Развитие процессоров intel таблица. Дальнейшее развитие процессоров Intel. Наиболее свежие и перспективные решения

Для Андроид 15.04.2019
Для Андроид

В данной статье будут подробно рассмотрены последние поколения процессоров Intel на основе архитектуры Core. Данная компания занимает ведущее положение на рынке компьютерных систем. Большинство современных компьютеров собираются на чипах именно этой компании.

Intel: стратегия развития

Предыдущие поколения процессоров от компании Intel были подчинены двухлетнему циклу. Такая стратегия выпуска новых процессоров данной компании получила название «Тик-Так». Первый этап под названием «тик» заключается в переводе процессора на новый технологический процесс. Так, например, поколения «Иви бридж» (2-е поколение) и «Санди бридж» (3-е поколение) в плане архитектуры были идентичными. Однако технология производства первых базировалась на норме 22 нм, а вторых – 32 нм. То же самое можно сказать и про «Броад Велл» (5-го поколения) и «Хас Велл» (4-ое поколение). Этап «так» в свою очередь предполагает кардинальное изменение архитектуры полупроводниковых кристаллов и значительный прирост производительности. Можно привести следующие переходы в качестве примера:

— 1-ое поколение West merre и 2-ое поколение «Санди Бридж». В данном случае технологический процесс был идентичным (32 нм), а вот архитектура претерпела существенные изменения. На центральный процессор были перенесены северный мост материнской платы и встроенный графический усилитель;

— 4-е поколение «Хас Велл» и 3-е поколение «Иви Бридж». Был оптимизирован уровень энергопотребления компьютерной системы, а также повышены тактовые частоты чипов.

— 6-ое поколение «Скай Лайк» и 5-ое поколение «Броад Велл»: также были повышены тактовые частоты и улучшен уровень энергопотребления. Было добавлено несколько новых инструкций, улучшающих быстродействие.

Процессоры на базе архитектуры Core: сегментация

ЦПУ от компании Intel позиционируются на рынке следующим образом:

— Celeron– наиболее доступные решения. Подходят для использования в офисных компьютерах, предназначенных для решения наиболее простых задач.

— Pentium – практически полностью идентичны процессорам Celeron в архитектурном плане. Однако более высокие частоты и увеличенный кэш третьего уровня дают данным процессорным решениям определенное преимущество с точки зрения производительности. Данный ЦПУ относится к сегменту игровых ПК начального уровня.

— Corei3 – занимают средний сегмент ЦПУ от компании Intel. Два предыдущих типа процессоров, как правило, имеют два вычислительных блока. То же можно сказать про Corei3. Однако для двух первых семейств чипов отсутствует поддержка технологии «ГиперТрейдинг». У процессоров Corei3 она имеется. Таким образом на программном уровне два физических модуля могут быть преобразованы в четыре потока обработки программы. Это позволяет обеспечить существенное увеличение уровня быстродействия. На основе таких продуктов можно собрать собственный игровой персональный компьютер среднего уровня, сервер начального уровня или даже графическую станцию.

— Corei5 – занимают нишу решений выше среднего уровня, но ниже премиального сегмента. Данные полупроводниковые кристаллы могут похвастаться наличием сразу четырех физических ядер. Данная архитектурная особенность обеспечивает им преимущество в плане производительности. Более свежее поколение процессоров Corei5 обладает высокими тактовыми частотами, что позволяет постоянно получать прирост производительности.

— Corei7 – занимают нишу премиум-сегмента. В них количество вычислительных блоков такое же, как и в Corei5. Однако у них, так же, как и у Corei3 имеется поддержка технологии «Гипертрейдинг». По этой причине четыре ядра на программном уровне преобразуются в восемь обрабатываемых потоков. Именно эта особенность позволяет обеспечить феноменальный уровень производительности, которым может похвастаться любой персональный компьютер, собранный на основе Intel Corei7. Данные чипы имеют соответствующую стоимость.

Процессорные разъемы

Поколения процессоров Intel Coreмогут устанавливаться в различные типы сокетов. По этой причине не получится установить первые чипы на основе данной архитектуры в материнскую плату ЦПУ 6-го поколения. А чип с кодовым названием «СкайЛайк» не получится установить в системную плату для второго и первого поколения процессоров. Первый процессорный разъем носит название Сокет Н или LGA 1156. Цифра 1156 здесь указывает на количество контактов. Данный разъем был выпущен в 2009 году для первых центральных процессоров, изготовленных по нормам технологического процесса 45 нм и 32 нм. На сегодняшний день данный сокет считается уже морально и физически устаревшим. На смену LGA 1156 в 2010 году пришел LGA 1155 или Сокет Н1. Материнские платы данной серии поддерживают чипы Coreвторого и третьего поколений. Их кодовые названия соответственно «Санди Бридж» и «Иви Бридж». 2013 год был ознаменован выходом третьего сокета для чипов, созданный на основе архитектуры Core – LGA 1150 или Сокет Н2. В данный процессорный разъем можно было установить процессор четвертого и пятого поколений. В 2015 году на смену сокету LGA 1150 пришел актуальный сокет LGA 1151.

Чипы первого поколения

Наиболее доступными процессорами являлись чипы Celeron G1101 (работает с частотой 2.27 ГГц), Pentium G6950 (2,8 ГГц), Pentium G6990 (2.9 ГГц). У всех этих решений было по два ядра.Сегмент решений среднего уровня был занят процессорами Corei 3 с обозначением 5XX (два ядра/четыре потока для обработки информации). Выше на одну ступень находились процессоры с обозначением 6XX. Они имели идентичные параметры с Corei3, однако частота была выше. На той же ступени располагался процессор 7XX с четырьмя реальными ядрами. Самые производительные компьютерные системы были собраны на базе процессора Corei7. Данные модели обозначались как 8XX. В этом случае наиболее скоростной чип имел маркировку 875 К. Такой процессор за счет разблокированного множителя можно было разогнать. Однако и цена у него была соответствующая. Для данных процессоров можно получить значительный прирост быстродействия. Наличие приставки К в обозначении центрального процессорного устройства означает, что множитель процессора разблокирован и данная модель поддается разгону. Приставка S добавлялась в обозначение энергоэффективных чипов.

«Санди Бридж» и плановое обновление архитектуры

На смену первому поколению чипов на базе архитектуры Coreв 2010 году пришло новое решение с кодовым названием Sandy Bridge. Ключевой особенностью данного устройства являлся перенос встроенного графического ускорителя и северного моста на кремниевый кристалл процессора.

В нише более бюджетных процессорных решений был процессоры Celeron серий G5XX иG4XX. В первом случае использовалось сразу два вычислительных блока, а во втором кэш третьего уровня был урезан и присутствовало только одно ядро. На одну ступень выше расположились процессоры Pentiumмоделей G6XX иG8XX. В данном случае разница в производительности была обеспечена более высокими частотами. G8XX именно из за этой важной характеристики выглядели намного предпочтительнее в глазах пользователя. Линейка процессоров Corei3 была представлена моделями 21XX. У некоторых обозначений на конце появлялся индекс Т. Он обозначал наиболее энерго эффектиные решения, имеющие уменьшенную производительность. Решения Corei5 имели обозначения 25XX, 24XX, 23XX. Чем более высокую маркировку имеет модель, тем больший уровень производительности имеет ЦПУ. Если в конце наименования добавлена буква «S», то это означает промежуточный вариант по уровню энергопотребления между «Т»-версией и штатным кристаллом. Индекс «P»обозначает, что в устройстве отключен графический ускоритель. Чипы с индексом «К» обладали разблокированным множителем. Подобная маркировка остается актуальной и для третьего поколения данной архитектуры.

Новый прогрессивный технологический процесс

В 2013 году вышло третье поколение процессоров на основе данной архитектуры. Ключевым нововведением стал новый технологический процесс. В остальном никаких существенных нововведений не было. Все они физически совместимы с предыдущим поколением процессором. Их можно было устанавливать в те же самые материнские платы. Структура обозначений осталась прежней. Celeron имели обозначение G12XX, а Pentium–G22XX. В начале вместо «2» была «3». Это указывало на принадлежность к третьему поколению. Линейка Corei3 имела индексы 32XX. Более продвинутые процессоры Corei5 имели обозначения 33XX, 34XXи 35XX. Флагманские аппараты Core i7 имели маркировку 37XX.

Четвертое поколение архитектуры Core

Четвертое поколение процессоров Intel стало следующим этапом. В данном случае использовалась следующая маркировка. Центральные процессорные устройства эконом-класса обозначались как G18XX. Те же индексы имели и процессоры Pentium – 41XX и 43XX. Процессоры Corei5 можно было бы узнать по аббревиатурам 46XX, 45XXи 44XX. Для обозначения процессоров Corei7 использовалось обозначение 47XX. Пятое поколение процессоров Intel на базе этой архитектуры ориентировалось в основном на использование в мобильных устройствах. Для стационарных персональных компьютеров были выпущены только чипы, относящиеся к линейкам i7 иi5, причем только ограниченное число моделей. Первые из них обозначались как 57XX, а вторые – 56XX.

Перспективные решения

В начале осени 2015 года дебютировало шестое поколение процессоров Intel. На данный момент это наиболее актуальная процессорная архитектура. В этом случае чипы начального уровня обозначаются как G39XX для Celeron, G44XX и G45XX для Pentium. Процессоры Corei3 имеют обозначение 61XX и 63XX. Corei5 в свою очередь обозначаются как 64XX, 65XXи 66XX. На обозначение флагманских моделей выделено всего одно решение 67XX. Новое поколение процессорных решений от компании Intelпребывает только в начале разработки, так что такие решения будут оставаться актуальными еще долгое время.

Особенности разгона

Все чипы на основе данной архитектуры обладают заблокированным множителем. По этой причине разгон устройства может быть выполнен только за счет увеличения частоты системной шины. В последнем шестом поколении данную возможность увеличения быстродействия системы производители материнских плат должны будут отключить в BIOS. В данном плане процессоры серий Corei7 иCorei5 с индексом К являются исключением. У данных устройств множитель разблокирован. Это позволяет существенно увеличить производительность компьютерных систем, построенных на базе таких полупроводниковых продуктов.

Мнение пользователей

Все поколения процессоров Intel, перечисленные в данном материале, обладают высокой степенью энергоэффективности и феноменальным уровнем быстродействия. Их единственным недостатком является слишком высокая стоимость. Причина здесь заключается только в том, что прямой конкурент компании Intel компания AMD не может противопоставить стоящие решения. По этой причине компания Intel устанавливает ценник на свою продукцию исходя из собственных соображений.

Заключение

В данной статье были подробно рассмотрены поколения процессоров Intelдля настольных персональных компьютеров. Такого перечня будет вполне достаточно, чтобы разобраться в обозначениях и наименования процессоров. Также существуют варианты для компьютерных энтузиастов и различные мобильные сокеты. Это все сделано для того, чтобы конечный пользователь смог получить наиболее оптимальное процессорное решение. На сегодняшний день наиболее актуальными являются чипы шестого поколения. При сборке нового ПК стоит обращать внимание именно на эти модели.

Предыдущие части:

AMD K7

Дебют архитектуры AMD K7 и процессоров Athlon пришелся на август 1999 года. Американская компания ставила перед собой всё более и более серьезные задачи, поэтому ожидания пользователей от новой разработки были довольно высоки, особенно учитывая просачивающуюся в прессу информацию о технических характеристиках.

Еще задолго до того, как компания выпустила платформу K7, AMD и Motorola заключили партнерское соглашение, в рамках которого для производства новых процессоров могли использоваться фабрики Motorola. Результатом их сотрудничества стала технология производства кристаллов с применением медных соединений.

За разработку архитектуры K7 отвечал новичок AMD - Дирк Мейер. На то время будущий CEO AMD лишь недавно присоединился к компании. До этого он работал в компании DEC и непосредственно участвовал в разработке процессоров Alpha.

Дирк Мейер - будущий CEO AMD

Влияние DEC’овских процессоров на K7 чувствовалось сразу. Архитектура была разработана с прицелом на работу с высокой тактовой частотой. Для этого использовалась суперконвейерная суперскалярная модель. Платформу назвали суперконвейерной, поскольку число стадий конвейера увеличилось. Например, конвейер целочисленных операций состоял из 10 стадий, а модуль операций с плавающей запятой - из 17. Суперскалярность же заключалась в том, что Athlon умел обрабатывать до трех инструкций параллельно.

Ахиллесовой пятой архитектуры предыдущего поколения - K6 - была низкая производительность модуля вычислений с плавающей запятой (FPU). Так, процессоры AMD значительно уступали «Пентиумам». Не помогла тем «камням» и поддержка инструкций 3DNow!. Поэтому в K7 блок FPU был полностью переработан. Он стал трехконвейерным и содержал модули FMUL, FADD и FSTORE, которые могли работать как по отдельности, так и вместе. Блоки FMUL и FADD отвечали за выполнение инструкций MMX и 3DNow!. Первый модуль специализировался на операциях умножения, деления и вычисления квадратного корня из числа, а второй - на сложении и вычитании. Третий блок - FSTORE - обеспечивал доступ к оперативной памяти.

Раз уж мы упомянули инструкции 3DNow!, то стоит отметить, что в «Атлонах» этот набор команд был расширен. Новая версия 3DNow! получила 19 новых инструкций, предназначенных для обработки видеоданных и речи.

Еще одним нововведением в K7 стало использование шины данных EV6. Данный интерфейс являлся еще одной прямой отсылкой к процессорам компании DEC, поскольку он использовался в моделях Alpha. По сравнению с шиной GTL+, которая использовалась в архитектуре Intel P6, EV6 обладала несколькими преимуществами. Во-первых, использование технологии DDR (Double Data Rate) позволило передавать данные по обоим фронтам тактового сигнала. То есть при реальной частоте шины 100 МГц на выходе получалась вдвое большая эффективная частота - 200 МГц. Это позволило лучше использовать потенциал оперативной памяти. Во-вторых, благодаря поддержке протокола «точка-точка» EV6 идеально подходила для построения многопроцессорных систем.

Кэш-память «Атлонов» также претерпела определенные изменения. Прежде всего, нужно заметить, что процессорный кэш состоял из двух уровней. «Мозги» 1-го уровня подразделялась на блоки инструкций и данных. Объем каждого модуля составлял 64 Кбайт, что в сумме давало 128 Кбайт. Например, у Pentium III емкость кэша первого уровня составляла всего 32 Кбайт. Количество кэш-памяти 2-го уровня в архитектуре K7 равнялось 512 Кбайт, но он работал на вдвое или втрое меньшей частоте, нежели сам процессор. Это объяснялось тем, что SRAM-память была вынесена за пределы кристалла.

Процессор Athlon, Slot A

Первые процессоры Athlon базировались на ядре Pluto, которое производилось по 250-нм техпроцессу. «Камень» содержал порядка 22 миллиона транзисторов. «Атлоны» с ядром Pluto устанавливались в разъем Slot A. Несколько позже появились кристаллы, основанные на ядре Orion, которое производилось по 180-нм техпроцессу. И это было его единственным отличием от Pluto.

Интересные изменения процессоры получили после выхода 180-нм ядра Thunderbird. Во-первых, отныне продукты AMD были совместимы с разъемом Socket A. Во-вторых, они претерпели и существенные архитектурные изменения. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Несмотря на то, что ее объем уменьшился до 256 Кбайт, скорость ее работы возросла. Помимо этого, была увеличена тактовая частота системной шины. Теперь она функционировала с частотой 133 МГц, то есть ее эффективный показатель равнялся 266 МГц.

