские буквы R, S, T в международном формате.

В процессе эксплуатации головная организация произвольно выбирает первую фазу “А” , а остальные нумерует в последовательности прохождения векторами напряжения (u) и тока (i) северного направления координат.

В трехфазной системе принято под прямой последовательностью понимать в нормальном режиме работы вращение векторов А>В>С>А против часовой стрелки. При этом, вектора в цепи В запаздывают от цепи А и обгоняют цепь С на 120°.

Противоположное вращение векторов по часовой стрелке считается обратной последовательностью.

Созданные в системе фазы могут объединяться в единую схему или работать изолированно, без взаимных связей. В не связанной системе величины мгновенных ЭДС в фазах разнесены по углу на 120° и чередуются по схеме А>В>С>А . Их значения описываются формулами:

e А =Е m sinωt, E А =Еe j0° ;
e В =Е m sin(ωt-120°), E В =Еe -j120° ;
e С =Е m sin(ωt-240°)=Е m sin(ωt+120°), E С =Еe j120° .

Диаграммы графиков функций и векторные выражения поясняются соответствующими рисунками.

В независимой симметричной 3-х фазной схеме всегда действует правило: любые переменные величины е, u, i в каждый момент времени при суммировании равны нулю. Иначе говоря: u А +u В +u С =0 .

Для примера демонстрируем вычисления сумм ЭДС при трех значениях углов:

При равной нагрузке для каждой фазы, когда Z A =Z B =Z C =Ze jφ , формируются одинаковые по длине, но сдвинутые по углу от напряжений (ЭДС) вектора фазных токов. Они разнесены между собой на 120° и тоже создают 3-х фазную симметричную систему, в которой действуют законы:

i A +i B +i C =0;
I A +I B +I C =0.

Из трех не связанных систем формируется единая связанная путем подключения (объединения) обратных (возвратных) проводов в единую магистраль. При этом способе в обобщенном проводе общий ток от трех фаз сложится и станет равным нулю. Процесс описывает 1-й закон Кирхгофа :

i N =i A +i B +i C =0 .

Практический вывод очевиден: отсутствие необходимости обратного провода, что ведет к значительной экономии материальных средств для транспортировки электроэнергии от 3-х фазного генератора к 3-х фазному электроприемнику.

Преимущества 3-х фазных систем:

1. Транспортировка электрических мощностей 3-х фазной схемой к потребителям от источников экономически эффективнее, чем для другого количества фаз. При снижении количества магистралей с 6 до 3 не только экономятся средства на провода, но и снижаются энергетические потери в них;

2. Для создания 3-х фазной системы не требуется создавать сложных технических конструкций. Круговое вращательное движение давно используется для работы различных генераторов и двигателей;

3. Технология изготовления 3-х фазных генераторов, трансформаторов и двигателей проста и отлажена, а все устройства отличаются надежностью, долговечностью, дешевизной и уменьшенными габаритами;

4. 3-х фазная схема позволяет одновременно применять электрические приемники с разными номиналами напряжений, отличающимися на величину √3 , которая определяется наличием 2-х уровней напряжений (фазного и линейного). Uл=√3xUф.


Эти очевидные преимущества систем широко используются в энергетике для выработки электрической энергии и передачи/распределения ее к электроприемникам с 1989 года.

Основоположником и разработчиком их является инженер Михаил Осипович Доливо-Добровольский, работавший в немецкой фирме AEG (Allgemeine Elektricitäts-Gesellschaft).


Трёхфазная система электроснабжения - частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол . В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой . Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский , который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем .

Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда»

Векторная диаграмма фазных токов. Симметричный режим.


Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах

  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку , что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений - фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда

Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью . Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными . Провод, соединяющий две нейтрали, называется нейтральным .

Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой - экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет - трёхпроводной.

Если сопротивления Z a , Z b , Z c приёмника равны между собой, то такую нагрузку называют симметричной .

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (U a , U b , U c) называется фазным . Напряжение между двумя линейными проводами (U AB , U BC , U CA) называется линейным . Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода . Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз », в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах . Так как сопротивление потребителя остаётся константой, то, согласно закону Ома , при возрастании напряжения сила тока , проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми . Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя . Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97 , ОСТ 45.188-2001.


