Современные модели качества программного обеспечения. Современная индустрия программного обеспечения характеризуется очень высокой степенью конкуренции, поэтому одним из условий, обеспечивающих конкурентоспособность компании на рынке ПО, является выпуск к

Скачать Viber 13.05.2019
Скачать Viber
качественного ПО соответствует представлению о том, что программа достаточно успешно справляется со всеми возложенными на нее задачами и не приносит проблем ни конечным пользователям, ни их начальству, ни службе поддержки, ни специалистам по продажам. Да и самим разработчикам создание качественной программы приносит гораздо больше удовольствия.

Если попросить группу людей высказать свое мнение по поводу того, что такое качественное ПО , можно получить следующие варианты ответов:

  • Его легко использовать.
  • Оно демонстрирует хорошую производительность .
  • В нем нет ошибок.
  • Оно не портит пользовательские данные при сбоях.
  • Его можно использовать на разных платформах.
  • Оно может работать 24 часа в сутки и 7 дней в неделю.
  • В него легко добавлять новые возможности.
  • Оно удовлетворяет потребности пользователей.
  • Оно хорошо документировано.

Все это действительно имеет непосредственное отношение к качеству ПО . Но эти ответы выделяют характеристики, важные для конкретного пользователя, разработчика или группы таких лиц. Для того чтобы удовлетворить потребности всех сторон (конечных пользователей, заказчиков, разработчиков, администраторов систем, в которых оно будет работать, регулирующих организаций и пр.), для достижения прочного положения разрабатываемого ПО на рынке и повышения потенциала его развития необходим учет всей совокупности характеристик ПО , важных для всех заинтересованных лиц.

Приведенные выше ответы показывают, что качество ПО может быть описано большим набором разнородных характеристик. Такой подход к описанию сложных понятий называется холистическим (от греческого слова????, целое). Он не дает единой концептуальной основы для рассмотрения затрагиваемых вопросов, какую дает целостная система представлений (например, Ньтоновская механика в физике или классическая теория вычислимости на основе машин Тьюринга), но позволяет, по крайней мере, не упустить ничего существенного.

Общие принципы обеспечения качества процессов производства во всех отраслях экономики регулируются набором стандартов ISO 9000 . Наиболее важные для разработки ПО стандарты в его составе следующие:

  • ISO 9000:2000 Quality management systems - Fundamentals and vocabulary .

    Системы управления качеством - Основы и словарь. (Аналог - ГОСТ Р-2001).

  • ISO 9001:2000 Quality management systems - Requirements. Models for quality assurance in design, development, production, installation, and servicing .

    Системы управления качеством - Требования. Модели для обеспечения качества при проектировании, разработке, коммерциализации, установке и обслуживании.

    Определяет общие правила обеспечения качества результатов во всех процессах жизненного цикла. (Аналог - ГОСТ Р-2001).

    • Этот стандарт выделяет следующие процессы:
      • Управление качеством.
      • Управление ресурсами.
      • Развитие системы управления.
      • Исследования рынка.
      • Проектирование продуктов.
      • Приобретения.
      • Производство.
      • Оказание услуг.
      • Защита продуктов.
      • Оценка потребностей заказчиков.
      • Поддержка коммуникаций с заказчиками.
      • Поддержка внутренних коммуникаций.
      • Управление документацией.
      • Ведение записей о деятельности.
      • Планирование.
      • Обучение персонала.
      • Внутренние аудиты.
      • Оценки управления.
      • Мониторинг и измерения.
      • Управление несоответствиями.
      • Постоянное совершенствование.
      • Управление и развитие системы в целом.
    • Для каждого процесса требуется иметь планы развития процесса, состоящие как минимум из следующих разделов:
      • Проектирование процесса.
      • Документирование процесса.
      • Реализация процесса.
      • Поддержка процесса.
      • Мониторинг процесса.
      • Управление процессом.
      • Усовершенствование процесса.
    • Помимо поддержки и развития системы процессов, нацеленных на удовлетворение нужд заказчиков и пользователей,

Каждый день в своей работе мы сталкиваемся с достаточно абстрактным понятием «качество ПО» и если задать вопрос тестировщику или программисту – «что такое качество?», то у каждого найдется своё толкование. Рассмотрим определение "качества ПО" в контексте международных стандартов:


Качество программного обеспечения - это степень, в которой ПО обладает требуемой комбинацией свойств.

Качество программного обеспечения - это совокупность характеристик ПО, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Характеристики качества ПО

Функциональность (Functionality) - определяется способностью ПО решать задачи, которые соответствуют зафиксированным и предполагаемым потребностям пользователя, при заданных условиях использования ПО. Т.е. эта характеристика отвечает за то, что ПО работает исправно и точно, функционально совместимо, соответствует стандартам отрасли и защищено от несанкционированного доступа.