Кстати, AMD’шные процессоры первыми смогли преодолеть гигагерцевый рубеж. 6 марта 2000 года Athlon с ядром Thunderbird стал первым «камнем» в истории с рабочей частотой 1 ГГц. Но и это не стало пределом для архитектуры K7, так как чуть позже появились модели, которые функционировали на частоте 1400 МГц.

Гигагерцевый Athlon для разъема Slot A

Несмотря на коммерческий и технологический успех K7, архитектура была далеко не идеальна. Основной ее проблемой являлся медленный кэш 2-го уровня - даже после того, как он был перемещен в кристалл, его производительность оставляла желать лучшего. Также недостатком первых «Атлонов» считалось отсутствие поддержки «интеловского» набора инструкций SSE. Эти команды были своего рода аналогом инструкций 3DNow!, и подавляющее большинство приложений «затачивалось» именно под SSE. По этой причине процессоры Athlon зачастую уступали в производительности кристаллам Intel.

Эти недостатки были исправлены в новом ядре Palomino, на базе которого выпускались решения Athlon XP (eXtra Performance). Кроме поддержки SSE и более быстрого кэша 2-го уровня, кристаллы наконец-то обзавелись термодатчиком для отслеживания температуры. Ядро Palomino производилось по 180-нм техпроцессу, но в сравнении с предшественниками стало сложнее и содержало почти 38 миллионов транзисторов. Большинство моделей Athlon XP устанавливались в разъем Socket A, хотя существовали и переходные варианты для Slot A. Максимальная тактовая частота Palomino составляла 1733 МГц.

Процессор Athlon XP для Socket A

Отметим, что с выходом Athlon XP компания AMD ввела рейтинговую систему обозначения процессоров. Так, индекс любой модели отныне не отображал реальную тактовую частоту ядра. Например, Athlon XP 2000+ функционировал со скоростью 1667 МГц и был сопоставим по производительности с процессором Pentium 4 с частотой 2000 МГц.

Ядро Palomino было представлено в октябре 2001 года, и уже спустя 9 месяцев на смену ему пришли процессоры Thoroughbred (Tbred-A). Это решение представляло собой то же ядро Palomino, но выпущенное по 130-нм технологическим нормам. AMD неожиданно испытала проблемы с наращиванием тактовой частоты в новых процессорах, поэтому через два месяца появилась новая ревизия Thoroughbred - Tbred-B. По архитектурному дизайну Tbred-A немного отличалась от Tbred-B, но это позволило достичь обновленному ядру частоты 2200 МГц. В Thoroughbred также была увеличена до 166 МГц частота системной шины.

Последним пришествием архитектуры K7 стало ядро Barton, выпущенное в 2003 году. Процессоры отличались от Thoroughbred лишь увеличенным до 512 Кбайт кэшем 2-го уровня. Barton лишь незначительно превосходил в производительности Tbred-B, и компания AMD поспешила вывести на рынок свою новую архитектуру под названием K8.

Intel NetBurst

Вспоминая архитектуру Intel P6, нельзя сказать, что она окончательно исчерпала свой потенциал к концу своего жизненного цикла. Вполне возможно, что, внеся определенные изменения, можно было получить более производительные процессоры на ее базе. Но инженеры Intel думали иначе и создали абсолютно новую архитектуру под названием NetBurst, которая в 2000 году заменила P6.

Так же как и AMD K7, NetBurst разрабатывалась с расчетом на высокие тактовые частоты. Поэтому в основе архитектуры лежал принцип гиперконвейеризации, которая, грубо говоря, являлась аналогом технологии суперконвейера в K7. Поэтому процессоры NetBurst аналогично имели конвейер с большим количеством стадий. В первых ревизиях NetBurst - ядрах Willamette и Northwood - он имел глубину в 20 стадий. В более поздних версиях - Prescott и Cedar Mill - мог похвастать уже 31 стадией. Сюда не входили этапы декодирования инструкций, поскольку сам декодер был вынесен за пределы конвейера. И если раньше сложные операции декодировались на лету, то в NetBurst разбиение инструкций происходило на стадии копирования кода в кэш-память 1-го уровня.

Логотип процессоров Pentium 4

К слову, о кэш-памяти. Она в NetBurst была другого типа. Так, на смену традиционной памяти пришел кэш последовательностей микроопераций (кэш трасс, Trace Cache), хранящий декодированные трассы инструкций, что позволяло декодеру не обрабатывать заново недавно выполненные операции. Такой подход позволил увеличить пропускную способность загрузки инструкций, а также снизить тепловыделение процессора. Объем кэша в NetBurst составлял 12 тысяч микроопераций. А сама память работала на уполовиненной (относительно тактовой) частоте.

Помимо всего прочего, была изменена конструкция арифметико-логических устройств. АЛУ было разделено на 3 блока. Одним из них являлось «медленное АЛУ», работающее с всеми целочисленными операциями. Два остальных - «2X АЛУ», выполняющие лишь элементарные операции (например, сложение). Блок предсказания ветвлений также был доработан. В сравнении с таким же модулем архитектуры P6, количество ошибок при вычислениях сократилось на 33%.

Первое ядро с архитектурой NetBurst, носившее название Willamette, работало на частоте до 2 ГГц с частотой системной шины 400 МГц. Жизненный цикл его был недолгим. В январе 2002 года ему на смену пришли процессоры Northwood. В отличие от 180-нм ядра Willamette, эти кристаллы изготавливались по 130-нм техпроцессу. Также они получили увеличенный до 512 Кбайт объем кэш-памяти 2-го уровня и поддержку технологии мультипоточности Hyper-Threading. Тактовая частота Northwood варьировалась от 1,6 ГГц до 3,4 ГГц.

Процессоры Northwood поддерживали технологию Hyper-Threading

Более существенные изменения получило следующее ядро в линейке - Prescott, выпущенное в 2004 году. Производство процессоров вновь было переведено на более тонкие технологические нормы - 90 нм. Но изменился и сам дизайн архитектуры. Так, объем кэш-памяти возрос до 1 Мбайт (а в ревизии Prescott 2M - до 2 Мбайт), а конвейер получил 31 стадию вместо 20 в Willamette и Northwood. Был улучшен блок предсказания ветвлений, добавилась поддержка инструкций SSE3, а чуть позже - 64-битного расширения набора команд x86. Несмотря на все доработки, процессоры Prescott умудрялись уступать в производительности Northwood в однопоточных приложениях при одинаковой тактовой частоте. Более того, они обладали огромным энергопотреблением и тепловыделением, из-за чего Prescott удостоился заслуженного звания самого горячего x86-процессора.

В 2005 году Intel представила свой первый двухъядерный процессор Pentium D на базе ядра Smithfield. Такой «пень» представлял собой два ядра Prescott, расположенных на одной подложке. Решение получилось не самым удачным, хотя бы потому, что Pentium D обладал всеми недостатками Prescott (в первую очередь высоким тепловыделением). Чтобы уложиться в 130-ваттный TDP, инженерам Intel пришлось ограничить тактовую частоту Smithfield планкой в размере 2,8 ГГц. Так как производительность архитектуры NetBurst сильно зависела от частоты, то скорость первых двухъядерных процессоров Intel оставляла желать лучшего. Свою роль сыграло использование медленной DDR2-памяти, а также неоптимизированность большинства приложений под работу с двумя ядрами.

Pentium D - первый двухъядерный процессор Intel

Последними процессорами с архитектурой NetBurst стали одноядерный Cedar Mill и двухъядерный Presler. Cedar Mill был полным аналогом Prescott 2M, за исключением технологии производства - он изготавливался по 65-нм технологическим нормам. Переход на новые «рельсы» позволил снизить энергопотребление ядра, но увеличить тактовые частоты. Что касается двухъядерной модели Presler, то в плане дизайна она повторяла Smithfield, то есть на одной подложке располагались два ядра, с единственным отличием: вместо Prescott использовались Cedar Mill.

В 2008 году выпуск последних процессоров с архитектурой NetBurst был остановлен. На смену NetBurst пришла более совершенная микроархитектура Core.

AMD K8

В конце 2003 года AMD выпустила новую архитектуру K8. На этот раз архитектурных изменений было не так много.

Ключевых нововведений было три: это 64-битная архитектура, встроенный контроллер памяти и шина HyperTransport. Новые продукты AMD получили название Athlon 64.

Действительно, именно в кристаллах K8 архитектура x86 впервые получила расширение и стала 64-битной. Само расширение официально именуется x86-64, но AMD назвала его по-своему - AMD64. Была получена и обратная совместимость с 16- и 32-разрядными приложениями, то есть 64-битные процессоры AMD без проблем работали со старыми программами.

Основной прирост производительности в сравнении с K7 обеспечил встроенный контроллер памяти. Если раньше данные проходили еще и через северный мост, который выступал связующим звеном между процессором и памятью, то теперь соединение осуществлялась напрямую. Вдобавок к этому был увеличен объем буфера ассоциативной трансляции и усовершенствован блок предсказания ветвлений.

Процессор Athlon 64

Для связи с чипсетом Athlon 64 и другие процессоры с архитектурой K8 использовали шину HyperTransport. Она работала на частоте 200 МГц. Благодаря поддержке DDR (Double Data Rate) за один такт она могла передавать сразу два пакета, обеспечивая пропускную способность, равную 3,2 Гбайт/с.

В остальном инновации K8 носили скорее количественный характер. Например, конвейер процессоров стал длиннее на две стадии. Для целочисленных операций их количество равно 12, а для чисел с плавающей запятой - 17. Блок FPU сохранил прежний дизайн. А вот кэш не изменился.

64-битные «Атлоны» поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3. Кроме этого, процессоры получили поддержку технологии энергосбережения Cool’n’Quiet и аппаратной защиты от ошибки переполнения буфера NX bit (No Execute bit).

Первые модели Athlon 64 были построены на 130-нм ядре Clawhammer и устанавливались как в разъем Socket 754 (одноканальный режим работы ОЗУ), так и в Socket 939 (двухканальный режим работы ОЗУ). Рейтинги процессоров варьировались от 2600+ до 4000+.

Самые производительные процессоры Athlon 64 имели приставку FX

За Clawhammer последовало ядро Newcastle, которое почти не имело отличий от предшественника. В нем было отключено 512 Кбайт кэш-памяти 2-го уровня и добавлена поддержка технологии NX Bit, которая отсутствовала в первых реализациях архитектуры K8.

В рамках следующего ядра, Winchester, выпущенного в сентябре 2004 года, все процессоры устанавливались исключительно в разъем Socket 939. Архитектурно же Winchester ничем не отличался от Newcastle.

В апреле 2005 года AMD выпустила следующее ядро архитектуры K8 - San Diego. Процессор получил поддержку набора инструкций SSE3, а также переработанный контроллер памяти, который научился работать с модулями DDR-433/466/500. Максимальный рейтинг «камней» San Diego составлял 4000+.

Заключительным аккордом в линейке одноядерных процессоров K8 было ядро Orleans, представленное во втором квартале 2006 года. Кристалл получил поддержку технологии виртуализации AMD-V, но главной его особенностью стала работа исключительно через новый разъем Socket AM2. Объем кэш-памяти 2-го уровня равнялся 512 Кбайт, а максимальный рейтинг кристаллов - 4000+. При этом уровень энергопотребления ограничился отметкой 62 Вт, тогда как все предыдущие ядра потребляли не менее 89 Вт.

В 2005 году AMD представила свои первые двухъядерные процессоры под маркой Athlon 64 X2. В основе таких моделей лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд. Плюс в процессоре располагалась дополнительная логика управления. При этом кэш-память была индивидуальной для каждого ядра.

Athlon 64 X2 - конкурент линейки Pentium D

У Athlon 64 X2 присутствовали все «детские болячки», присущие первым двухъядерным процессорам. Во-первых, в сравнении с одноядерными моделями площадь чипа была значительно больше. Как и энергопотребление. Тем не менее, уровень TDP находился на вполне приемлемом уровне, особенно учитывая «прожорливость» конкурирующих решений в лице Pentium D. К примеру, тепловой пакет процессора Athlon 64 X2 3800+ составлял 89 Вт, тогда как аналогичный показатель модели Athlon 64 3800+ равнялся 65 Вт. Во-вторых, в приложениях, которые не задействовали многопоточность, одноядерные кристаллы были быстрее двухъядерных за счет более высокой тактовой частоты.

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти 2-го уровня и энергопотреблением. Так, Brisbane комплектовался 512 Кбайт кэша на каждое ядро и имел TDP, равный 89 Вт. Максимальный рейтинг Brisbane составлял 6000+ при частоте 3100 МГц, хотя на базе ядра Windsor выпускался процессор Athlon 64 X2 6400+ с тактовой частотой 3200 МГц.

Не стоит забывать, что архитектура K8 лежала в основе решений для других сегментов рынка - бюджетных кристаллов Sempron, серверных Opteron и мобильных Turion.

Intel Core и последователи

Неудача архитектуры NetBurst заставила Intel вновь обдумать стратегию на ближайшее будущее. Процессоры Pentium 4 показали, что NetBurst не может достойно конкурировать с AMD K8. Даже больше: с течением времени преимущество решений конкурента лишь возрастало. Поэтому в микроархитектуре следующего поколения, получившей имя Core и представленной в начале 2006 года, было решено вернуться к корням и позаимствовать лучшие черты архитектуры P6.

Список полученных изменений стоит начать с конвейера. Он получил «всего» 14 стадий - примерно столько же использовал конвейер P6, в отличие от 31-стадийного дизайна NetBurst. Процессор научился обрабатывать до четырех инструкций за такт. Архитектура Core изначально проектировалась под двухъядерность, поэтому для всех «голов» была предусмотрена общая кэш-память 2-го уровня. Такой подход обеспечивал большую скорость работы и меньшее энергопотребление. В Core была добавлена поддержка различных энергосберегающих технологий, суть которых заключалась во включении необходимой процессорной логики при необходимости. Положительно на производительности сказалась и улучшенная работа с подсистемой памяти. Помимо всего перечисленного, в Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Отметим, что архитектура Core отличалась от NetBurst отсутствием поддержки некоторых технологий: например, Hyper-Threading и кэш-памяти 3-го уровня.

На смену Pentium пришла торговая марка Core 2

Дебют микроархитектуры Core ознаменовали собой процессоры с кодовыми названиями Merom, Conroe, Allendale и Woodcrest. И если первый и последний предназначались для мобильных и серверных систем соответственно, то второй и третий были нацелены на настольный сегмент. Ядро Allendale было урезанной версией Conroe, в нем была уменьшена частота системной шины с 1066 МГц до 800 МГц, а также урезан объем кэш-памяти 2-го уровня с 4 Мбайт до 2 Мбайт. Плюс не было поддержки аппаратной виртуализации.

Новые «камни» получили оригинальные наименования. Intel ввела торговую марку Core 2, которая заменила Pentium в верхнем и среднем ценовом сегменте. Бренд остался, однако «пенечки» отныне перекочевали в бюджетный сегмент, где обитают и по сей день.