Треугольник

Треугольник - такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Распространённые стандарты напряжений

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник
США (120/208В) Чёрный Красный Голубой Белый или серый Зелёный
США (277/480В) Оранжевый Коричневый Жёлтый Белый или серый Зелёный
Канада Красный Чёрный Голубой Белый Зелёный
Канада (Изолированные трёхфазные установки) Оранжевый Коричневый Жёлтый Белый Зелёный
Великобритания (с апреля 2006) Красный (Коричневый) Жёлтый (ранее Белый) (Чёрный) Голубой (Серый) Чёрный (Голубой) Зелёно-жёлтый
Европа (с апреля 2004) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Европа (до апреля 2004, в зависимости от страны) Коричневый или Чёрный Чёрный или Коричневый Чёрный или Коричневый Голубой Зелёно-жёлтый
Европа (Обозначение шин) Жёлтый Коричневый Красный
Россия (СССР) Жёлтый Зелёный Красный Голубой Зелёно-жёлтый (на старых установках - Черный)
Россия (с 1 января 2011 г.) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Австралия и Новая Зеландия Красный Жёлтый Голубой Чёрный
Южная Африка Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках - Зелёный)
Малайзия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках - Зелёный)
Индия Красный Жёлтый Голубой Чёрный Зелёный

Трёхфазная двухцепная линия электропередачи

Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.

На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.

Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.

Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.

В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.

Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.

У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.

Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Разберёмся что такое фазное напряжение

Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.

Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.

Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.

На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:

  • L1 — коричневый;
  • L2 — чёрный;
  • L3 — серый;
  • N — синий;
  • Жёлто‑зелёный для защитного заземления.

Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.

Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.

Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.

По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.

Что такое линейное напряжение сети

Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.

Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.

Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.

Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.

Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.

Каково основное отличие этих напряжений

Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».

Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».

Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».

При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.

Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.

Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.

Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.

Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.

Трёхфазное напряжение – это система электрического питания, где используются три фазные линии, со сдвигом по фазе 120 градусов. Это обеспечивает равномерные условия для многих приложений, повышается эффективность.

Возникновение концепции трёхфазного напряжения

Отцом трёхфазного напряжения считают Доливо-Добровольского в России и Николу Теслу – в остальном мире. События, относящиеся к эпохе возникновения предмета спора, происходили в 80-е годы XIX века. Никола Тесла продемонстрировал первый двухфазный двигатель, работая на компанию, где налаживал электрические установки разнообразного назначения. Заинтересованность явлением электризации шерсти домашнего кота привела учёного к великим открытиям. Прогуливаясь в парке с приятелем, Никола Тесла осознал, что сумеет реализовать на практике теорию Араго о вращающемся магнитном поле, причём понадобятся:

  1. Две фазы.
  2. Сдвиг между ними на угол 90 градусов.

Чтобы показать великое значение открытия, заметим, что трансформатор Яблочкова в указанное время не обрел массовой известности, а опыты Фарадея по магнитной индукции благополучно забыли, записав лишь формулу закона. Мир не хотел знать про:

  • переменный ток;
  • фазу;
  • реактивная мощность.

Генераторы (альтернаторы) и динамо спрямляли напряжение при помощи механического коммутатора. Подобным образом прозябала вся скудная на тот момент отрасль электричества. Эдисон лишь начинал изобретать, никто пока толком не знал про . Кстати, в РФ считают, что устройство изобрёл Лодыгин.

Идея Теслы выглядела революционной, неизвестным оставалось, как получить две фазы с заданным межфазным сдвигом. Молодого учёного мало интересовал вопрос. Он читал про обратимость электрических машин и излучал уверенность, что легко построит генератор, соответствующим образом расположив обмотки. По приводу затруднений не возникало. На начало 80-х годов активно использовался пар, демонстрационную модель предполагалось питать от динамо.

Тесла не задавался необходимостью получить определённую частоту. Исследования не проводились, требовалось просто заставить ротор вращаться. Идея реализовалась через токосъёмные кольца. На тот момент коллекторные двигатели постоянного тока снабжались подобными контактами, вывод Теслы неудивителен. Интереснее объяснить выбор количества фаз.

Преимущество трёх фаз

экспериментаторы в голос утверждают о преимуществе трёх фаз перед двумя, но требуется объяснение. Сразу лезут в голову мысли про КПД, вращающий момент и прочее. Но Тесла рисовал в блокнотике сотни конструкций, очевидно, сумел бы расставить полюса, чтобы добиться нужных параметров. Вывод – дело не в конструкции приборов.

Сейчас напряжение 380 В передаётся лишь по трём проводам. Этого нельзя было добиться в первоначальном варианте Николы Теслы. В 1883 году Эдисон массу сил потратил на попытки использовать трёхжильный провод. Очевидно, слышал о демонстрации, устроенной Николой Теслой, и понял опасность ситуации. В цивилизованном мире основную прибыль получает владелец патента, зачем известному изобретателю вытаскивать на свет способного инженера?

Логика Эдисона проста: пользователи увидят, что трёхжильные кабели более дешёвые, нежели четырёхжильные, и откажутся от использования новинок Николы Теслы. Несложно догадаться, что хитроумный план изобретателя цоколя для лампочек накала провалился. И с треском. А виной стал… Доливо-Добровольский. Система Николы Теслы для создания двух фаз требовала наличия четырёх проводов. Одновременно Доливо-Добровольский предлагал передать больше энергии посредством трёх.