Надежность (Reliability) – способность ПО выполнять требуемые задачи в обозначенных условиях на протяжении заданного промежутка времени или указанное количество операций. Атрибуты данной характеристики – это завершенность и целостность всей системы, способность самостоятельно и корректно восстанавливаться после сбоев в работе, отказоустойчивость.

Удобство использования (Usability) – возможность легкого понимания, изучения, использования и привлекательности ПО для пользователя.

Эффективность (Efficiency) – способность ПО обеспечивать требуемый уровень производительности в соответствие с выделенными ресурсами, временем и другими обозначенными условиями.

Удобство сопровождения (Maintainability) – легкость, с которой ПО может анализироваться, тестироваться, изменяться для исправления дефектов, для реализации новых требований, для облегчения дальнейшего обслуживания и адаптироваться к имеющемуся окружению.

Портативность (Portability) – характеризует ПО с точки зрения легкости его переноса из одного окружения (software/hardware) в другое.

Модель качества программного обеспечения

На данный момент наиболее распространена и используется многоуровневая модель качества программного обеспечения , представленная в наборе стандартов ISO 9126. На верхнем уровне выделено 6 основных характеристик качества ПО , каждую из которых определяют набором атрибутов, имеющих соответствующие метрики для последующей оценки (

Чуть больше года назад в журнале "Открытые Системы" была опубликована моя статья под названием "Принципы управления качеством программ". Онлайн версия доступна здесь: http://www.osp.ru/os/2008/06/5344965/ . Перед публикацией исходный вариант статьи был сильно переработан редакцией, в результате чего её размер уменьшился раза в 2, и текст, включая название, был также сильно перелопачен. Сейчас я решил опубликовать у себя в блоге авторскую обновлённую версию, внеся туда небольшие добавления. Статья не в формате блога, а скорее для научного или учебного издания, так что простите.

Тема качества программного обеспечения довольно часто упоминается в русскоязычной литературе и статьях, но дальше пространных речей или разговоров о тестировании речь заходит редко. Цель данной статьи – дать целостное представление о проблеме качества программного обеспечения (ПО) и основных принципах управления качеством ПО. В статье даётся определение понятия качества ПО, описывается подход, упрощающий задачу анализа качества, приводится краткий обзор известных методов повышения качества.

I. Понятие качества программного обеспечения

Определение качества программного продукта

Согласно ГОСТ Р ИСО 9000-2001 качество – это «степень соответствия присущих характеристик (продукта) требованиям». Это общее определение. Если его буквально перенести на область разработки программного обеспечения (ПО), то оно может быть не совсем верно истолковано. Дело в том, что разработка требований, в том смысле как этот термин понимается для области ПО, есть неотъемлемая часть процесса разработки этого ПО. Качество требований к программному продукту (ПП) напрямую влияет на качество самого этого ПП. Иными словами, если требования к ПП некачественные, то сам продукт, разработанный по этим требованиям, также будет некачественным даже в случае идеального соответствия.

Если слово «требования» в определении ГОСТа заменить словами «цели проекта» (здесь под проектом имеется в виду процесс разработки определённого программного продукта или расширения функциональности имеющегося продукта), то всё встаёт на свои места. Далее в статье мы будем под качеством ПП подразумевать следующее:

Отмечу, что данное определение не касается вопросов стоимости. Цели проекта по разработке ПП определяются в первую очередь бизнес целями и имеющимися ограничениями.

Критерии качества ПП
Качество ПП – понятие сложное и многогранное. В общем, качество – это некая функция от следующих переменных:

  • Функциональность (насколько ПП полезен для пользователя);
  • Качество пользовательского интерфейса (удобство использования, лёгкость в обучении);
  • Надёжность (отсутствие дефектов в ПП, устойчивость к сбоям);
  • Производительность, потребление ресурсов, требования к внешней среде;
  • Качество информационной поддержки (документация);
  • Сопровождаемость (качество архитектуры и кода, внутреннее качество);
  • + возможно, другие критерии.

Другие варианты списка критериев качества можно найти, например, в , . Компания-разработчик определяет (должна определять) свои стандарты качества для каждого критерия для каждого программного проекта. При оценке качества необходимо иметь возможность количественно оценить каждый из критериев.

Влияние видов деятельности жизненного цикла на качество ПП
Рассмотрим типичные виды деятельности жизненного цикла программного проекта и их влияние на перечисленные выше критерии качества. В таблице ниже символ * означает, что данный вид деятельности (строка) явным образом влияет на данный критерий качества (столбец):

Основной момент, на который хотелось бы обратить внимание здесь, следующий: на качество конечного продукта влияют все фазы и виды деятельности проекта без исключения – от самых ранних до самых поздних. Таким образом, то, насколько хорошо и качественно мы работаем на каждой фазе проекта (а не только, например, на фазе тестирования), зависит, насколько качественным получится разрабатываемый продукт. Или другими словами, качество процесса разработки определяет качество разрабатываемого продукта , т.е. качество продукта неотделимо от качества процесса, и для того, чтобы улучшить качество ПП, нужно улучшать качество процесса разработки этого ПП .