Core ознаменовала возвращение Intel на лидирующие позиции на рынке процессоров. В сравнении с кристаллами Pentium D, производительность Conroe выросла в среднем на 40%, а энергопотребление уменьшилось на те же 40%. Кроме этого, Conroe в целом уверенно превосходил в производительности AMD Athlon 64 X2.

В 2007 году на смену Core пришла 45-нм микроархитектура Penryn. Модификации были минимальны. В производстве новых кристаллов начали использоваться металлические затворы и материалы с высоким показателем диэлектрической константы. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мбайт до 6 Мбайт. Поколение Penryn было представлено двухъядерными решениями Wolfdale и четырехъядерными Yorkfield.

Визуальное сравнение Conroe и Wolfdale

Nehalem, архитектура следующего поколения, была выпущена в 2008 году. В сравнении с Core и Penryn она получила множество улучшений. Как и AMD K8, процессоры обзавелись встроенным трехканальным контроллером памяти DDR3. Nehalem получила новую модульную структуру, которая позволила впоследствии добавить в процессор графическое ядро, да и вообще легче наращивать количество ядер в кристалле. Шина FSB окончательно ушла в прошлое - вместо нее в старших процессорах для разъема Socket LGA1366 использовался интерфейс QPI (QuickPath Interconnect), а в решениях для Socket LGA1156 - DMI (Direct Media Interface). Объем кэш-памяти 2-го уровня был уменьшен до 256 Кбайт на каждое ядро, однако добавилась поддержка L3. Решения поддерживали технологию SMT (Simultaneous Multithreading) - аналог Hyper-Threading. Подробнее о нововведениях Nehalem можно прочитать в этом обзоре .

Чуть больше чем через год Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere. Были выпущены решения с интегрированным графическим ядром Clarkdale , а также десктопные шестиядерные модели Gulftown .

С тех пор Intel успела вывести на рынок 32-нм процессоры следующего поколения -

Тем не менее изменения коснулись практически всех процессорных блоков, и это не считая общей оптимизации архитектуры ядра. Если раньше на одном кристалле могли располагаться лишь два ядра, то теперь это число возросло до шести. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили «мозги» L3 объемом 2 Мбайт. Она являлась общей. При этом объем кэша данных и инструкций 1-го уровня составлял 64 Кбайт каждый, а кэш-памяти 2-го уровня - 512 Кбайт. Еще одним отличием от K8 стал контроллер памяти. В процессорах использовался один 128-битный контроллер, а в K10 их стало два - 64-битных. Во многом изменение архитектуры контроллера было вызвано многоядерностью процессоров. Кстати, каждый контроллер памяти получил свой буфер. Такой подход позволил снизить задержки при обращении к памяти. Доработка затронула и блоки FPU. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Были улучшены алгоритмы предсказания переходов. В результате архитектура K10 научилась обрабатывать две 128-битные SSE-инструкции за такт. Вдобавок ко всему новые процессоры работали через интерфейс HyperTransport 3.0. В сравнении с предыдущими версиями, новое поколение шины обеспечивали более высокую скорость обмена данными за счет более высокой тактовой частоты (до 2,6 ГГц). Большую роль начала играть экономичность кристаллов, поэтому в K10 AMD поработала над различными технологиями энергосбережения (Cool’n’Quiet 2.0, CoolCore), которые позволяли отключать неработающие блоки процессоров или же автоматически снижать частоту незагруженных ядер.

В 2011 году на смену K10 пришла принципиально новая архитектура Bulldozer. Главное отличие «Бульдозера» от предшествующих платформ заключалось в самом строении ядра (а точнее модуля). Каждый модуль содержал два ядра, у каждого из которых был свой блок целочисленных вычислений и кэш-память 1-го уровня. При этом в рамках одного модуля у ядер был общий блок вычислений с плавающей запятой, 2 Мбайт кэша L2 и устройства выборки и декодирования инструкций. В плане работы «строительный блок» был похож на технологию Intel Hyper-Threading - можно даже сказать, что идеи «интеловской» технологии здесь были реализованы на аппаратном уровне. При этом по показателям производительности модуль Bulldozer приближался к полноценному двухъядерному процессору, имея при этом почти в два раза меньше транзисторов. Помимо перекроенной архитектуры, Bulldozer мог похвастаться исполнением четырех инструкций за такт. Среди других улучшений нужно отметить поддержку кэш-памяти 3-го уровня объемом 8 Мбайт, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

AMD FX-8350 .

Ну, а в начале этого года AMD представила третье поколение архитектуры Bulldozer - платформу Steamroller . Она не претерпела каких-либо кардинальных изменений в сравнении с Piledriver. Самое существенное нововведение - это интеграция для каждого модуля собственного независимого декодера, который может обрабатывать до четырех инструкций за такт. Была улучшена работа кэш-памяти, блока предсказания ветвлений и контроллера памяти.

Заключение

Вот и подошел к концу наш рассказ об истории развития центральных процессоров. Оглядываясь назад, можно увидеть, насколько современные «камни» отличаются хотя бы от тех решений, которые выпускались 15-20 лет назад. И удивительно, как при этом они могут иметь даже общие черты. Например, ту же архитектуру x86. А что касается ближайшего будущего, то нас непременно ждет много всего интересного. На конец этого года запланировал релиз 14-нм архитектуры Intel Broadwell, а на вторую половину 2015 года - новой платформы Skylake. В стане AMD готовятся к выходу в следующем году последнего поколения архитектуры Bulldozer под названием Excavator, после которой планируется запуск совершенно новых кристаллов. Очевидно, что Intel и AMD не дадут нам заскучать.

История процессоров Intel

Началось всё в далёком 1968 году. В этот год образовалась компания Intel. В то далёкое время из электроники пользовались спросом разве, что схемы для торговых аппаратов (для распознавания монеток) и калькуляторы. В 68-ом компания производила чипы оперативной памяти. Но это тоже высоко технологический процесс, для которого необходимо было освоить производство PMOS (поликристаллический кремневый логический элемент) и биполярные барьерные транзисторы Штоки. Самым первым продуктом компании стали 64-х разрядные 256-и байтные чипы памяти. Название они получили 1101 (RAM) и 3101 (биполярная).

Следующий шаг для компании стал микропроцессор - 4004. Он был представлен в ноябре 1971 года. Архитектура чипа была 4-х битная, кристалл содержал 2300 транзисторов (по тем временам это очень не плохо) и работал на частоте 108 кГц (0,1 мегагерца). И использовался в калькуляторах Японской фирмы Busicom, которой поставлялся по эксклюзивному договору. Возможно, если бы не Busicom мы могли и не увидеть Пентиумов.

Через год Intel, накопив денег, купила компанию Microma Universal, которая занималась производством электронных наручных часов. В этих часах использовались интегральные схемы произведённые по технологии CMOS, и отличались низким энергопотреблением. Также Интел не оставила производство чипов памяти (RAM, ROM, EPROM), которые всегда пользовались спросом и удерживали компанию на плаву. Свежий микропроцессор поступил в продажу в 1972 году и назывался 8008. Этот процессор уже использовал 8-и битную архитектуру и имел скорость всего 0,06 миллионов операций в секунду. 8008 производился только на заказ и использовался в терминалах и калькуляторах (хотя в последующий год Интел и наладила "массовый" выпуск этих процессоров, особой популярностью он не пользовался). Дон Ланкастер - обрисовал прототип персонального компьютера того времени: "Это печатная машинка с телевизором".

Затем появились модификации 8008-ого. 8080 - этот процессор работал заметно быстрее своего собрата, хотя и использовал всё туже архитектуру. Этот процессор поддерживал 8-и битную шину данных, 16-и битную адресную шину и позволял использовать до 64 Кб памяти, частота составляла 2 МГц. Популярность к этому процессору пришла с компанией MITS и их компьютером "Альтаир", стоимостью 440$. На этом компьютере было установлено 256 байт (не Кб, не Мб, именно 256 байт) оперативке, можно было установить 4 Кб оперативной памяти. Альтаир работал под управлением Control Program for Microcomputers (CP/M), прародителем DOS.

Следующим процессором был 8085 (март 1976 года). Процессор получил две инструкции для контроля за прерываниями и производился в более качественном корпусе, работал на частоте 3 - 6 МГц. В отличии от 8080, 8085 требовал только один источник питания +5 В, в то время как 8080 +12В, +5В и -5В. В компьютерах 8085 практически не использовался, он использовался в электронных весах Toledo.

Время шло. На рынке интегральных схем всё больше развивалась конкуренция. Интел боролась за выживание. В 1978 году был разработан процессор ставшей легендой и стандартом, который сохранился до наших дней. Это был 8086. Все программы разработанные под этот процессор с лёгкостью работают на Core 2 Duo и Athlon 64. Этот процессор заложил основы архитектуры процессоров, которая дожила до сегодняшних дней. 8086 содержал 29 тысяч транзисторов и работал в 10 раз быстрее 8080. Количество базовых команд составляло 92, шина была 16 разрядной, количество поддерживаемой памяти (ОЗУ) стало 1 Мб. Это был революционный процессор. Но в то время у этого процессора был серьёзный конкурент: Z80 (Спектрум) от Zilog Corporation. 8086 - в компьютерах использовался редко, т.к. стоил дорого. Для уменьшения цены производства Интел приняла решение сделать аналог, но с 8-и битной шиной. Этим процессором стал 8088. Решение было обоснованным, в то время были распространены 8-и разрядные чипы памяти. Объём продаж процессоров заметно увеличился, что позволило компании остаться на плаву. В августе 1981-го года в продаже появились IBM PC на базе 8088. В этих компьютерах было установлено 16 Кб ОЗУ, и работали под управлением DOS 1.0. Именно с этого момента стал образовываться союз Интел и Майкрософт. IBM PC получили огромное распространение, а Интел попала в список "500 лучших производителей Америки"

С появлением 80186 наступила новая эра микропроцессоров. Он стал первым процессором второго поколения. Однако широкой известности не приобрёл, т.к. был не совместим с 8086 и практически не использовался в компьютерах, однако есть сведения что его использовали Toshiba в своих лэптопах, Nokia в ПК и U.S.Robotics в модемах. 80186 был разработан в 1981 году, на публику представлен в 1982. Сразу после его появления был разработан 8-и битный процессор 80188. Нововведением было то, что он имел контроллер прямого доступа к памяти (DMA), контроллер прерываний и генератором синхронизации. Работали эти процессоры на частоте 6-16 МГц. Также к этому процессору выпускались математические сопроцессоры 80187 (для 8086 - 8087).

В феврале 1982 года, свет увидел 80286. Он поддерживал многозадачность, включал в себя 16-битную шину данных, 24-битную адресную шину, мог поддерживать до 16 мегабайт памяти, работал на частотах 6-12 МГц. В 1984 году на базе 286 были созданы IBM PC AT, которые пользовались просто сумасшедшей популярностью, несмотря на его стоимость (на эти деньги можно было купить два неплохих автомобиля). Поэтому многие не могли позволить себе купить его домой. Но народ играл, старшее поколение наверно вспомнит, как ходили на работу в выходные, проводили через проходную друзей, задерживались допоздна, и играли, играли... Спросите во что. Отвечаю: Civilization, Wolfenstein 3D, Warcraft (у многих нахлынули воспоминания и со щеки скатилась скупая мужская слеза). Однако время шло. Требовательность игр росла (спросите почему игр, а не приложений, отвечаю: Игры это двигатель компьютерного прогресса, офис может спокойно работать и на 486). В 1985 году был создан первый 32-разрядный процессор из семейства х86. Скорость возросла в 1,5 раза по сравнению с 286. И назывался он - 80386. Процессор имел на борту 275 тысяч транзисторов, мог адресовать до 4 Гб памяти, имел 32-ух битную адресную шину и шину данных, рабочими частотами стали 16 и 33 МГц, и имел целых 132 ножки. Также интересным фактом можно считать, что 80386 не использовал множитель, а это значит, что работал он на частоте материнской платы. В 1988 году был выпущен облегчённый вариант 386-ого и назывался он 80386SX (срезали шину данных до 16 бит, адресную до 24 бит), а полноценный вариант стал маркироваться 386DX. SX, по сравнению с DX, потерял в производительности примерно 20%, а в 32-битных приложениях 33%. Также у 80386 был и мобильный собрат, который работал на пониженной частоте (всего 25 МГц) и потреблял меньше энергии, звали его 80386 SL. Также для 80386 выпускался внешний математический сопроцессор - 80387.

10 апреля 1989 года был разработан и пущен в серию 80486, именно этот процессор рассказал миру, что такое мультимедиа. Самое главное отличие от 80386 заключалось в том, что математический сопроцессор находился на кристалле главного процессора. Впервые в х86 был реализован конвейер, который разбивал команды на 5 составляющих. Процессор состоял из пяти мини-устройств - каждое для своей задачи, это увеличивало производительность и снижало себестоимость процессора и сложность его производства. Также впервые в архитектуре х86 было использование двухуровневого кэша. Кэш первого уровня - был расположен на кристалле процессора, кэш второго уровня находился на материнской плате и имел объём от 256 до 512 Кбайт (в зависимости от производителя и цены). Известно, что до 486 операции с плавающей точкой выполнял сопроцессор, этот процесс происходил крайне медленно, поэтому программисты старались избегать операции деление. В 486-ом сопроцессор стал находиться на кристалле и скорость вычисления дробей увеличилась в разы. Также этот процессор, в отличие от 386, использовал множитель, и процессор работал на частоте превосходящей частоту системной шины (сегодня все процессоры используют множители). Также с появлением 486 впервые на процессорах стали устанавливать кулера, т.к. усложнение архитектуры ведут к увеличению количества транзисторов, а увеличение их числа неизбежно ведёт к увеличению выработки тепла, которое необходимо отводить. Бороться с этим можно уменьшая тех процесс (уменьшение расстояния между транзисторами и собственно сами транзисторы). Интересно проследить техпроцесс: в 386 он составлял 1 мкм, у 486 DX он тоже был 1 мкм, в последствии он уменьшился до 0,8 мкм, а топовые модели 486DX4 - 0,6 мкм. Также 486 был лидером по количеству модификациям: первым был 486DX с тактовой частотой 20 МГц, позже появились 33 МГц и 50 МГц. Через год появился 486SX - это была урезанная версия с выключенным сопроцессором. Первые процессоры с множителем появились в 1992 году - это были 486DX2 работающий на частоте 66 МГц. В конце 1992 года увидел свет мобильный процессор 486SL, работающий на пониженной частоте и обладал меньшем энергопотреблением, но меньшей производительностью. Топовой моделью стал 486DX4 - на борту имелось 16 Кб кэша первого уровня и использовал тройной коэффициент умножения (работал на частоте 75 и 100 МГц). Производительность была даже больше чем у первых пентиумов. С появлением множителя появилось понятие "Оверлокер". У многих пользователей просто чесались руки от желания переключить джемпер для повышения коэффициента умножения, и этим самым повышая производительность (не на много), и собственно повышая тепловыделения (ух и много же сгорело таких 486).