Дело здесь в симметрии. Линейные напряжения 380 В в каждый момент оставляют альтернативу для выбора. К примеру, ток с первой фазы способен утечь на вторую или третью. В зависимости от присутствия подходящего потенциала. В результате получается баланс. Если объединить две фазы системы Николы Тесла, получится винегрет. Как следствие, нейтраль в системе Доливо-Добровольского допустимо убрать, если нагрузка симметричная — как часто происходит на практике.

В результате между проводами получается больший вольтаж, что снижает по каждому проходящий ток при прежней мощности. Причём удаётся порой использовать лишь три линии, сказанное касается большинства предприятий. Очевидны выгоды и при создании местных подстанций: нейтраль вторичной обмотки заземляется тут же, не нужно тянуть лишний провод от гидроэлектростанции. Указанные причины стали преимуществами сетей трёхфазного напряжения, сегодня доминирующие. Провода Теслы легко модернизируются на три фазы.

Причина проигрыша Эдисона

Часто встречается мнение, что система Теслы оказалась лучше, поэтому Эдисон проиграл. Сложно сказать, сколько долларов потерял последний, но Николу обвёл по современным меркам на 4,5 млн. долларов. Инфляция! Авторы склонны считать, что Эдисон получил своё. Никола Тесла умел доказать преимущества постоянного тока. К примеру, последний меньше склонен коронировать на проводах, амплитуда не содержит резких выбросов.

Сегодня доказано, что постоянный ток на дальние расстояния передавать выгоднее. Это исключает из рассмотрения реактивные сопротивления сети – индуктивность и ёмкость. Что значительно снижает нестабильную реактивную мощность. XXI век способен стать вторым рождением постоянного тока для передачи его на дальние расстояния. Но смех вызывает неумение Эдисона передавать энергию. Тесла вправе был помочь, тогда приборы постоянного тока сегодня использовались бы наравне с потребителями переменного. Для коллекторных двигателей это лучше – растут КПД и крутящий момент.

Выходит, постоянный ток выгодно передавать. Эдисон попросту не смог найти правильного решения, пытался взять задачу нахрапом, не погружаясь в тылы. Эдисон был чистым практиком и не умел найти столь ухищрённых решений, как преобразователи. А ведь все генераторы середины XIX века имели встроенный коммутатор для спрямления. Оставалось лишь подключить к линии, а на приёмной стороне провести преобразование. И все! Никола блестяще наказал Эдисона, доказывая наличие в мире некой силы, управляющей ходом истории.

переменный ток избрали по причине наличия мощного средства для передачи. Речь о трансформаторе. Впервые сконструированный в 1831 году (либо раньше) Майклом Фарадеем, этот незаменимый элемент современной техники остался без заслуженного внимания. Интерес к устройству вернул Генрих Румкорф пятнадцатью годами позднее, использовав динамо для получения разряда в искровом промежутке. Повышающий трансформатор значительно усиливал эффект. Это прямиком открыло учёным путь к постановке опытов, но суть преобразования не получила заслуженного внимания.

Вместо этого учёные упорно бились над постоянным током. Создавая для него двигатели, приборы освещения и генераторы. Удивительно, зная об обратимости электрических машин, не придумали раньше, как создать униполярный мотор, стоящий сегодня в ручных миксерах и блендерах. Фактически двигатели бытового назначения однофазные. И лишь маленькая часть работает на постоянном токе.

Укажем неявное преимущество. У постоянного тока выше предел безопасности. Возможным видится сделать промышленные сети безвредным для людей. Рассмотрим утверждение подробнее, доводы не очевидны неискушённому читателю.

Почему постоянный ток безопаснее

Прожжённые электрики говорят, что удар током 220 В не слишком опасен, главное – не попасть под линейное трёхфазное напряжение. Оно выше примерно в корень из трёх раз (в пределах 1,7). Линейным называется напряжение между двумя фазами. За счёт сдвига между ними в 120 градусов получается указанный любопытный эффект. Невежды спрашивают, какая разница при сдвиге 90 градусов. Ответ дан вначале – три фазы образуют симметричную систему. Со сдвигом 90 понадобилось бы четыре.

В результате каждым линейным напряжением питают по полюсу, что существенно упрощает их размножение, когда требуется достичь большой мощности. К примеру, в тяговых двигателях пароходов, где требуется чрезвычайно плавно изменять усилие и приходится применять вращения вала. Случается, трёх и даже шести полюсов оказывается мало. Лишь коллекторному двигателю пылесоса достаточно двух.