Обобщённое понятие дефекта
Удобно было бы ввести и использовать для анализа качества некий обобщённый критерий качества вместо нескольких разрозненных критериев. Таким критерием является обобщённое понятие дефекта:

Таким образом, будем называть дефектом любое отклонение от стандарта качества для любого вышеперечисленного критерия. Например, недостаток функциональности или лишняя функциональность – дефект. Неудобный интерфейс – дефект. Плохо спроектированный или грязный код, который негативно скажется на сопровождаемости – дефект. Неприемлемая производительность – дефект. Некорректная работа программы («баг», ошибочное поведение) – частный случай дефекта. Орфографическая ошибка в документации пользователя – тоже дефект.

Дефекты можно классифицировать, например, по следующим параметрам:

    Тип дефекта (определяется фазой разработки или активностью, на которой он был внесён);

    Критичность дефекта (насколько критично его наличие в ПП);

    Приоритет дефекта (насколько важно его исправить);

    Сложность дефекта (насколько трудоёмко его исправить);

Имея подобный обобщённый обратный показатель качества, становится проще оценивать и анализировать качество разрабатываемого ПП, а также качество нашего процесса разработки вообще. Можно считать количество дефектов или сумму их весов (по какому-либо параметру), можно оценивать плотность дефектов на единицу объёма продукта, анализировать, какие фазы процесса являются наиболее проблемными для нас, и т.д. Теперь борьба за качество есть не что иное, как борьба с дефектами.

II. Управление качеством программного продукта

Традиционный подход к качеству программного продукта
Введя обобщенное понятие дефекта, можно нарисовать график, изображающий изменение количества дефектов в проекте с течением времени (рис. 1). Для простоты рассмотрим водопадную модель жизненного цикла проекта. При традиционном подходе к качеству ПП, где основной упор делается на тщательное тестирование, этот график может выглядеть следующим образом.

Рис. 1. Изменение количества дефектов в проекте с течением времени при традиционном подходе к управлению качеством и при водопадном жизненном цикле.

Здесь верхняя красная линия изображает количество внесённых дефектов на текущий момент времени (следует пояснить, что эта линия является воображаемой, т.к. мы не сможем точно подсчитать полное количество дефектов до тех пор, пока не найдём их все). Нижняя зелёная линия изображает количество найденных и исправленных дефектов на текущий момент времени (здесь мы предполагаем, что дефекты исправляются практически сразу же после того, как были найдены). Разница между красной и зелёной линией в каждый момент времени отображает количество имеющихся на данный момент дефектов. Нас больше всего интересует, какой будет эта разница в конце проекта. Чем она меньше, тем качественнее получился наш продукт. С точки зрения качества жизненный цикл на этом рисунке представляется как соревнование между процессами внесения и исправления дефектов .

Эффективность поиска дефектов
Рассмотрим одну из фаз, направленных на поиск и исправление дефектов, например, фазу системного тестирования. В ходе этой фазы обнаруживается некое количество дефектов D found , в то же время некоторое количество дефектов остаётся ненайденным на момент завершения фазы D missed (рис. 2). Общее число дефектов, прошедших через фазу, будет равно D found + D missed .

Рис. 2. Изменение количества дефектов в течение одной фазы.

Назовём отношение найденных дефектов к общему их числу, выраженное в процентах, эффективностью поиска дефектов (ЭПД%):

ЭПД% = .
Для каждой фазы, в ходе которой находятся и исправляются дефекты, при зрелом процессе и прочих равных условиях следует ожидать, что эта величина будет приблизительно постоянной. Этот факт даёт возможность количественно оценивать уровень качества (выраженный в количестве ненайденных дефектов) для текущего проекта и для планируемых проектов.

Эффективность поиска дефектов можно рассматривать как для отдельных фаз и активностей, так и для всего жизненного цикла разработки. При этом эффективности отдельных фаз определяют эффективность для всего жизненного цикла. Каждую фазу поиска дефектов можно рассматривать как некий фильтр, который удерживает некую часть дефектов, а весь жизненный цикл, как систему фильтров , . Если на ранних этапах жизненного цикла стоят плохие фильтры, которые пропускают много дефектов, то эти дефекты накапливаются, и, чтобы их хорошо отфильтровать, в конце жизненного цикла (фаза тестирования) нам будет необходим очень хороший фильтр.