Необходимо сказать, что до появления 486 пользователям было просто не зачем знать, кто производил процессоры, т.к. они просто впаивались на материнскую плату (между прочим, в начале девяностых Интел завоевала уже 80% рынка). Но с появлением "четвёрок", это стало просто необходимо, потому что появилась возможность менять только процессоры, а систему оставлять такой, какая есть (мать, память, винчестер). И Intel задумалась над созданием бренда! Такой бренд, был в скорее придуман, и завоевал просто бешенною популярность, им стала фраза "Intel inside". В 1993 году, по сведениям Financial World, бренд "Intel Inside" занял третье место в списке самых узнаваемых продуктов Америки, после Кока Коллы и Мальборо. Но это была палка о двух концах, марка стала всемирно известной, и стоило сделать один неосторожный шаг, как о нём узнает весь мир. Такой шаг был сделан: через некоторое время после выпуска Pentium (кстати на раскрутку марки, они убили около 80-и миллионов зелёных бумажек) в нём нашли ошибку. Разгорелся скандал и Интел не оставалось ничего, кроме замены всей бракованной партии, что и было сделано. Но перейдём к делу.

Разработка Пентиумов началась в 1989 году, в серию он пошёл в 1993. Первые модели использовали напряжение 5В, последующие 3,3В, что позволило снизить тепловыделение на тех же частотах. Также особенностью Пентиумов было наличие двух арифметичекологических устройств (АЛУ) на кристалле процессора, что позволило производить суперскалярные счисления (обрабатывать сразу несколько вычислений). Также появился блок предсказания переходов, что позволило снизить простои при работе с памятью. Шина данных заметно подросла и стала 64-х битной. Кэш первого уровня был увеличен до 16 Кб и был разделён на две части: 8 Кб для данных и столько же для команд. Однако кэш второго уровня всё ещё устанавливался на материнской плате. Первые модели Пентиумов работали на частоте 60 МГц, в 1994 году увидели свет модели, работающие на частотах 75 и 100 МГц. Позже были разработаны и выпущены процессоры с маркировкой MMX (они то и открыли Эру трёхмерных игр). Отличие состояло в следующем: был увеличен кэш первого уровня до 32 Кб, стартовой частотой линейки было 150 МГц и были введены дополнительные инструкции для работы с 2D и 3D графикой (на сегодняшний день все современные процессоры поддерживают этот набор инструкций, хотя они практически не используются). Благодаря MMX процессор работал на 10-20% быстрее с изображениями и видео, а с заточенными под MMX приложениями скорость увеличилась практически вдвое. Также к заслугам Пентиумов можно отнести появление новых форматов записи видео и звука (MPEG и MP3, соответственно).

Следующим процессором стал Pentium Pro. Стоил он дорого и мимо меня прошёл не заметно. Хотя именно он открыл следующие поколение процессоров. В нём было несколько интересных и логически обоснованных решений: впервые на кристалл процессора стали устанавливать кэш второго уровня, увеличилось число конвейеров - их стало 3.

1994 г. Процессоры Pentiumс частотами 75, 90 и 100 МГц являлись вторым поколением процессоровPentium. При том же количестве транзисторов они выполнялись по технологии 0.6 мкм, что позволило снизить потребляемую мощность. Эти процессоры отличались внутренним умножением частоты, поддержкой многопроцессорных конфигураций, другим типом корпуса.

1995 г. Выпущены процессоры Pentium120 и 133 МГц, выполненные по технологии 0.35 мкм.

1996 г. Этот год заслуженно получил название "года Pentium". Появились процессоры с частотами 150, 166 и 200 МГц иPentiumстал рядовым процессором в массовых РС. В это же время, параллельноPentiumу развивается процессорPentiumPro, который отличался приоритетом на увеличение числа параллельно выполняемых инструкций. Кроме того, в его корпусе разместили вторичный кэш, работающий на частоте ядра (для начала - 256 Кб). Однако на 16-разрядных приложениях и в ОСWindows95 он был ничуть не быстрееPentium. Процессор содержал 5.5 млн. транзисторов ядра и 15.5 млн. транзисторов для вторичного кэша объемом 256 Кб. Первый процессор с частотой 150 МГц появился в начале 1995 г (технология 0.6 мкм), а уже в конце года были достигнуты частоты 166, 180 и 200 МГц (технология 0.35 мкм), а кэш увеличен до 512 Кб.

1997 г. Выпущен процессор PentiumMMX.MMX-MultiMediaExtensions- мультимедийные расширения). ТехнологияMMXбыла призвана ускорить работу мультимедийных приложений, в частности операции с изображениями и обработку сигналов. Кроме ММХ эти процессоры, по сравнению с обычнымPentium, имели удвоенный объем первичного кэша и некоторые элементы архитектурыPentiumPro, что повышало их производительность на обычных приложениях. ПроцессорыPentiumMMXимели 4.5 млн. транзисторов и выполнены по технологии 0.35 мкм. Развитие линейки моделейPentiumMMXвскоре было остановлено. Последние из достигнутых тактовых частот - 166, 200 и 233 МГц.

Май 1997 г. Технология ММХ была соединена с технологией PentiumProи в результате появился процессорPentiumII(7.5 млн. транзисторов только в ядре). Он представляет собой слегка урезанный вариант ядраPentiumProс более высокой тактовой частотой в которое ввели поддержку ММХ. При этом возникли технологические трудности размещения вторичного кэша и процессорного ядра в корпусе одной микросхемы. Ее решили следующим образом: кристалл с ядром (processorcore) и набор кристаллов статической памяти и дополнительных схем, реализующие вторичный кэш, разместили на небольшой печатной плате-картридже. Все кристаллы закрыли общей крышкой и охлаждали специальным вентилятором. Первые процессоры имели тактовые частоты ядра 233, 266 и 300 МГц (технология 0.35 мкм), летом 1998 г. была достигнута частота 450 МГц (технология 0.25 мкм), причем внешняя тактовая частота с 66 МГц повысилась до 100 МГц. Вторичный кэш этого процессора работает на половине частоты ядра. В то же время был выпущен облегченныйPentiumII-Celeron, который либо вообще не имел вторичного кэша, либо имел 128 Кб, размещенные прямо на кристалле ядра. ПлюсомCeleronбыло то, что практически все процессоры разгонялись относительно своего номинала (266 и 300 МГц) в полтора и более раза, но даже при этом их производительность не намного превосходила отPentiumMMX.

1998г. Intel®Celeron® (Covington)

Первый вариант процессора из линейки Celeron®, построенный на ядреDeschutes. Для уменьшения себестоимости процессоры выпускались без кэш-памяти второго уровня и защитного картриджа. Конструктив –SEPP(SingleEdgePinPackage). Отсутствие кэш-памяти второго уровня обуславливало их сравнительно низкую производительность, но и высокую способность к разгону. Кодовое имя:Covington. Тех. характеристики: 7,5 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 266-300 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня отсутствует; процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1.

1999г. Intel®Celeron® (Mendocino)

Отличается от предыдущего тем, что форм-фактор Slot1 сменился на более дешёвыйSocket370 и увеличилась тактовая частота. Кодовое имя:Mendocino. Тех. характеристики: 19 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 300-533 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); полноскоростной кэш второго уровня (128 Кб); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSocket370.

1999г. Intel® Pentium® II PE (Dixon)

Последний Pentium®IIпредназначен для применения в портативных компьютерах. Кодовое имя:Dixon. Тех. характеристики: 27,4 млн. транзисторов; технология производства: 0,25-0.18 мкм; тактовая частота: 266-500 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмBGA, мини-картридж,MMC-1 илиMMC-2.

1999г. Intel®Pentium® 3 (Katmai)

На смену процессору Pentium®II(Deschutes) пришёлPentium® 3 на новом ядреKatmai. Добавлен блокSSE(StreamingSIMDExtensions), расширен набор командMMXи усовершенствован механизм потокового доступа к памяти. Кодовое имя:Katmai. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 450-600 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100-133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1.

1999г. Intel® Pentium® 3Xeon™ (Tanner)

Hi-End версия процессора Pentium® 3. Кодовое имя:Tanner. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0.25 мкм; тактовая частота: 500-550 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб - 2 Мб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot2.

1999г. Intel®Pentium® 3 (Coppermine)

Этот Pentium® 3 изготавливался по 0.18 мкм технологии имеет тактовую частоту до 1200 МГц. Первые попытки выпустить процессор на этом ядре с частотой 1113 Мгц закончились неудачей, т. к. он в предельных режимах работал очень нестабильно, и все процессоры с этой частотой были отозваны - этот инцидент сильно подмочил репутациюIntel®. Кодовое имя:Coppermine. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,18 мкм; тактовая частота: 533-1200 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100-133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1,FC-PGA370.

1999г. Intel® Celeron® (Coppermine)

Celeron® на ядре Coppermine поддерживает набор инструкций SSE. Начиная с частоты 800 МГЦ этот процессор работает на 100 МГц системой шине. Кодовое имя:Coppermine. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,18 мкм; тактовая частота: 566-1100 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (66-100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSocket370.

1999г. Intel®Pentium® 3Xeon™ (Cascades)

Pentium® 3Xeon, изготовленный по 0,18 мкм технологическому процессу. Процессоры с частотой 900 МГц из первых партий перегревались и их поставки были временно приостановлены. Кодовое имя:Cascades. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0.18 мкм; тактовая частота: 700-900 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб - 2 Мб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot2.

2000г. Intel® Pentium® 4 (Willamette, Socket 423)

Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениямIntel®, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семействаP6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт уPentium!!!. Кодовое имя:Willamette. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1.3-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket423.

2000г. Intel®Xeon™ (Foster)

Продолжение линейки Xeon™: серверная версияPentium® 4. Кодовое имя:Foster. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1.4-2 ГГц; кэш-память с отслеживанием исполнения команд; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); микроархитектураIntel®NetBurst™; технология гиперконвейерной обработки; высокопроизводительный блок исполнения команд; потоковыеSIMD-расширения 2 (SSE2); улучшенная технология динамического исполнения команд; блок вычислений с плавающей запятой удвоенной точности; процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket603.

2001г. Intel®Pentium® 3-S(Tualatin)

Дальнейшее повышение тактовой частоты Pentium® 3 потребовало перевода на 0.13 мкм технологический процесс. Кэш второго уровня вновь вернулся к своему изначальному размеру (как уKatmai): 512 Кб и добавилась технологияDataPrefetchLogic, которая повышает производительность предварительно загружая данные, необходимые приложению в кэш. Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 1.13-1.4 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel® Pentium® 3-M (Tualatin)

Мобильная версия Tualatin-а с поддержкой новой версии технологииSpeedStep, призванной снизить расход энергии аккумуляторов ноутбука. Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 700 МГц-1.26 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel® Pentium® 4 (Willamette, Socket 478)

Этот процессор выполнен по 0.18 мкм процессу. Устанавливается в новый разъём Socket478, т. к. предыдущий форм-факторSocket423 был "переходным" иIntel® в дальнейшем не собирается его поддерживать. Кодовое имя:Willamette. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1,3-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

2001г. Intel®Celeron® (Tualatin)

Новый Celeron® имеет кэш второго уровня размером 256 Кб и работает на 100 МГц системной шине, т. е. превосходит по характеристикам первые моделиPentium® 3 (Coppermine). Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 1-1.4 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel®Pentium® 4 (Northwood)

Pentium4 с ядромNorthwoodотличается отWillametteбольшим кэшем второго уровня (512 Кб уNorthwoodпротив 256 Кб уWillamette) и применением нового технологического процесса 0,13 мкм. Начиная с частоты 3,06ГГц добавлена поддержка технологииHyperThreading- эмуляции двух процессоров в одном. Кодовое имя:Northwood. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,6-3.06ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400-533 МГц); разъёмSocket478.

2001г. Intel® Xeon™ (Prestonia)

Этот Xeon™ выполнен на ядреPrestonia. Отличается от предыдущего увеличенным до 512 Кб кэшем второго уровня. Кодовое имя:Prestonia. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,8-2,2ГГц; кэш-память с отслеживанием исполнения команд; кэш первого уровня: 8 Кб; кэш второго уровня 512 Кб полноскоростной); микроархитектураIntel®NetBurst™; технология гиперконвейерной обработки; высокопроизводительный блок исполнения команд; потоковыеSIMD-расширения 2 (SSE2); улучшенная технология динамического исполнения команд; блок вычислений с плавающей запятой удвоенной точности; процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket603.

2002г. Intel®Celeron® (Willamette-128)

Новый Celeron®выполнен на основе ядраWillametteпо 0.18 мкм процессу. Отличается отPentium® 4 на том же ядре вдвое меньшим объёмом кэша второго уровня (128 против 256Kb). Предназначен для установки в разъёмSocket478. Кодовое имя:Willamette-128. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1,6-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

2002г. Intel® Celeron® (Northwood-128)

Celeron®Northwood-128 отличается отWillamette-128 только тем, что выполнен по 0,13 мкм техпроцессу. Кодовое имя:Willamette-128. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,6-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

32-битные процессоры: микроархитектура P6/Pentium M

Представлен в марте 2003. Технологический процесс: 0,13 мкм (Banias). КэшL1: 64 КБ

Кэш L2: 1 МБ (встроенный). Базируется на ядреPentiumIII, с инструкциямиSIMDSSE2 и глубоким конвейером. Количество транзисторов: 77 миллионов. Упаковка процессора:Micro-FCPGA,Micro-FCBGA. Сердце мобильной системыIntel«Centrino» .Частота системной шины: 400 МГц (Netburst).

Технологический процесс: 0,13 мкм (Banias-512). Представлен: в марте 2003 .Кэш L1: 64 КБ. Кэш L2: 512 КБ (интегрированный). SSE2 SIMD-инструкции. Нет поддержки технологии SpeedStep, поэтому не является частью "Centrino".Обозначение:Family6model9. Технологический процесс: 0,09 мкм (Dothan-1024). Кэш L1: 64 КБ. Кэш L2: 1 МБ (интегрированный). SSE2 SIMD-инструкции. Нет поддержки технологии SpeedStep, поэтому не является частью "Centrino"

Технологический процесс: 0,065 мкм = 65 нм (Yonah). Представлен: в январе 2006 года. Частота системной шины: 667 МГц. Удвоенное (или одиночное в случае Solo) ядро с разделяемым кэшем L2 размером 2 МБ. SSE3 SIMD-инструкции

Dual-Core Xeon LV

Технологический процесс: 0,065 мкм = 65 нм (Sossaman) . Представлен: в марте 2006

Основан на ядре Yonah, с поддержкой SSE3 SIMD-инструкций. Частота системной шины: 667 МГц. Разделяемый кэш L2 размером 2 МБ

64-битные процессоры: EM64T - Микроархитектура NetBurst

Двухъядерный (Dual-core) микропроцессор. Отсутствует технология Hyper-Threading

Частота системной шины: 800 (4x200) МГц. Smithfield - 90 нм (90 nm) технологический процесс (2,8-3,4 ГГц) . Представлен: 26 мая 2005 года

2,8-3,4 ГГц (номера моделей 820-840). Количество транзисторов: 230 миллионов. Кэш L2: 1 МБx2 (non-shared, 2 МБ всего). . Производительность увеличилась примерно на 60 % по сравнению с одноядерным микропроссором Prescott 2,66 ГГц (533 МГЦ FSB) Pentium D 805 представлен в декабре 2005 года. Presler - 65 нм (65 nm) технологический процесс (2.8-3.6 ГГц) . Представлен: 16 января 2006 года. 2,8-3,6 ГГц (номера моделей 920-960). Количество транзисторов: 376 миллионов. КэшL2: 2 МБx2 (non-shared, 4 МБ всего)

Pentium Extreme Edition

Двухъядерный (Dual-core) микропроцессор. ПоддержкаHyper-Threading. Частота системной шины: 1066 (4x266) МГц. Smithfield - 90 нм (90 nm) технологический процесс (3,2 ГГц) . Варианты:

Pentium 840 EE, 3,20 ГГц (кэш L2 размером 2 x 1 МБ)

Presler - 65 нм (65 nm) технологический процесс (3,46, 3,73 ГГц)

L2 кэш: 2 МБ x 2 (non-shared, 4 МБ всего)

64-битные процессоры: EM64T - Микроархитектура Intel Core

История процессоров Intel | Первенец – Intel 4004

Свой первый микропроцессор Intel продала в 1971 году. Это был 4-битный чип с кодовым названием 4004. Он предназначался для совместной работы с тремя другими микрочипами, ПЗУ 4001, ОЗУ 4002 и сдвиговым регистром 4003. 4004 выполнял непосредственно вычисления, а остальные компоненты имели критическое значение для работы процессора. Чипы 4004 главным образом использовались в калькуляторах и прочих подобных устройствах, и не предназначались для компьютеров. Его максимальная тактовая частота составляла 740 кГц.