Итак, между фазами имеется 308 В. Безопасным выглядит, если повысить частоту линии передач до 700 Гц. Тесла установил, что с указанного значения ярко проявляется скин-эффект, ток не проникает глубоко в тело. Следовательно, не наносит существенных повреждений человеку. Учёный демонстрировал языки молний на теле при гораздо больших напряжениях и говорил, что это полезно для здоровья, здорово очищает кожу.

Частота 700 Гц (или выше) не пущена в обиход — при этом существенно увеличивались потери трансформаторов. На момент принятия решения о номиналах первой ГЭС переменного тока не существовало наработок по изготовлению электротехнических материалов. Подробнее предлагаем прочитать в теме . Нет надобности дублировать информацию. По причине отсутствия нужных материалов потери на перемагничивание сильно росли с увеличением частоты. Сегодня подобное не вызывает затруднений на уровне технологии.

Встаёт сложность – экранирование. В годы первых попыток передачи энергии не знали об излучении. Радио делало первые шаги в 90-х годах XIX века. В действительности рост частоты сопровождается резким повышением выброса энергии в пространство. И провода требовалось экранировать, это дорого, требует наличия мощных диэлектриков. Не факт, что современные сети сумели бы решить задачу.

Тесла предлагал передавать энергию через эфир. Для чего построил башню Ворденклиф. Но… промышленники оказались заинтересованы в продаже меди на изготовление проводов и на этом основании отказали учёному в финансировании. Но главное — грядёт время, когда трёхфазное напряжение уйдёт в небытие или будет получаться из преобразователей, и сам Тесла даст ответ, как это сделать.

Точнее, ответ дадут многочисленные патенты и идеи изобретателя. Недаром записи были немедленно изъяты после смерти учёного и тщательно засекречены. Рекомендуем взяться за изучение . Пора мечтать, что машины станут ездить на растительном масле, не загрязняя окружающую среду отвратительным дымом и гарью. Обратите внимание, что все секреты лежат на поверхности и ждут желающего их раскрыть. Возможно, кто-то из читателей сумеет сделать это первым?

Трехфазная система переменного тока широко распространена и применяется во всем мире. При помощи трехфазной системы обеспечиваются оптимальные условия для передачи по проводам электроэнергии на большие расстояния, возможность для создания простых по устройству и удобных в эксплуатации электродвигателей.

Трехфазная система переменного тока

Называется система, состоящая из трех цепей с действующими электродвижущими силами (ЭДС) одинаковой частоты. Эти ЭДС сдвинуты относительно друг друга по фазе на одну треть. Каждая отдельная цепь в системе называется фазой. Вся система трех переменных токов, сдвинутых по фазе, и называется трехфазным током.

Практически все генераторы, которые установлены на электростанциях - это генераторы трехфазного тока. В конструкции соединены в одном агрегате три . Электродвижущие силы, индуцированные в них, как сказано ранее, сдвинуты на одну треть периода относительно друг друга.

Как же осуществляется работа генератора

В генераторе трехфазного тока есть три отдельных якоря, располагающихся на статоре устройства. Они имеют смещение на 1200 между собой. В центре устройства вращается индуктор, общий для трех якорей. Переменная ЭДС одинаковой частоты индуцируется в каждой катушке. Однако, моменты прохождения этих электродвижущих сил через нуль в каждой из этих катушек оказываются сдвинуты на 1/3 периода, так как индуктор проходит возле каждой катушки на 1/3 времени позднее, чем предыдущей.

Все обмотки являются самостоятельными генераторами тока и источниками электроэнергии. Если присоединить провода к концам каждой обмотки, то получаются три независимые цепи. В данном случае, чтобы передать всю электроэнергию потребуется шесть проводов. Однако при других соединениях обмоток между собой вполне можно обойтись 3-4 проводами, что дает большую экономию провода.

Соединение - звездой

Концы всех обмоток соединяются в одной точке генератора, так называемой нулевой точке. Затем производится соединение с потребителями, используя четыре провода: три - линейные провода, которые идут от начала обмоток 1, 2, 3, один - нулевой (нейтральный) провод, идущий от нулевой точки генератора. Такую систему называют еще четырехпроводной.

Соединение треугольником

В этом случае конец предыдущей обмотки соединяется с началом последующей, образуя, тем самым треугольник. Линейные провода соединяются с вершинами треугольника - точками 1, 2, 3. При таком подключении совпадают. В сравнении с подключением звездой, подключение треугольником снижает линейное напряжение примерно в 1,73 раза. Оно допускается лишь при условии одинаковой нагрузки фаз, иначе в обмотках может увеличиться, что представляет опасность для генератора.

Отдельные потребители (нагрузки), которые питаются от раздельных пар проводов, точно так же могут соединяться или звездой или треугольником. В итоге получается ситуация, аналогичная генератору: при соединении треугольником - нагрузки находятся под линейным напряжением, при соединении звездой - напряжение в 1,73 раза меньше.



Рекомендуем почитать

Наверх