Стоимость исправления дефектов
Дефекты со временем не только имеют тенденцию накапливаться, если не предпринимать ранних мер по их устранению. Но также хорошо известен тот факт, что чем дольше дефект живёт в проекте, тем дороже обходится его исправление (т.е. более трудоёмко) , , причём зависимость часто экспоненциальная. Для водопадной модели жизненного цикла эта зависимость хорошо иллюстрируется следующим графиком (рис. 3) .

Рис. 3. Изменение стоимости исправления дефектов с течением времени (водопадный жизненный цикл).

Для итерационной модели жизненного цикла картина будет похожая (рис. 4), изменятся только надписи, и масштаб оси Y для разных типов дефектов (например, для дефектов требований и проектирования масштаб будет крупнее, чем для дефектов кодирования).

Рис. 4. Изменение стоимости исправления дефектов с течением времени (итерационный жизненный цикл).

Комплексный подход к управлению качеством
Таким образом, получается, что, полагаясь только на одно, хоть даже и очень тщательное, тестирование, проблему качества не решить. Если не предпринимать никаких мер по борьбе с дефектами вплоть до этапа тестирования, то к началу тестирования в проекте может накопиться столько дефектов, что разгрести их будет непосильной задачей.

Поэтому, дефекты надо искать и исправлять постоянно, на протяжении всего жизненного цикла проекта, начиная с самых ранних этапов, а не только в конце на этапе тестирования . Грубо говоря, в конце проекта на этапе тестирования искать дефекты уже поздно: если их накопилось очень много, то никакое тестирование не поможет превратить некачественный продукт в качественный .

Второй подход, который можно и нужно применять параллельно, – это предотвращение или недопущение дефектов , , .

Рассмотрим, как изменится график зависимости количества дефектов от времени при применении комплексного подхода к управлению качеством (рис. 5). Применение методов поиска дефектов на протяжении всего жизненного цикла проекта поднимает кривую найденных дефектов вверх. А применение методов предотвращения дефектов опускает кривую вносимых дефектов вниз. Таким образом, количество ненайденных дефектов на протяжении всего жизненного цикла уменьшается, и, как результат, уменьшается количество ненайденных дефектов в конце проекта.

Рис. 5. Изменение количества дефектов в проекте с течением времени при комплексном подходе к управлению качеством.

Методы поиска дефектов
Методы поиска дефектов можно классифицировать по следующим признакам:

  • статические и динамические;
  • ручные и автоматизированные.

Таким образом, можно выделить 4 категории методов:

  • Ручной анализ артефактов:

      Персональные проверки (personal review) , ;

      Формальные инспекции , , ;

      Групповые обзоры (walkthrough) ;

      Парное программирование , групповое проектирование ;

    Автоматическая статическая проверка:

      Компиляция (помимо явных дефектов компилятор умеет находить неявные (warnings) – их не следует оставлять без внимания);

      Автоматический статический анализ кода с помощью специальных анализаторов;

      Автоматическая проверка на соблюдение принятого код-стандарта и стиля;

    Автоматизированное тестирование:

      Модульное или блочное тестирование (unit testing) , , ;

      Автоматизированное функциональное (комплексное) тестирование;

      Автоматизированное тестирование графического интерфейса пользователя;

      Тестирование производительности; стресс-тестирование;

      Использование утверждений (asserts) ;

    Ручное тестирование:

      Ручное интеграционное тестирование;

      Ручное системное тестирование;

      Сравнительное тестирование;

      Верификация ;

      Пошаговая трассировка ;

У каждого из перечисленных методов есть свои плюсы и минусы. Какие-то виды дефектов лучше ловятся одними методами, какие-то другими. Поэтому, эффективная стратегия поиска дефектов будет состоять в применении комбинации нескольких разнородных методов . Каждый метод поиска в зависимости от того, насколько хорошо он реализован и применяется в конкретных условиях, будет иметь свой собственный уровень эффективности, выраженный в процентах. В книге С. Макконнелл «Совершенный код» можно найти таблицу примерных значений эффективностей поиска дефектов для разных методов (см. копию этой таблицы ниже). Обратите внимание, что согласно этим данным тестирование имеет сравнительно низкую эффективность поиска дефектов (25%-40%), а для того, чтобы сделать её высокой, необходимо увеличить стоимость процесса тестирования в разы (эффективность бета-тестирования при количестве тестеров >1000 около 75%).