За 4004 последовал похожий процессор под названием 4040, который, по сути, представлял улучшенную версию 4004 с расширенной системой команд и более высокой производительностью.

История процессоров Intel | 8008 и 8080

С помощью 4004 Intel заявила о себе на рынке микропроцессоров, и чтобы извлечь выгоду из ситуации представила новую серию 8-битных процессоров. Чипы 8008 появились в 1972 году, затем в 1974 году появились процессоры 8080, а в 1975 году – чипы 8085. Хотя 8008 является первым 8-битным микропроцессоров Intel, он был не так известен, как его предшественник или преемник – модель 8080. Благодаря возможности обрабатывать данные 8-битными блоками 8008 был быстрее, чем 4004, но имел довольно скромную тактовую частоту 200-800 кГц и не особо привлекал внимание проектировщиков систем. 8008 производился по 10-микрометровой технологии.

Intel 8080 оказался намного более успешным. Архитектурный дизайн чипов 8008 был изменен ввиду добавления новых инструкций и перехода к 6-микрометровым транзисторам. Это позволило Intel более чем вдвое повысить тактовые частоты, и самые быстрые процессоры 8080 в 1974 году работали при частоте 2 МГц. ЦП 8080 использовались в бесчисленном множестве устройств, в связи с чем несколько разработчиков программного обеспечения, например, недавно сформированная Microsoft, сосредоточились на программном обеспечении для процессоров Intel.

В конечном счете, появившиеся позже микрочипы 8086 имели общую архитектуру с 8080, чтобы сохранить обратную совместимость с ПО, написанным для них. В результате ключевые аппаратные блоки процессоров 8080 присутствовали во всех когда-либо произведенных процессорах на базе x86. Программное обеспечение для 8080 технически также может работать на любом процессоре с архитектурой x86.

Процессоры 8085, по сути, представляли удешевленный вариант 8080 с повышенной тактовой частой. Они были очень успешны, хотя оставили меньший след в истории.

История процессоров Intel | 8086: начало эры x86

Первым 16-битным процессором Intel был 8086. Он имел существенно большую производительность по сравнению с 8080. Кроме повышенной тактовой частоты процессор обладал 16-разрядной шиной данных и аппаратными исполнительными блоками, позволяющими 8086 одновременно выполнять две восьмибитные инструкции. Кроме того процессор мог выполнять более сложные 16-битные операции, но основная масса программ того времени была разработана для 8-битных процессоров, поэтому поддержка 16-битных операций была не так актуальна, как многозадачность процессора. Разрядность адресной шины была расширена до 20-бит, что дало процессору 8086 доступ к 1 Мбайт памяти и увеличило производительность.

8086 также стал первым процессором на архитектуре x86. Он использовал первую версию набора команд x86, на которой базируются почти все процессоры AMD и Intel с момента появления этого чипа.

Примерно в то же время Intel выпускала чип 8088. Он был построен на базе 8086, но у него была отключена половина адресной шины, и он ограничивался исполнением 8-битных операций. Тем не менее, он имел доступ к 1 Мбайт ОЗУ и работал при более высоких частотах, поэтому был быстрее предыдущих 8-битных процессоров Intel.

История процессоров Intel | 80186 и 80188

После 8086 Intel представила несколько других процессоров, все они использовали схожую 16-битную архитектуру. Первым был чип 80186. Он разрабатывался с целью упрощения проектирования готовых систем. Intel переместила некоторые аппаратные элементы, которые обычно располагались на системной плате, в ЦП, включая генератор тактовых импульсов, контроллер прерываний и таймер. Благодаря интеграции этих компонентов в ЦП 80186 стал во много раз быстрее, чем 8086. Intel также увеличила тактовую частоту чипа, чтобы еще больше повысить производительность.

Процессор 80188 также имел ряд аппаратных компонентов, интегрированных в чип, но обходился 8-битной шиной данных, как 8088, и предлагался в качестве бюджетного решения.

История процессоров Intel | 80286: больше памяти, больше производительности

После выхода 80186 в том же году появился 80286. Он имел почти идентичные характеристики, за исключением расширенной до 24-бит адресной шины, которая, в так называемом защищенном режиме работы процессора, позволяла ему работать с оперативной памятью объемом до 16 Мбайт.

История процессоров Intel | iAPX 432

iAPX 432 был ранней попыткой Intel уйти от архитектуры x86 в совершенно другую сторону. По расчетам Intel iAPX 432 должен быть в несколько раз быстрее, чем другие решения компании. Но, в конечном счете, процессор потерпел неудачу из-за существенных просчетов в архитектуре. Хотя процессоры x86 считались относительно сложными, iAPx 432 поднял сложность CISC на совершенно новый уровень. Конфигурация процессора была довольно громоздкой, что вынудило Intel выпускать ЦП на двух отдельных кристаллах. Процессор также был рассчитан на высокие нагрузки и не мог хорошо работать в условиях недостатка пропускной способности шин или поступления данных. iAPX 432 смог обогнать 8080 и 8086, но его быстро затмили более новые процессоры на архитектуре x86, и в итоге от него отказались.

История процессоров Intel | i960: первый RISC-процессор Intel

В 1984 Intel создала свой первый RISC-процессор. Он не являлся прямым конкурентом процессорам на базе x86, поскольку предназначался для безопасных встраиваемых решений. В этих чипах использовалась 32-битная суперскалярная архитектура, в которой применялись концепция дизайна Berkeley RISC. Первые процессоры i960 имели относительно низкие тактовые частоты (младшая модель работала на 10 МГц), но со временем архитектура была улучшена и переведена на более тонкие техпроцессы, что позволило поднять частоту до 100 МГц. Также они поддерживали 4 Гбайт защищенной памяти.

i960 широко использовался в военных системах а также в корпоративном сегменте.

История процессоров Intel | 80386: переход x86 на 32-бита

Первым 32-битным процессором на архитектуре x86 от Intel стал 80386, который появился в 1985 году. Его ключевым преимуществом являлась 32-битная адресная шина, которая позволяла адресовать до 4 Гбайт системной памяти. Хотя в те времени столько памяти практически никто не использовал, ограничения ОЗУ часто вредили производительности предшествующих процессоров x86 и конкурирующих ЦП. В отличие от современных ЦП, на момент появления 80386 увеличение объема ОЗУ почти всегда означало увеличение производительности. Также Intel реализовала ряд архитектурных усовершенствований, которые помогали повысить производительность выше уровня 80286, даже когда обе системы использовали одинаковый объем ОЗУ.

Чтобы добавить в продуктовую линейку более доступные модели, Intel представила 80386SX. Этот процессор был практически идентичен 32-битному 80386, но ограничивался 16-битной шиной данных и поддерживал работу с ОЗУ объемом лишь до 16 Мбайт.

История процессоров Intel | i860

В 1989 году Intel предприняла еще одну попытку уйти от процессоров x86. Она создала новый ЦП с архитектурой RISC под названием i860. В отличие от i960 этот ЦП разрабатывался как модель с высокой производительностью для рынка настольных ПК, но процессорный дизайн имел некоторые недостатки. Главный из них заключался в том, что для достижения высокой производительности процессор полностью полагался на программные компиляторы, которые должны были размещать инструкции в порядке их выполнения в момент создания исполняемого файла. Это помогло Intel сохранить размер кристалла и уменьшить сложность чипа i860, но при компиляции программ было практически невозможно корректно расположить каждую инструкцию с начала и до конца. Это вынуждало ЦП тратить больше времени на обработку данных, что резко снижало его производительность.

История процессоров Intel | 80486: интеграция FPU

Процессор 80486 стал следующим большим шагом Intel с точки зрения производительности. Ключом к успеху являлась более плотная интеграция компонентов в ЦП. 80486 был первым процессором x86 с кэшем L1 (первого уровня). Первые образцы 80486 имели на кристалле 8 Кбайт кэш-памяти и изготавливались с применением техпроцесса 1000 нм. Но с переходом на 600 нм объем кэша L1 увеличился до 16 Кбайт.

Intel также включила в ЦП блок FPU, который до этого являлся отдельным функциональным блоком обработки данных. Переместив эти компоненты в центральный процессор, Intel заметно снизила задержку между ними. Чтобы увеличить пропускную способность процессоры 80486 также использовали более быстрый интерфейс FSB. Для повышения скорости обработки внешних данных было произведено множество усовершенствований в ядре и других компонентах. Эти изменения значительно подняли производительность процессоров 80486, которые в разы обгоняли старые 80386.

Первые процессоры 80486 достигали частоты 50 МГц, а более поздние модели, произведенные по техпроцессу 600 нм, могли работать на частоте до 100 МГц. Для покупателей с меньшим бюджетом Intel выпускала версию 80486SX, в которой был заблокирован блок FPU.

История процессоров Intel | P5: первый процессор Pentium

Pentium появился в 1993 году и был первым процессором x86 Intel, который не следовал системе нумерации 80x86. Pentium использовал архитектуру P5 – первую суперскалярную микроархитектуру x86 Intel. Хотя Pentium в целом был быстрее 80486, его главной особенностью был существенно улучшенный блок FPU. FPU оригинального Pentium был более чем в десять раз быстрее старого блока в 80486. Значение этого усовершенствования лишь усилилось, когда Intel выпустила Pentium MMX. В плане микроархитектуры этот процессор идентичен первому Pentium, но он поддерживал набор команд Intel MMX SIMD, который мог значительно повышать скорость отдельных операций.

По сравнению с 80486 Intel увеличила в новых процессорах Pentium объема кэша L1. Первые модели Pentium имели 16 Кбайт кэша первого уровня, а Pentium MMX получил уже 32 Кбайт. Естественно, эти чипы работали при более высоких тактовых частотах. Первые процессоры Pentium использовали транзисторы с техпроцессом 800 нм и достигали только 60 МГц, но последующие версии, созданные с использованием производственного процесса Intel 250 нм, достигали уже 300 МГц (ядро Tillamook).

История процессоров Intel | P6: Pentium Pro

Вскоре после первого Pentium Intel планировала выпустить Pentium Pro, основанный на архитектуре P6, но столкнулась с техническими трудностями. Pentium Pro выполнял 32-битные операции значительно быстрее оригинального Pentium благодаря внеочередному исполнению команд. Эти процессоры имели сильно переработанную внутреннюю архитектуру, которая декодировала инструкции в микрооперации, которые выполнялись на модулях общего назначения. В связи с дополнительными аппаратными средствами декодирования Pentium Pro также использовал значительно расширенный 14-уровневый конвейер.

Поскольку первые процессоры Pentium Pro были предназначены для рынка серверов, Intel снова расширила адресную шину до 36-бит и добавила технологию PAE, позволяющую адресовать до 64 Гбайт ОЗУ. Это гораздо больше, чем было нужно среднему пользователю, но возможность поддержки большого объема ОЗУ была крайне важна для заказчиков серверов.

Также была переработана система кэш-памяти процессора. Кэш L1 был ограничен двумя сегментами по 8 Кбайт, один для инструкций и один для данных. Чтобы восполнить дефицит 16 Кбайт памяти по сравнению с Pentium MMX, Intel добавила от 256 Кбайт до 1 Мбайт кэша L2 на отдельной микросхеме, присоединенной к корпусу ЦП. Она соединялась с ЦП с помощью внутренней шины передачи данных (BSB).

Изначально Intel планировала продавать Pentium Pro простым пользователям, но, в конечном счете, ограничила его выпуск моделями для серверных систем. Pentium Pro имел несколько революционных функций, но продолжал конкурировать с Pentium и Pentium MMX в плане производительности. Два более старых процессора Pentium были значительно быстрее при выполнении 16-битных операций, а в то время 16-битное ПО было преобладающим. Процессору также нахватало поддержки набора команд MMX, в результате Pentium MMX обгонял Pentium Pro в оптимизированных под MMX программах.

У Pentium Pro был шанс удержаться на потребительском рынке, но он был довольно дорогим в производстве из-за отдельной микросхемы, содержащей кэш L2. Самый быстрый процессор Pentium Pro достигал тактовой частоты 200 МГц и производился по техпроцессам 500 и 350 нм.

История процессоров Intel | P6: Pentium II

Intel не отступилась от архитектуры P6 и в 1997 году представила Pentium II, в которым были исправлены почти все недостатки Pentium Pro. Лежащая в основе архитектура была похожа на Pentium Pro. Он также использовал 14-уровневый конвейер и имел некоторые улучшения ядра, повышающие скорость выполнения инструкций. Объем кэша L1 вырос – 16 Кбайт для данных плюс 16 Кбайт для инструкций.

Для снижения стоимости производства Intel также перешла к более дешевым чипам кэш-памяти, присоединенным к более крупному корпусу процессора. Это был эффективный способ сделать Pentium II дешевле, но модули памяти не могли работать на максимальной скорости ЦП. В результате частота работы кэша L2 составляла лишь половину от процессорной, но для ранних моделей ЦП этого было достаточно, чтобы увеличить производительность.

Intel также добавила набор команд MMX. Ядра ЦП в Pentium II под кодовым названием "Klamath" и "Deschutes" также продавалась под брендами Xeon и Pentium II Overdrive, ориентированными на сервера. Модели с самой высокой производительностью имели 512 Кбайт кэша L2 и тактовую частоту до 450 МГц.

История процессоров Intel | P6: Pentium III и схватка за 1 ГГц

После Pentium II Intel планировала выпустить процессор, основанный на архитектуре Netburst, но она была еще не готова. Поэтому в Pentium III компания снова использовала архитектуру P6.

Первый процессор Pentium III носил кодовое имя "Katmai" и был очень похож на Pentium II: он использовал упрощенный кэш L2, работающий лишь на половине скорости ЦП. Базовая архитектура получила существенные изменения, в частности, несколько частей 14-уровневого конвейера были объединены между собой до 10 ступеней. Благодаря обновленному конвейеру и увеличению тактовой частоты первые процессоры Pentium III, как правило, немного обгоняли Pentium II.

Katmai производился по технологии 250 нм. Однако, после перехода на производственный процесс 180 нм, Intel смогла значительно увеличить производительность Pentium III. В обновленной версии под кодовым названием "Coppermine" кэш L2 был перемещен в ЦП, а его объем был снижена наполовину (до 256 Кбайт). Но поскольку он мог работать на частоте процессора, уровень производительности все равно повысился.