Метод поиска ЭПД% Метод поиска ЭПД%
Неформальный обзор дизайна (тех. проекта) 35% Тестирование новой функции (компонента) 30%
Формальные инспекции дизайна (тех. проекта) 55% Интеграционное тестирование 35%
Неформальный обзор кода (code review) 25% Регрессионное тестирование 25%
Формальные инспекции кода 60% Системное тестирование 40%
Моделирование и прототипирование 65% Бета-тестирование (<10 тестеров) 35%
Юнит-тестирование 30% Бета-тестирование (>1000 тестеров) 75%

Методы предотвращения дефектов
Вышеперечисленные методы поиска дефектов нам бы не понадобились, если бы мы научились разрабатывать ПО вообще без дефектов. Достичь этого вряд ли возможно, но попытаться уменьшить число вносимых дефектов стоит попробовать. К методам предотвращения дефектов можно отнести следующие:

    Прототипирование – создание и опробование дешёвой модели разрабатываемой системы с целью проверить её характеристики и выявить неверные предположения и решения, которые могли бы привести к серьёзным дефектам (и переделкам) при разработке.

    Использование стандартов на все виды продуктов, производимых в ходе разработки ПО (требования, архитектура, код, различная документация и т.д.). Строгие общепризнанные стандарты позволяют минимизировать возможные недопонимания между людьми при работе с этими продуктами (когда читатель продукта прочитал не то, что имел в виду создатель продукта) и, как следствие, предотвращают появление дефектов, связанных с этим .

    Применение компонентного (или модульного) подхода . Грамотное применение компонентного подхода при построении программных систем уменьшает их сложность , а, следовательно, сужает пространство возможных дефектов.

    Использование готовых проверенных решений и компонентов (собственных или купленных), в высоком качестве которых мы уверены. Чем меньше нам приходится разрабатывать новых собственных решений, тем меньше ошибок мы делаем.

    Рефакторинг кода – приведение кода в надлежащий вид есть хороший способ профилактики будущих дефектов сопровождения, которые очень любят появляться при модификации непонятных, плохо спроектированных участков кода.

    Предварительная разработка тест-кейсов (до этапа кодирования) позволяет глубже понять требования к разрабатываемой системе и лучше спроектировать её. Частный случай этого подхода – Test-Driven Development , при котором модульные тесты разрабатываются не после, а до кодирования.

    Регулярный анализ причин появления наиболее серьёзных дефектов и поиск путей устранения этих причин . Это может происходить на периодических собраниях команды разработчиков , или можно проводить такой анализ для каждого серьёзного дефекта, найденного на этапах системного тестирования или после внедрения. Результатом такого анализа должны быть модификации процесса разработки , направленные на устранение причин появления дефектов или, как минимум, способствующие более раннему обнаружению подобных дефектов .

    Ваши идеи?

Здесь также стоит упомянуть человеческий фактор. Никакие методы не заменят профессионализм и опыт разработчиков и менеджеров. Настоящие опытные профессионалы, как правило, делают меньше ошибок, и использование их опыта даёт хороший задел для качественной разработки. Если же коллектив состоит преимущественно из молодых неопытных разработчиков, то следует рассмотреть возможность проведения специальных тренингов для них.

Управление качеством при итерационном жизненном цикле
Рассмотрим для примера итерационный жизненный цикл, состоящий из 5 итераций, каждую из которых можно рассматривать как маленький, но полный водопадный жизненный цикл (рис. 6).

Рис. 6. Изменение количества дефектов в проекте с течением времени при итерационном жизненном цикле.

Предположим, что эффективность поиска дефектов каждого из водопадных циклов составляет 50%, и на каждой итерации вносится одинаковое количество дефектов. Подсчитаем по формуле ЭПД%, чему будет равна эффективность поиска дефектов итерационного цикла, состоящего из пяти последовательных итераций. После 1-й итерации эта эффективность будет равна 50%; после 2-й – 62,5%; после 3-й – 70,8%; после 4-й – 76,6%; после 5-й эффективность поиска дефектов всех 5 итераций будет равна 80,6%.

Данный пример является идеализированным, и в реальной жизни эффективности поиска дефектов на разных итерациях, скорее всего, будут отличаться. Связано это с неоднородностью деятельностей на разных итерациях. Но в любом случае, на лицо явный прогресс в качестве перед простым водопадным жизненным циклом. Объясняется такой эффект очень просто: на каждой последующей итерации мы находим дефекты не только текущей итерации, но и оставшиеся дефекты предыдущих итераций. В результате общая эффективность поиска дефектов увеличивается.

Таким образом, получается, что добиться улучшения качества можно не только введением дополнительных методов раннего поиска дефектов (такие как инспекции, обзоры и т.п.), но также и путём перехода от водопадного к итерационному жизненному циклу разработки ПО. Причём, теоретически, чем больше итераций, тем лучше качество. Тестирование на начальных итерациях можно рассматривать как поиск дефектов на ранних этапах жизненного цикла.

Стоимость качества ПО
Может показаться, что применение множества различных методов повышения качества ПО увеличит стоимость разработки ПО. Это может быть верно в краткосрочной перспективе (пока процесс их использования не стабилизировался) либо при неграмотном использовании методов. В долгосрочной же перспективе комплексное применение методов повышения качества не только не удорожает разработку, но может и удешевить её. Посмотрим, за счёт чего это происходит.