Coppermine участвовал в гонке с AMD Athlon за частотой 1 ГГц и преуспел. Позднее Intel попыталась выпустить модель процессора 1,13 ГГц, но в конечном счете она была отозвана после того, как доктор Томас Пабст из Tom"s Hardware обнаружил нестабильности в его работе . В итоге чип с частотой 1 ГГц остался самым быстрым процессором Pentium III на базе Coppermine.

Последняя версия ядра Pentium III называлась "Tualatin". При ее создании использовался техпроцесс 130 нм, который позволил добиться тактовой частоты 1,4 ГГц. Кэш L2 был увеличен до 512 Кбайт, что также позволило немного повысить производительность.

История процессоров Intel | P5 и P6: Celeron и Xeon

Вместе с Pentium II Intel также представила линейки процессоров Celeron и Xeon. Они использовали ядро Pentium II или Pentium III, но с разным объемом кэш-памяти. У первых моделей процессоров под брендом Celeron, основанных на базе Pentium II, вообще не было кэша L2, и производительность была ужасной. Более поздние модели на базе Pentium III имели половину от его объема кэша L2. Таким образом мы получили процессоры Celeron, которые использовали ядро Coppermine и имели только 128 Кбайт кэша L2, а более поздние модели, на базе Tualatin уже 256 Кбайт.

Версии с половиной кэша также называли Coppermine-128 и Tualatin-256. Частота этих процессоров была сопоставима с Pentium III и позволяла конкурировать с процессорами AMD Duron. Microsoft использовала процессор Celeron Coppermine-128 с частотой 733 МГц в игровой консоли Xbox.

Первые процессоры Xeon тоже были основаны на Pentium II, но имели больше кэша второго уровня. У моделей начального уровня его объем составлял 512 Кбайт, тогда как у старших собратьев могло быть до 2 Мбайт.

История процессоров Intel | Netburst: премьера

Прежде чем обсуждать архитектуру Intel Netburst и Pentium 4, важно понимать, в чем преимущества и недостатки ее длинного конвейера. Под понятием конвейера подразумевается перемещение инструкций через ядро. На каждом этапе конвейера выполняется множество задач, но иногда может выполняться только одна единственная функция. Конвейер можно увеличить путем добавлением новых аппаратных блоков или разделением одного этапа на несколько. А также можно уменьшить за счет удаления аппаратных блоков или объединения нескольких этапов обработки в один.

Длина или глубина конвейера имеет прямое влияние на задержку, IPC, тактовую частоту и пропускную способность. Более длинные конвейеры обычно требуют большей пропускной способности от других подсистем, и если конвейер постоянно получает необходимый объем данных, то каждый этап конвейера не будет простаивать вхолостую. Также процессоры с длинными конвейерами обычно могут работать при более высоких тактовых частотах.

Недостатком длинного конвейера является повышенная задержка исполнения, поскольку данные, проходящие через конвейер, вынуждены «останавливаться» на каждом этапе на определенное число тактов. Кроме того, процессоры, имеющие длинный конвейер, могут иметь более низкий показатель IPC, поэтому для повышения скорости работы они используют более высокие тактовые частоты. Со временем процессоры, использующие комбинированный подход, доказали свою эффективность без существенных недостатков.

История процессоров Intel | Netburst: Pentium 4 Willamette и Northwood

В 2000 году архитектура Intel Netburst, наконец, была готова и увидела свет в процессорах Pentium 4, доминировав в течение последующих шести лет. Первая версия ядра называлась "Willamette", под которой Netburst и Pentium 4 просуществовали два года. Однако это было трудное время для Intel, и новый процессор с трудом обгонял Pentium III. Микроархитектура Netburst позволяла использовать более высокие частоты, и процессоры на базе Willamette смогли достичь 2 ГГц, но в некоторых задачах Pentium III с частотой 1,4 ГГц оказывался быстрее. В этот период процессоры AMD Athlon имели большее преимущество в производительности.

Проблема Willamette состояла в том, что Intel расширила конвейер до 20 этапов и планировала побить планку частоты 2 ГГц, но из-за ограничений, накладываемых энергопотреблением и тепловыделением, она не смогла достигнуть поставленных целей. Ситуация улучшилась с появлением микроархитектуры Intel "Northwood" и использованием нового техпроцесса 130 нм, который позволил увеличить тактовую частоту до 3,2 ГГц и удвоить объем кэша L2 с 256 Кбайт до 512 Кбайт. Впрочем, проблемы с потребляемой мощностью и тепловыделением архитектуры Netburst никуда не делись. Однако производительность Northwood была значительно выше, и он мог конкурировать с новыми чипами AMD.

В процессорах класса high-end Intel внедрила технологию Hyper-Threading, увеличивающую эффективность использования ресурсов ядра в условиях многозадачности. Польза от Hyper-Threading в чипах Northwood была не так велика, как в современных процессорах Core i7 – прирост производительности составлял несколько процентов.

Ядра Willamette и Northwood также использовались в процессорах серии Celeron и Xeon. Как и в предыдущих поколениях ЦП Celeron и Xeon, Intel соответственно уменьшала и увеличивала размер кэша второго уровня, чтобы дифференцировать их по производительности.

История процессоров Intel | P6: Pentium-M

Микроархитектура Netburst разрабатывалась для высокопроизводительных процессоров Intel, поэтому она была довольно энергоемкой и не подходила для мобильных систем. Поэтому в 2003 году Intel создала свою первую архитектуру, разработанную исключительно для ноутбуков. Процессоры Pentium-M базировались на архитектуре P6, но с более длинными 12-14-уровневыми конвейерами. Кроме того в ней впервые был реализован конвейер переменной длины – если необходимая для команды информация уже была загружена в кэш, инструкции могли выполняться после прохождения 12 этапов. В противном случае им нужно было пройти еще два дополнительных этапа, чтобы загрузить данные.

Первый из таких процессоров выпускался по техпроцессу 130 нм и содержал 1 Мбайт кэш-памяти L2. Он достигал частоты 1,8 ГГц при потребляемой мощности всего 24,5 Вт. Более поздняя версия под именем "Dothan" с 90-нанометровыми транзисторами была выпущена в 2004 году. Переход на более тонкий производственный процесс позволял Intel увеличить кэш второго уровня L2 до 2 Мбайт, который в сочетании с некоторыми улучшениями ядра заметно увеличивал производительность из расчета на такт. Кроме того максимальная частота ЦП поднялась до 2,27 ГГц при небольшом повышении энергопотребления до 27 Вт.

Архитектура процессоров Pentium-M впоследствии использовалась в мобильных чипах Stealey A100, на замену которых пришли процессоры Intel Atom.

История процессоров Intel | Netburst: Prescott

Ядро Northwood с архитектурой Netburst продержалось на рынке с 2002 по 2004 год, после чего Intel представила ядро Prescott с многочисленными улучшениями. При производстве использовался техпроцесс 90 нм, позволивший Intel увеличить кэш L2 до 1 Мбайт. Также Intel представила новый процессорный интерфейс LGA 775, который обладал поддержкой памяти DDR2 и расширенной в четыре раза шиной FSB. Благодаря этим изменениям Prescott обладал большей пропускной способностью, чем Northwood, а это было необходимо для повышения производительности Netburst. Кроме того на базе Prescott Intel показала первый 64-битный процессор x86, имеющий доступ к ОЗУ большего объема.

Intel рассчитывала, что процессоры Prescott станут самыми успешными среди чипов на базе архитектуры Netburst, но вместо этого они потерпели фиаско. Intel снова расширила конвейер выполнения команд, на сей раз до 31 этапа. В компании надеялись, что увеличения тактовых частот будет достаточно, чтобы компенсировать наличие более длинного конвейера, но им удалось достичь только 3,8 ГГц. Процессоры Prescott были слишком горячими и потребляли слишком много энергии. В Intel рассчитывали, что переход на техпроцесс 90 нм устранит эту проблему, однако повышенная плотность транзисторов лишь усложнила охлаждение процессоров. Добиться более высокой частоты было невозможно, и изменения ядра Prescott негативно сказались на общей производительности.

Даже со всеми улучшениями и дополнительным кэшем Prescott, в лучшем случае, выходил на один уровень с Northwood по части произвольности на такт. В то же время процессоры AMD K8 также осуществили переход на более тонкий техпроцесс, что позволило повысить их частоты. AMD некоторое время доминировала на рынке ЦП для настольных компьютеров.

История процессоров Intel | Netburst: Pentium D

В 2005 году два основных производителя соревновались за первенство в анонсе двухъядерного процессора для потребительского рынка. AMD первой анонсировала двухъядерный Athlon 64, но он долго отсутствовал в продаже. Intel стремилась обойти AMD, используя многоядерный модуль (MCM), содержащий два ядра Prescott. Компания окрестила свой двухъядерный процессор Pentium D, а первая модель носила кодовое имя "Smithfield".

Однако Pentium D подвергся критике, поскольку имел те же проблемы, что и оригинальные чипы Prescott. Тепловыделение и энергопотребление двух ядер на базе Netburst ограничивали таковую частоту на уровне 3,2 ГГц (в лучшем случае). И поскольку эффективность архитектуры сильно зависела от загруженности конвейера и скорости поступления данных, показатель IPC у Smithfield заметно снизился, поскольку пропускная способность канала делилась между двумя ядрами. Кроме того физическая реализация двухъядерного процессора не отличалась изящностью (по сути это два кристалла под одной крышкой). И два ядра на одном кристалле в ЦП AMD считались более продвинутым решением.

После Smithfield появился Presler, который был переведен на 65 нм техпроцесс. Многоядерный модуль содержал два кристалла Ceder Mill. Это помогло уменьшить тепловыделение и потребляемую мощность процессора, а также поднять таковую частоту до 3,8 ГГц.

Существовало две основных версии Presler. Первая имела более высокий тепловой пакет 125 Вт, а более поздняя модель ограничивалась значением 95 Вт. Благодаря уменьшенному размеру кристалла Intel также смогла удвоить объема кэша L2, в итоге каждый кристалл имел по 2 Мбайт памяти. Некоторые модели для энтузиастов также поддерживали технологию Hyper-Threading, позволяющую ЦП выполнять задачи в четыре потока одновременно.

Все процессоры Pentium D поддерживали 64-битное ПО и ОЗУ объемом более 4 Гбайт.

Во второй части: процессоры Core 2 Duo, Core i3, i5, i7 вплоть до Skylake.

Понять компанию Intel и трёх её основателей можно только тогда, когда вы поймёте Кремниевую долину и её истоки. А чтобы это сделать, вам нужно проникнуть в историю компании Shokley Transistor , Вероломной Восьмёрки и Fairchild Semiconductor . Без их понимания корпорация Intel останется для вас тем же, что и для большинства людей, - тайной.

Изобретение компьютеров не означало, что тут же началась революция. Первые компьютеры на основе больших, недешевых, быстро ломающихся электронных ламп, представляли собой дорогостоящие чудища, содержать которые могли только корпорации, университеты, где проводились научные исследования, и военные. Появление транзисторов, а затем и новых технологий, позволяющих на крошечном микрочипе вытравить миллионы транзисторов, означало, что вычислительную мощность многих тысяч устройств ЭНИАК можно сосредоточить в головной части ракеты, в компьютере, который можно держать на коленях, и в портативных устройствах.

В 1947 году инженеры Bell Laboratory Джон Бардин и Уолтер Браттейн изобрели транзистор, который был представлен широкой общественности в 1948 году. Несколько месяцев спустя Уильям Шокли, один из сотрудников компании Bell, разработал модель биполярного транзистора. Транзистор, который, по сути, представляет собой твердотельный электронный переключатель, заменил громоздкую вакуумную лампу. Переход от вакуумных ламп к транзисторам положил начало тенденции к миниатюризации, которая продолжается и сегодня. Транзистор стал одним из самых важных открытий XX века.

В 1956 году нобелевский лауреат по физике Уильям Шокли создал компанию Shockley Semiconductor Laboratory для работы над четырёхслойными диодами. Шокли не удалось привлечь своих бывших сотрудников из Bell Labs; вместо этого он нанял группу, по его мнению, лучших молодых специалистов по электронике, недавно окончивших американские университеты. В сентябре 1957 года, из-за конфликта с Шокли, который решил прекратить исследование кремниевых полупроводников, восемь ключевых сотрудников Shokley Transistor решили уйти со своих рабочих мест и начать заниматься своим делом. Восемь человек теперь навсегда известны как Вероломная Восьмёрка. Этот эпитет дал им Шокли, когда они ушли с работы. Восьмёрка включала в себя Роберта Нойса, Гордона Мура, Джея Ласта, Джина Хоурни, Виктора Гринича, Юджина Кляйнера, Шелдона Робертса и Джулиуса Бланка.

После ухода они решили создать собственную компанию, но инвестиции взять было неоткуда. В результате обзвона 30 фирм они наткнулись на Fairchild – владельца компании Fairchild Camera and Instrument. Тот с радостью вложил полтора миллиона долларов в новую компанию, что было почти в два раза больше, чем изначально считали необходимым восемь её основателей. Была заключена так называемая сделка с премией: если компания окажется успешной, он сможет её выкупить полностью за три миллиона. Fairchild Camera and Instrument воспользовалась этим правом уже в 1958 году. Назвали дочернюю компанию Fairchild Semiconductor.

В январе 1959 года один из восьми основателей компании Fairchild Роберт Нойс изобрёл кремниевую интегральную схему. При этом Джек Килби в Texas Instruments изобрёл германиевую интегральную схему на полгода раньше - летом 1958 года, однако модель Нойса оказалась более пригодной для массового производства, и именно она используется в современных чипах. В 1959 году Килби и Нойс независимо подали заявки на патенты на интегральную схему, и оба их успешно получили, причём Нойс получил свой патент первым.

В 1960-х годах Fairchild стала одним из ведущих производителей операционных усилителей и других аналоговых интегральных схем. Однако в то же время, новое управление Fairchild Camera and Instrument начало ограничивать свободу действий Fairchild Semiconductor, что привело к конфликтам. Члены «восьмёрки» и другие опытные сотрудники один за другим начали увольняться и основывать свои собственные компании в Кремниевой долине.

Первое название, выбранное Нойсом и Муром, было NM Electronics, N и M – первые буквы их фамилий. Но оно было не слишком впечатляющим. После большого числа не слишком удачных предложений, например Electronic Solid State Computer Technology Corporation, пришли к окончательному решению: компания будет называться Integrated Electronics Corporation. Само по себе оно тоже не было слишком впечатляющим, но имело одно достоинство. Сокращённо компанию можно было назвать Intel. Это звучало хорошо. Название было энергичным и красноречивым.

Учёные ставили перед собой вполне определённую цель: создать практичную и доступную полупроводниковую память. Ничего подобного ранее не создавалось, учитывая тот факт, что запоминающее устройство на кремниевых микросхемах стоило, по крайней мере, в сто раз дороже обычной для того времени памяти на магнитных сердечниках. Стоимость полупроводниковой памяти достигала одного доллара за бит, в то время как запоминающее устройство на магнитных сердечниках стоило всего лишь около цента за бит. Роберт Нойс говорил: «Нам необходимо было сделать лишь одно – уменьшить стоимость в сто раз и тем самым завоевать рынок. Именно этим мы в основном и занимались».