Во-первых, как было сказано выше, чем раньше дефект был найден, тем дешевле обходится его исправление. Поэтому, эффективное применение методов раннего поиска дефектов способствует снижению стоимости проекта.

Во-вторых, методы поиска дефектов, рассмотренные выше, помимо эффективностихарактеризуются также средней скоростью нахождения дефектов. Согласно статистическим данным, например из , этот показатель у методов тестирования в несколько раз хуже, чем у методов раннего поиска дефектов. Это означает, что тратя время на поиск дефектов на ранних фазах, мы экономим больше времени на предстоящем тестировании.

С. Макконнелл утверждает, что «повышение качества системы снижает расходы на её разработку» , т.к. «устранение дефектов (на поздних стадиях) на самом деле – самый дорогой и длительный этап разработки ПО».


Процесс управления качеством
Для управления качеством недостаточно простого использования различных методов его повышения. Необходимо их осознанное систематическое применение, которое стало бы неотъемлемой частью процесса разработки ПО, ориентированного на качество .

Необходим постоянный контроль качества разрабатываемого ПО через метрики качества , а также контроль качества отдельных подпроцессов, составляющих целостный процесс разработки.

Методы, которые хорошо работали вчера, сегодня могут представлять собой пустую трату времени. У каждого проекта может быть своя специфика, требующая иного набора методов повышения качества. Если постоянно не контролировать эффективность методов, то со временем она может значительно ухудшиться.

Управление качеством – это также постоянный поиск способов усовершенствования процесса разработки с целью снижения числа вносимых дефектов и повышения эффективности методов поиска дефектов.

Заключение
Подведём итоги всему вышесказанному. Качество ПО определяется в первую очередь процессом разработки этого ПО. Только зрелый стабильный процесс, ориентированный на качество, способен создавать программные продукты с предсказуемым контролируемым уровнем качества. Такой процесс должен опираться на основные принципы управления качеством ПО:

    постоянный поиск и исправление дефектов на протяжении всего жизненного цикла разработки, начиная с самых ранних этапов;

    систематическое применение методов предотвращения дефектов;

    постоянный контроль качества разрабатываемого ПП и процесса разработки;

    постоянное усовершенствование процесса разработки с целью повышения качества.

Литература

1. Humphrey, Watts S., A discipline for software engineering, ISBN 0-201-54610-8. Copyright 1995 by Addison-Wesley.
2. Макконнелл С., Совершенный код. Мастер-класс / Пер. с англ. –М.: Издательско-торговый дом «Русская Редакция»; СПб.: Питер, 2005.
3. Humphrey, Watts S., Introduction to Team Software Process, ISBN 0-201-47719-X. Copyright 2005 by Addison Wesley Longman, Inc.
4. Humphrey, Watts S., PSP: a self-improvement process for software engineers, ISBN 0-321-30549-3. Copyright 2005 Pearson Education, Inc.
5. Амблер С., Гибкие технологии: экстремальное программирование и унифицированный процесс разработки. Библиотека программиста. Пер. с англ. –СПб.: Питер, 2005.
6. Кролл П., Кратчен Ф., Rational Unified Process – это легко. Руководство по RUP для практиков. Пер. с англ. –М.: КУДИЦ-ОБРАЗ, 2004.
7. Торрес Р. Дж., Практическое руководство по проектированию и разработке пользовательского интерфейса. Пер с англ. –М.: Издательский дом «Вильямс», 2002.
8. Бобровский С., Программная инженерия. Технологии Пентагона на службе российских программистов. –СПб.: Питер, 2003.
9. Хант Э., Томас Д., Программист-прагматик. Путь от подмастерья к мастеру. Пер. с англ. –М.: Издательство «Лори», 2004.
10. Фаулер М., Рефакторинг: улучшение существующего кода. Пер. с англ. –СПб.: Символ-Плюс, 2005.
11. Бек К., Экстремальное программирование. Пер. с англ. –СПб.: Питер, 2002.
12. Бек К., Экстремальное программирование: разработка через тестирование. Библиотека программиста. Пер. с англ. –СПб.: Питер, 2003.
13. ГОСТ Р ИСО 9000-2001, http://bib-gost.narod.ru/kazestvo/_gost_r_iso_9000_2001.zip
14. Ройс Уокер, Управление процессом создания программного обеспечения. Пер. с англ. –М.: Издательство «Лори», 2007.
15. Tian, Jeff, Software Quality Engineering, ISBN 0-471-71345-7. Copyright 2005 by the IEEE Computer Society.

Качество программного обеспечения является постоянным объектом заботы программной инженерии и обсуждается во многих областях знаний.

  • Фил Кросби: Качество - это соответствие пользовательским требованиям.
  • Уотс Хемпфри: Качество - это достижение отличного уровня пригодности к использованию.
  • Компания IBM: ввела в оборот фразу «качество, управляемое рыночными потребностями (market-driven quality)».
  • Критерий Бэлдриджа: «качество, задаваемое потребителем (customer-driven quality)».
  • Система менеджмента качества ISO 9001: Качество - это степень соответствия присущих характеристик требованиям.

Приемлемое качество - это желаемая степень совершенства создаваемого продукта (услуги), способная удовлетворить пользователей и достижимая в рамках заданных проектных ограничений.

Качество в проектной деятельности:

  • Управление требованиями («атрибуты качества» как категория нефункциональных требований);
  • Тестирование (т.н. наработка на отказ, такие метрики как MTTF - Mean Time To Failure, то есть среднее время между обнаруженными сбоями системы, и т.п.).

«Приемлемое качество» можно сравнивать с уровнем обслуживания в рамках заданного SLA – Service Level Agreement. То есть, приемлемое качество может рассматриваться как <количественно выраженный> компромисс между заказчиком и исполнителем в отношении характеристик продукта, создаваемого исполнителем в интересах <решения задач> заказчика с учетом других ограничений проекта (в частности, стоимостью, что часто именуется как «cost of quality» – «стоимость качества»).

Рисунок «Область знаний - Качество программного обеспечения»

Рисунок «Модель системы менеджмента качества»

Основы качества программного обеспечения (Software Quality Fundamentals)

Согласие, достигнутое по требованиями к качеству (в оригинале - quality requirements), наравне с четким доведением до инженеров того, что составляет качество <получаемого продукта>, требуют обсуждения и формального определения многих аспектов качества.

Инженеры должны понимать смысл, вкладываемый в концепцию качества, характеристики и значение качества в отношении разрабатываемого или сопровождаемого программного обеспечения.

Важной идеей является то, что программные требования определяют требуемые характеристики качества программного обеспечения, а также влияют на методы количественной оценки и сформулированные для оценки этих характеристик <соответствующие> критерии приемки.

Культура и этика программной инженерии (Software Engineering Culture and Ethics)

Ожидается, что инженеры по программному обеспечению воспринимают вопросы качества программного обеспечения как часть своей <профессиональной> культуры.
Этические аспекты могут играть значительную роль в обеспечении качества программного обеспечения, культуре и отношении инженеров <к своей работе>. IEEE Computer Society и ACM разработали кодекс этики (“моральный кодекс” – code of ethics) и профессиональной практики, основанный на восьми принципах, помогающих инженерам укрепить их отношение к качеству и независимость <в решении вопросов обеспечения достойного качества создаваемых программных продуктов> в их повседневной работе.

Значение и стоимость качества (Value and Costs of Quality)

Понятие “качество”, на самом деле, не столь очевидно и просто, как это может показаться на первый взгляд. Для любого инженерного продукта существует множество <интерпретаций> качества, в зависимости от конкретной “системы координат”. Множество этих точек зрения необходимо обсудить и определить на этапе выработки требований к программному продукту. Характеристики качества могут требоваться в той или иной степени, могут отсутствовать или могут задавать определенные требования, все это может быть результатом определенного компромисса.

Стоимость качества (cost of quality) может быть дифференцирована на:

  • стоимость предупреждения <дефектов> (prevention cost),
  • стоимость оценки (appraisal cost),
  • стоимость внутренних сбоев (internal failure cost),
  • стоимость внешних сбоев (external failure cost).

Движущей силой программных проектов является желание создать программное обеспечение, обладающее определенной ценностью. Ценность программного обеспечения в может выражаться в форме стоимости, а может и нет. Заказчик, обычно, имеет свое представление о максимальных стоимостных вложениях, возврат которых ожидается в случае достижения основных целей создания программного обеспечения. Заказчик может, также, иметь определенные ожидания в отношении качества ПО. Иногда, заказчики не задумываются о вопросах качества и связанной с ними стоимостью. Является ли характеристики качества чисто декоративными или, все же, это неотъемлемая часть программного обеспечения? Ответ, вероятно, находится где-то посередине, как почти всегда бывает в таких случаях, и является предметом обсуждения степени вовлечения заказчика в процесс принятия решений и полного понимания заказчиком стоимости и выгоды, связанной с достижением того или иного уровня качества. В идеальном случае, большинство такого рода решений должно приниматься процессе работы с требованиями, однако эти вопросы могут подниматься на протяжении всего жизненного цикла программного обеспечения. Не существует каких-то <“стандартных”> правил того, как именно необходимо принимать такие решения. Однако, инженеры должны быть способны представить различные альтернативы и их стоимость.