В 1970 году Intel выпустила микросхему памяти в 1 Кбит, намного превысив ёмкость существующих в то время микросхем (1 Кбит равен 1024 бит, один байт состоит из 8 бит, то есть микросхема могла хранить всего 128 байт информации, что по современным меркам ничтожно мало.) Созданная микросхема, известная как динамическое оперативное запоминающие устройство (DRAM) 1103, стала к концу следующего года наиболее продаваемым полупроводниковым устройством в мире. К этому времени Intel выросла из горстки энтузиастов в компанию, насчитывающую более ста сотрудников.

В это время японская компания Busicom обратилась к Intel с просьбой разработать набор микросхем для семейства высокоэффективных программируемых калькуляторов. Первоначальная конструкция калькулятора предусматривала минимум 12 микросхем различных типов. Инженер компании Intel Тед Хофф отклонил данную концепцию и вместо этого разработал однокристальное логическое устройство, получающее команды приложения из полупроводниковой памяти. Этот центральный процессор работал под управлением программы, которая позволяла адаптировать функции микросхемы для выполнения поступающих задач. Микросхема была универсальна по своей природе, то есть её применение не ограничивалось калькулятором. Логические же модули имели только одно назначение и строго определённый набор команд, которые и использовались для управления её функциями.

С этой микросхемой была связано одна проблема: все права на неё принадлежали исключительно Busicom. Тед Хофф и другие разработчики понимали, что данная конструкция имеет практически неограниченное применение. Они настояли на том, чтобы Intel выкупила права на созданную микросхему. Intel предложила Busicom вернуть заплаченные ею за лицензию 60 тысяч долларов в обмен на право распоряжаться разработанной микросхемой. В итоге Busicom, находясь в тяжелом финансовом положении, согласилась.

15 ноября 1971 года появился первый 4-разрядный микрокомпьютерный набор 4004 (термин микропроцессор появился значительно позже). Микросхема содержала в себе 2300 транзисторов, стоила 200 долларов и по своим параметрам была сопоставима с первой ЭВМ ЭНИАК, созданной в 1946 году, использовавшей 18 тысяч вакуумных электронных ламп и занимавшую 85 кубических метров.

Микропроцессор выполнял 60 тысяч операций в секунду, работал на частоте 108 кГц и производился с использованием 10-микронной технологии (10000 нанометров). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объём памяти составлял 640 байт. 4004-ый использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA.

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года.

Этот процессор содержал уже 6000 транзисторов и мог адресовать 64 Кб памяти. На нём был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка программирования BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем 8080 стал настолько известен, что его начали копировать.

В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976-го эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080.

Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ, что давало возможность разрабатывать более дешёвые и простые компьютеры. В Z-80 был также включён расширенный набор команд процессора 8080, позволяющий использовать его программное обеспечение. В этот процессор вошли новые команды и внутренние регистры, поэтому ПО, разработанное для Z-80, могло использоваться практически со всеми версиями 8080.

Первоначально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кб памяти.

Компания Радио Шэк выбрала процессор Z-80 для своего персонального компьютера TRS-80 Model 1. Вскоре Z-80 стал стандартным процессором для систем, работающих с операционной системой CP/M и наиболее распространённым ПО того времени.

Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии (3000 нанометров).

Несмотря на то, что он был выпущен на несколько месяцев раньше Z-80, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризированных устройств.

В этом же году MOS Technologies выпустила процессор 6502, который был абсолютно не похож на процессоры Intel.

Он был разработан группой инженеров компании Motorola. Эта же группа работала над созданием процессора 6800, который в будущем трансформировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала трёхсот долларов, в то время как 8-разрядный 6502 стоил всего около двадцати пяти долларов. Такая цена была вполне приемлема для Стива Возняка, и он встроил процессор 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, созданных компанией Commodore и другими производителями.

Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System. Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являющийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и используют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel представила процессор 8086, который содержал набор команд под кодовым названием х86.

Этот же набор команд до сих пор поддерживается во всех современных микропроцессорах: AMD Ryzen Threadripper 1950X и Intel Core i9-7920X. Процессор 8086 был полностью 16-разрядным – внутренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мб памяти. При создании 8086-го обратная совместимость с 8080-ым не предусматривалась. Но в то же время значительное сходство их команд и языка позволили использовать более ранние версии программного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была всё же слишком высока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая микросхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессора, в 1979 году Intel выпустила процессор 8088 – упрощённую версию 8086.

8088-ой использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мб памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК «урезанный» процессор 8088, а не 8086. Это решение имело далеко идущие последствия для всей компьютерной индустрии.

Процессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень похожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разрабатывать разнообразные программы для IBM PC, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8086/8088 с большинством процессоров, выпущенных в то время.

Intel сразу приступила к разработке нового микропроцессора после выхода 8086/8088. Процессоры 8086 и 8088 требовали большого количества микросхем поддержки, и компания решает разработать микропроцессор, уже содержащий на кристалле все необходимые модули. Новый процессор включал в себя множество компонентов, ранее выпускавшихся в виде отдельных микросхем, это позволило бы резко сократить количество микросхем в компьютере, а, следовательно, и уменьшить его стоимость. Кроме того, была расширена система внутренних команд.

Во второй половине 1982 года Intel выпускает встраиваемый процессор 80186, который, помимо улучшенного ядра 8086, содержал также дополнительные модули, заменяющие некоторые микросхемы поддержки.

Так же в 1982-ом был выпущен 80188, представляющий собой вариант микропроцессора 80186 с 8-битной внешней шиной данных.

Выпущенный 1 февраля 1982 года 16-битный x86-совместимый микропроцессор 80286 представлял собой усовершенствованный вариант процессора 8086 и обладал в 3-6 раз большей производительностью.

Этот качественно новый микропроцессор был затем использован в эпохальном компьютере IBM PC-AT.

286-ой разрабатывался параллельно с процессорами 80186/80188, однако в нём отсутствовали некоторые модули, имевшиеся в процессоре Intel 80186. Процессор Intel 80286 выпускался в точно таком же корпусе, как и Intel 80186 - LCC, а также в корпусах типа PGA с шестьюдесятью восемью выводами.

В те годы ещё поддерживалась обратная совместимость процессоров, что ничуть не мешало вводить различные новшества и дополнительные возможности. Одним из основных изменений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относящихся к категории IA-32. Эта архитектура была представлена в 1985 году, однако потребовалось ещё 10 лет, чтобы на рынке появились такие операционные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие использования исключительно 32-разрядных драйверов). И только ещё через 10 лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

80386-ой появился в 1985 году. Он содержал 275 тысяч транзисторов и выполнял более 5 миллионов операций в секунду.

Компьютер DESKPRO 386 компании Compaq был первым ПК, созданным на базе нового микропроцессора.

Следующим из семейства процессоров х86 стал 486-ой, появившийся в 1989 году.

Тем временем министерство обороны США не радовала перспектива остаться с одним-единственным поставщиком чипов. По мере того, как последних становилось всё меньше (вспомните, какой зоопарк наблюдался еще в начале девяностых), важность AMD, как альтернативного производителя, росла. По соглашению от 1982 года, у AMD были все лицензии на производство процессоров 8086, 80186 и 80286, однако, свежеразработанный процессор 80386 Intel передавать AMD отказалась категорически. И соглашение разорвала. Дальше последовал долгий и громкий судебный процесс – первый в истории компаний. Завершился он только в 1991 году победой AMD. За свою позицию Intel выплатила истцу миллиард долларов.

Но всё же отношения были подпорчены, и о былой доверительности речь не шла. Тем более, что в AMD пошли по пути reverse engineering. Компания продолжила выпускать отличающиеся аппаратно, но полностью совпадающие по микрокоду процессоры Am386, а затем и Am486. Тут уже в суд пошла Intel. Снова процесс затянулся надолго, и успех оказывался то на одной, то на другой стороне. Но 30 декабря 1994 года было принято судебное решение, согласно которому микрокод Intel всё же является собственностью Intel, и как-то нехорошо другим компаниям его использовать, если владельцу это не нравится. Поэтому с 1995-го всё изменилось всерьёз. На процессорах Intel Pentium и AMD K5 запускались любые приложения для платформы x86, но с точки зрения архитектуры они были принципиально разными. И, получается, что совсем уж настоящая конкуренция Intel и AMD началась лишь через четверть века после создания компаний.

Впрочем, для обеспечения совместимости перекрёстное опыление технологиями никуда не ушло. В современных процессорах Intel немало запатентованного AMD, и, наоборот, AMD аккуратно добавляет наборы инструкций, разработанные Intel.

В 1993 году Intel представила первый процессор Pentium, производительность которого выросла в пять раз по сравнению с производительностью семейства 486. Этот процессор содержал 3,1 миллиона транзисторов и выполнял до 90 миллионов операций в секунду, что примерно в полторы тысячи раз выше быстродействия 4004.

Когда появилось следующее поколение процессоров, те, кто рассчитывал на название Sexium были разочарованы.

Процессор семейства P6, называемый Pentium Pro, появился на свет в 1995 году.

Пересмотрев архитектуру P6, Intel в мае 1997 года представила процессор Pentium II.

Он содержал 7,5 миллионов транзисторов, упакованных, в отличие от традиционного процессора, в картридж, что позволило разместить кэш-память L2 непосредственно в модуле процессора. Это помогло существенно повысить его быстродействие. В апреле 1998 года семейство Pentium II пополнилось дешевым процессором Celeron, используемом в домашних ПК, и профессиональным процессором Pentium II Xeon, предназначенным для серверов и рабочих станций. Так же в 1998 году Intel впервые интегрировала кэш-память второго уровня (которая работала на полной частоте ядра процессора) непосредственно в кристалл, что позволило существенно повысить его быстродействие.

В то время как процессор Pentium стремительно завоёвывал доминирующее положение на рынке, AMD приобрела компанию NexGen, работавшую над процессором Nx686. В результате слияния компаний появился процессор AMD K6.

Этот процессор как в аппаратном, так и в программном отношении был совместим с процессором Pentium, то есть устанавливался в гнездо Socket 7 и выполнял те же программы. AMD продолжила разработку более быстрых версий процессора K6 и завоевала значительную часть рынка ПК среднего класса.

Первым процессором для настольных вычислительных машин старшей модели, содержащим встроенную кэш-память второго уровня и работающим с полной частотой ядра, стал процессор Pentium III, созданный на основе ядра Coppermine, представленный в конце 1999 года, который представлял собой, по сути, Pentium II, содержащий инструкции SSE.

В 1998 году компания AMD представила процессор Athlon, который позволил ей конкурировать с Intel на рынке высокоскоростных настольных ПК практически на равных.


Этот процессор оказался весьма удачным, и Intel получила его в лице достойного соперника в области высокопроизводительных систем. Сегодня успех процессора Athlon не вызывает сомнений, однако во время выхода его на рынок на этот счёт были опасения. Дело в том, что, в отличие от своего предшественника K6, который был совместим как на программном, так и на аппаратном уровне с процессором Intel, Athlon был совместим только на уровне программного обеспечения - он требовал специфичного набора микросхем системной логики и специального гнезда.

Новые процессоры AMD выпускались по 250-нм технологии с 22 миллионами транзисторов. У них присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 мегагерц получить эффективную частоту 200 мегагерц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

2000 год ознаменовался появлением на рынке новых разработок обеих компаний. 6 марта 2000 года AMD выпустила первый в мире процессор с тактовой частотой в 1 ГГц. Это был представитель набирающего популярность семейства Athlon на ядре Orion. Так же AMD впервые представила процессоры Athlon Thunderbird и Duron. Процессор Duron, по существу, был идентичен процессору Athlon и отличался от него только меньшим объёмом кэш-памяти второго уровня. Thunderbird, в свою очередь, использовал интегрированную кэш-память, что позволило повысить его быстродействие. Duron представлял собой более дешёвую версию процессора Athlon, которая была разработана в первую очередь для того, чтобы составить достойную конкуренцию недорогим процессорам Celeron. А Intel в конце года представила новый процессор Pentium 4.

В 2001 году Intel выпустила новую версию процессора Pentium 4 с рабочей частотой 2 ГГц, который стал первым процессором, достигшим подобной частоты. Кроме того, AMD представила процессор Athlon XP, созданный на основе ядра Palomino, а также Athlon MP, разработанный специально для многопроцессорных серверных систем. В течение 2001 года AMD и Intel продолжили работу над повышением быстродействия разрабатываемых микросхем и улучшением параметров существующих процессоров.

В 2002 году Intel представила процессор Pentium 4, впервые достигший рабочей частоты в 3,06 ГГц. Последующие за ним процессоры будут также поддерживать технологию Hyper-Threading. Одновременное выполнение двух потоков даёт для процессоров с технологией Hyper-Threading прирост производительности в 25-40% по сравнению с обычными процессорами Pentium 4. Это вдохновило программистов заняться разработкой многопотоковых программ, и подготовило почву для появления в скором будущем многоядерных процессоров.

В 2003 году AMD выпустила первый 64-разрядный процессор Athlon 64 (кодовое название ClawHammer, или K8).

В отличие от серверных 64-разрядных процессоров Itanium и Itanium 2, оптимизированных для новой 64-разрядной архитектуры программных систем и довольно медленно работающих с традиционными 32-разрядными программами, Athlon 64 воплощает в себе 64-разрядное расширение семейства x86. Через некоторое время Intel представила свой собственный набор 64-разрядных расширений, который назвала EM64T или IA-32e. Расширения Intel были практически идентичны расширениям AMD, что означало их совместимость на программном уровне. До сих пор некоторые операционные системы называют их AMD64, хотя в маркетинговых документах конкуренты предпочитают собственные бренды.

В этом же году Intel выпускает первый процессор, в котором была реализована кэш-память третьего уровня – Pentium 4 Extreme Edition. В него было встроено 2 Мб кэша, существенно увеличено количество транзисторов и как следствие – производительность. Так же появилась микросхема Pentium M для портативных компьютеров. Она задумывалась как составная часть новой архитектуры Centrino, которая должна была, во-первых, снизить энергопотребление, увеличив тем самым ресурс аккумулятора, во-вторых, обеспечить возможность производства более компактных и лёгких корпусов.

Для того, чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распространять пробную версию Windows XP Professional x64 Edition, поддерживающую дополнительные инструкции AMD64 и EM64T.

Не сбавляя обороты, AMD в 2004-м выпускает первые в мире двухъядерные x86-процессоры Athlon 64 X2.

На тот момент очень немногие приложения умели использовать два ядра одновременно, но в специализированном ПО прирост производительности был весьма внушительным.

В ноябре 2004 года компания Intel была вынуждена отменить выпуск модели Pentium 4 с тактовой частотой в 4 ГГц из-за проблем с теплоотводом.

25 мая 2005 года были впервые продемонстрированы процессоры Intel Pentium D. О них особо сказать нечего, разве что только о тепловыделении в 130 Вт.

В 2006-м году AMD представляет первый в мире 4-ядерный серверный процессор, где все 4 ядра выращены на одном кристалле, а не «склеены» из двух, как у коллег по бизнесу. Решены сложнейшие инженерные задачи – и на стадии разработки, и на производстве.

В этом же году Intel сменила название бренда Pentium на Core и выпустила двухъядерную микросхему Core 2 Duo.

В отличие от процессоров архитектуры NetBurst (Pentium 4 и Pentium D), в архитектуре Core 2 ставка делалась не на повышение тактовой частоты, а на улучшение других параметров процессоров, таких как кэш, эффективность и количество ядер. Рассеиваемая мощность этих процессоров была значительно ниже, чем у настольной линейки Pentium. С параметром TDP, равным 65 Вт, процессор Core 2 имел наименьшую рассеиваемую мощность из всех доступных тогда в продаже настольных микропроцессоров, в том числе на ядрах Prescott (Intel) с TDP равным 130 Вт, и на ядрах San Diego (AMD) с TDP равным 89 Вт.

Первым настольным четырехъядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

В 2007 году вышла 45-нанометровая микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.

Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила новое поколение архитектуры микропроцессоров x86 – Phenom (K10).

Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллера памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2009 году был завершён многолетний конфликт между корпорациями Intel и AMD, связанный с патентным правом и антимонопольным законодательством. Так, в течение почти десяти лет Intel использовала ряд нечестных решений и приёмов, которые мешали честному развитию конкуренции на рынке полупроводников. Intel оказывала давление на своих партнёров, вынуждая их отказываться от приобретения процессоров AMD. Применялся подкуп клиентов, предоставление больших скидок и заключение соглашений. В результате Intel выплатила AMD 1,25 миллиарда долларов и обязалась следовать определённому набору правил ведения бизнес-деятельности следующие 5 лет.

К 2011 году эпоха Athlon-ов и конкурентная борьба на процессорном рынке уже перешла в некоторое затишье, однако длилось оно совсем недолго - уже в январе Intel представила свою новую архитектуру Sandy Bridge, которая стала идейным развитием первого поколения Core – целой вехи, которая позволила синему гиганту взять лидерство на рынке. Поклонники AMD ждали ответа красных довольно долго – лишь в октябре на рынке появился долгожданный Bulldozer - возвращение на рынок бренда AMD FX, связанного с прорывными для компании процессорами начала века.


Новая архитектура AMD взяла на себя очень многое – противостояние с лучшими решениями Intel (ставших впоследствии легендарными) дорого обошлось чипмейкеру из Саннивейла. Уже традиционный для красных раздутый маркетинг, связанный с громкими заявлениями и невероятными обещаниями, перешел все границы – «Бульдозер» называли настоящей революцией, и предрекали архитектуре достойнейшую битву против новинок от конкурента. Что же заготовил FX для победы на рынке?

Ставку на многопоточность и бескомпромиссную многоядерность – в 2011 году AMD FX гордо называли «самым многоядерным десктопным процессором на рынке», и это не было преувеличением – в основе архитектуры лежало целых восемь ядер (пусть и логических), на каждое из которых приходился один поток. На момент анонса архитектуры новый FX на фоне четырех ядер конкурента был инновационным и смелым решением, заглядывающим далеко вперед. Но увы, AMD всегда делала ставку лишь на одно направление, и в случае с Bulldozer это было отнюдь не та сфера, на которую рассчитывал массовый потребитель.

Продуктивность новых чипов AMD была весьма высока, и в синтетике FX без труда показывал впечатляющие результаты – к сожалению, сказать того же об игровых нагрузках было нельзя: мода на 1-2 ядра и отсутствие поддержки нормального распараллеливания ядер привело к тому, что «Бульдозер» с большим скрипом справлялся с нагрузками там, где Sandy Bridge даже не чувствовал трудностей. Прибавить к этому целых две ахиллесовых пяты серии – зависимость от быстрой памяти и рудиментарного северного моста, а также наличие лишь одного FPU-блока на каждые два ядра – и результат выходит весьма плачевный. AMD FX назвали горячей и неповоротливой альтернативой быстрым и мощным синим процессорам, которая брала лишь относительной дешевизной и совместимостью со старыми материнскими платами. На первый взгляд это был полный провал, однако AMD никогда не брезговала работать над ошибками – и именно такой работой стала Vishera – своего рода перезагрузка архитектуры Bulldozer, вышедшая на рынок в конце 2012 года.

Обновленный Bulldozer получил название Piledriver, а сама архитектура прибавила в инструкциях, нарастила мускулов в однопоточных нагрузках, и оптимизировала работу большого числа ядер, из-за чего возросла и многопоточная производительность. Однако в те времена конкурентом для обновленной и посвежевшей серии красных выступала небезызвестная Ivy Bridge, только приумножившая число обожателей Intel. В AMD решили действовать по уже обкатанной стратегии привлечения бюджетных пользователей, общей экономии на комплектующих и возможности получить большее за меньшие деньги (не посягая на сегмент выше).

Но самое забавное в истории появления самой неудачной (по мнению большинства) архитектуры в арсенале AMD то, что продажи AMD FX трудно назвать не то что провальными, а даже посредственными – так, по данным магазина Newegg за 2016 год вторым по популярности процессором стал AMD FX-6300 (уступивший лишь i7 6700k), а небезызвестный лидер бюджетного красного сегмента FX-8350 вошел в пятерку самых продаваемых процессоров, немного отстав от i7 4790k. При этом даже относительно дешевые i5, которых приводили в пример маркетинговых успехов и «народного» статуса, значительно отстали от проверенных временем старичков на базе Piledriver.

Напоследок стоит отметить и довольно забавный факт, который несколько лет назад считался отговоркой поклонников AMD – речь идет о противостоянии FX-8350 и i5 2500k, которое зародилось еще во времена выхода Bulldozer. На протяжении долгого времени считалось, что красный процессор значительно отстает от облюбованного многими энтузиастами 2500k, однако в свежих тестах 2017 года в паре с мощнейшим GPU FX-8350 оказывается быстрее практически во всех игровых тестах. Уместно будет сказать «Ура, дождались!».

А Intel тем временем продолжает завоёвывать рынок.

В 2011 году анонсируется, а затем чуть позже выпускается партия новых процессоров на архитектуре Sandy Bridge, для нового, вышедшего в том же году сокета LGA 1155. Это второе поколение современных процессоров Intel, полное обновление линейки, которое проложило дорогу коммерческого успеха для компании, ведь аналогов по мощности на ядро и по разгону не было. Возможно, вы помните i5 2500К - легендарный процессор, он разгонялся до частоты почти в 5 ГГц, с соответственным башенным охлаждением, и способен даже сегодня, в 2017, обеспечить приемлемую производительность в системе с одной, а возможно и двумя видеокартами в современных играх. На ресурсе hwbot.org процессор преодолел частоту в 6014,1 мегагерц от русского оверклокера SAV. Это был 4 ядерный процессор с кэшем 3 уровня в 6 Мб, базовая частота составляла всего 3,3 ГГц, ничего особенного, но за счет припоя, процессоры этого поколения разгонялись очень сильно и не имели перегрева. Так же абсолютно успешным в этом поколении были i7 2600К и 2700K - 4 ядерные процессоры с гипертредингом, что давало им целых 8 потоков. Разгонялись, правда, они чуть слабее, но имели более высокую производительность, а соответственно и тепловыделение. Их брали под системы для быстрого и эффективного видеомонтажа, а также для проведения трансляций в интернете. Что интересно, 2600К как и i5 2500К тоже используют сегодня не только геймеры, но и стримеры. Можно сказать, что данное поколение стало народным достоянием, так как все хотели именно процессоры от Intel, что сказалось на их цене, не в лучшую для потребителя сторону.

В 2012 Intel выпускает 3 поколение процессоров, под названием Ivy Bridge, что выглядит странно, ведь прошел всего год, неужели они смогли изобрести что-то принципиально новое, что дало бы ощутимый прирост производительности? Как бы не так, новое поколение процессоров, базируется все на том же сокете – LGA 1155, а процессоры этого поколения, не сильно опережают предыдущие, связано это, конечно же, с тем, что конкуренции в топовом сегменте не было. Все та же AMD, не сказать, что бы плотно дышала в спину первых, потому, Intel могли позволить себе выпускать процессоры чуть мощнее своих же, ведь фактически стали монополистами на рынке. Но тут закрался ещё один подвох, теперь в виде термоинтерфейса под крышкой, Intel использовали не припой, а какую-то свою, как прозвали в народе – жвачку, сделано это было для экономии, что приносило ещё больше дохода. Эта тема просто взорвала сеть, больше нельзя было разгонять процессоры под завязку, ведь они получали температуру в среднем на 10 градусов больше предыдущих, потому частоты пришли ближе к границе в 4 – 4,2 ГГц. Особенные экстремалы даже вскрывали крышку процессора, с целью замены термопасты на более эффективную, сделать это без скола кристалла или повреждения контактов процессора удавалось не всем, однако метод оказался эффективным. Тем не менее, я могу выделить некоторые процессоры, которые пользовались успехом.

Возможно вы заметили, что я не упоминал i3, при рассказе о втором поколении, связано это с тем, что процессоры подобной мощности не особенно пользовались популярностью. Все всегда хотели i5, у кого были деньги брали конечно же i7.

В 3 поколении, о котором мы сейчас поговорим, ситуация кардинально не изменилась.
Успешными среди этого поколения, можно выделить i5 3340 и i5 3570К, по производительности они не отличались, тут все упиралось в частоту, кэш был всё те же - 6 Мб, 3340 не имел возможности разгона, потому 3570К был желаннее, но что один, что второй – обеспечивали хорошую производительность в играх. Из i7 на 1155 это был единственный 3770 с индексом К с кэшем 8 Мб и частотой 3.5-3.9 ГГц. В бусте разгоняли его обычно до 4,2 - 4,5 ГГц. Интересно, что в том же 2011, вышел новый сокет LGA 2011, для которого вышли два супер-процессора i7 4820K (4 ядра, 8 потоков, с L3 кэшем – 10 Мб) и i7 4930K (6 ядер, 12 потоков, L3 кэш был равен целых 12 Мб), что это были за монстры – сказать трудно, такой проц стоил 1000 баксов и был мечтой многих школьников в то время, хотя для игр, конечно, он был слишком мощным, больше подходил под профессиональные задачи.

В 2013 выходит Haswell, да-да, ещё один год, ещё одно поколение, по традиции чуть мощнее предыдущего, потому как AMD снова не смогла. Известно как самое горячее поколение. Однако i5 этого поколения были довольно таки успешными. Связано это с тем, на мой взгляд, что ребята с «Сендика», побежали менять свои, как они думали, устаревшие процы на новую «революцию» от Intel, с чего потом горели все «интернеты». Процессоры разгонялись даже хуже предыдущего поколения, из-за чего многие до сих пор недолюбливают это поколение. Производительность этого поколение была немного выше предыдущего (процентов на 15, что не много, но монополия делает свое дело), а ограничение по разгону - хорошая опция для Intel, чтобы давать меньше «халявной» производительности пользователю.

Все i5-ые по традиции были без гипертрединга. Работали на частоте от 3 до 3,9 ГГц в бусте, брать можно были любой с индексом «К», так как это гарантировало хорошую производительность, пусть и с не очень высоким разгоном. i7 тут был поначалу всего один, это 4770К - 4 ядра 8 потоков, 3,5 - 3,9 ГГц, рабочая лошадка, но греется без хорошего охлада очень сильно, не скажу что был популярен у скальперов, но люди, которые скальпировали крышку, говорят что результат намного лучше, на воде берет порядка 5 гигагерц, если повезет. Это касалось любого процессора со времен «Сендика». Однако это не конец, в этом поколении был такой себе Xeon E3-1231V3, который, по сути, был тем же i7 4770, только без интегрированной графики и разгона. Интересен тем, что вставлялся в обычную мать с сокетом 1150 и стоил гораздо дешевле ай седьмого. Чуть позже выходит i7 4790K и он, обладает уже улучшенным термоинтерфейсом, но это все ещё не тот припой что был раньше. Тем не менее, процессор разгоняется больше, чем 4770. Поговаривали даже о случаях разгона в 4,7 ГГц на воздухе, конечно на хорошем охладе.

Так же существуют «Монстры» этого поколения (Haswell-E): i7-5960X Extreme Edition, i7-5930K и 5820К, адаптированные под десктопный рынок серверные решения. Это были самые напичканные по самое не балуй процессоры на тот момент. Они базируются на новом 2011 v3 сокете и стоят кучу денег, но и производительность у них исключительная, что не мудрено, ведь у старшего процессора в линейке целых 16 потоков и 20 Мб кэша. Подбирайте челюсть и идем дальше.

В 2015 выходит Skylake, на сокете 1151 и все бы ничего и вроде почти та же самая производительность, однако это поколение отличается от всех предыдущих: во-первых, уменьшенными размерами теплораспределительной крышки, для улучшенного теплообмена с системой охлаждения на процессоре, во-вторых, поддержкой памяти DDR4 и программной поддержкой DirectX 12, Open GL 4.4, Open CL 2.0, что говорит о лучшей производительности в современных играх, в которых будут использоваться эти АПУ. Так же оказалось, что даже процессоры без индекса K можно разгонять, делалось это при помощи шины памяти, однако это дело быстро прикрыли. Работает ли этот метод через костыли – нам не известно.

Процессоров тут было немного, Intel опять улучшили бизнес модель, зачем выпускать 6 процессоров, если из всей линейки популярны 3-4? Значит будем выпускать 4 процессора среднего и 2 дорогого сегмента. Лично по моим наблюдениям, чаще всего берут i5 6500 или 6600К, все те же 4 ядра с 6 Мб кэша и турбобустом.

В 2016 году Intel представила пятое поколение процессоров – Broadwell-E. Core i7-6950X был первый в истории десктопный десятиядерный процессор в мире. Цена такого процессора на момент старта продаж составляла 1723 доллара. Многим показался очень странным такой ход со стороны Intel.

2 марта 2017-го года в продажу поступили новые процессоры старшей линейки AMD Ryzen 7, включавшие в себя 3 модели: 1800Х, 1700Х и 1700. Как вы уже знаете, 22 февраля этого года проходила официальная презентация Ryzen, на которой Лиза Су заявила, что инженеры перевыполнили прогноз 40%. По факту Ryzen опережает Excavator на 52%, а с учётом того, что прошло уже более полугода с момента начала продаж Ryzen, выход новых обновлений биос, повышающих производительность и фиксящих мелкие баги в архитектуре Zen, можно сказать, что эта цифра выросла до 60%. На сегодня старший Ryzen – самый быстрый восьмиядерный процессор в мире. И здесь подтвердилось ещё одно предположение. Насчёт десятиядерного Intel. На самом деле это и был настоящий и единственный ответ Ryzen. Intel заранее украла победу у AMD, типо, что бы вы там не выпустили, самый быстрый процессор в любом случае останется у нас. И тогда на презентации Лиза Су не смогла назвать Ryzen абсолютным чемпионом, а всего лишь лучшим из восьмиядерных. Такой вот тонкий троллинг со стороны Intel.

Сейчас компании AMD и Intel представляют новые флагманские процессоры. У AMD это Ryzen Threadripper, у Intel – Core i9. Цена восемнадцати ядерного тридцати шести поточного флагмана Intel Core i9-7980XE составляет порядка двух тысяч долларов. Цена шестнадцати ядерного тридцати двух поточного процессора Intel Core i9-7960X составляет 1700 долларов, тогда как у аналогичного шестнадцати ядерного тридцати двух поточного AMD Ryzen Threadripper 1950X цена составляет порядка тысячи долларов. Делайте разумные выводы сами, господа.

Видео по данному материалу.



Рекомендуем почитать

Наверх