Модели и характеристики качества (Models and Quality Characteristics)

ISO/IEC определяет три связанных модели качества программного обеспечения (ISO 9126-01 Software Engineering - Product Quality, Part 1: Quality Model):

  • внутреннее качество,
  • внешнее качество и
  • качество в процессе эксплуатации, а также набор соответствующих работ по оценке качества программного обеспечения (ISO14598-98 Software Product Evaluation).

Качество процессов программного обеспечения (Software engineering process quality)

Управление качеством (software quality management) и качество процессов программной инженерии (software engineering process quality) имеют непосредственное отношение к качеству создаваемого программного продукта.

Существует два важнейших стандарта в области качества программного обеспечения.

  • TickIT - касается рассмотрения общей системы менеджмента качества ISO 9001-00 в приложении к программным проектам.
  • Другой важный стандарт – CMMI , обсуждаемый в области знаний “Процесс программной инженерии”, предоставляет рекомендации по совершенствованию процесса. Непосредственно с управлением качеством связаны процессные области (области компетенции) CMMI:
    • обеспечение качества процесса и продукта (process and product quality assurance, категория процессов CMMI “Support”),
    • проверка (verification, категория “Engineering”) и
    • аттестация (validation, категория “Engineering”).

При этом, CMMI классифицирует обзор (review) и аудит (audit) в качестве методов верификации, но не как самостоятельные процессы.

Данные стандарты все же рассматривают как взаимодополняющие и, что сертификация по ISO 9001 помогает в достижении старших уровней зрелости по CMMI.

Качество программного продукта (Software product quality)

Прежде всего, инженеры должны определить цели создания программного обеспечения. В этом контексте, особо важно помнить, что требования заказчика - первичны и содержат требования в отношении качества, а не только функциональности (функциональные требования). Таким образом, инженеры ответственны за извлечение требований к качеству, которые не всегда представлены явно, а также обсуждение их важности и степени сложности их достижения. Все процессы, ассоциированные с качеством (например, сборка, проверка и повышение качества), должны проектироваться с учетом этих требований и несут на себе тяжесть дополнительных расходов (как важную составную часть стоимости программного обеспечения).

Стандарт ISO 9126-01 (Software Engineering - Product Quality, Part 1: Quality Model) определяет для двух из трех описанных в нем моделей, связанные характеристики и «суб-характеристики» качества, а также метрики, полезные для оценки качества программных продуктов.

Понимание термина “продукт” расширено включением всех артефактов, создаваемых на выходе всех процессов, используемых для создания конечного программного продукта. Примерами продукта являются (но не ограничиваются этим):

  • полная спецификация системных требований (system requirements specification),
  • спецификация программных требований для программных компонент системы (software requirements specification, SRS),
  • модели,
  • тестовая документация,
  • отчеты, создаваемые в результате работ по анализу качества.

Хотя, чаще всего термин качество используется в отношении конечного продукта и поведения системы в процессе эксплуатации, хорошей инженерной практикой является требование к тому, чтобы соответствие заданным характеристикам качества оценивалось и для промежуточных результатов/продуктов жизненного цикла в рамках всех процессов программной инженерии.

Повышение качества (Quality Improvement)

Качество программного обеспечения может повышаться за счет итеративного процесса постоянного улучшения. Это требует контроля, координации и обратной связи в процессе управления многими одновременно выполняемыми процессами:

  1. процессами жизненного цикла,
  2. процессом обнаружения, устранения и предотвращения сбоев/дефектов и
  3. процессов улучшения качества.

К программной инженерии применимы теории и концепции, лежащие в основе совершенствования качества. Например, предотвращение и ранняя диагностика ошибок, постоянное совершенствование (continuous improvement) и внимание к требованиям заказчика (customer focus), составляющие принцип “building in quality”. Эти концепции основываются на работах экспертов по качеству, пришедших к мнению, что качество продукта напрямую связано с качеством используемых для его создания процессов.

Такие подходы, как TQM (Total Quality Management – всеобщее управление качеством) и PDCA (Plan, Do, Check, Act – Планирование, Действие, Проверка, Реакция/Корректировка), являются инструментами достижения задач, связанных с качеством. Поддержка менеджмента помогает в выполнении процессов, оценке продуктов и получению всех необходимых данных. Кроме этого, разрабатываемая программа совершенствования (improvement program, обычно является целевой и охватывает работу подразделения или организации, в целом) детально идентифицирует все действия и проекты по улучшению <отдельных аспектов деятельности> в рамках определенного периода времени, за который такие проекты можно осуществить с успешным решением соответствующих задач. При этом, поддержка менеджмента означает, что все проекты по улучшению обладают достаточными ресурсами для достижением поставленных целей. Поддержка менеджмента тесно связана с реализацией активного взаимодействия в коллективе, и должна предупреждать возникновение потенциальных проблем (и пассивного или даже активного противодействия реализации программы совершенствования или отдельных ее проектов). Формирование рабочих групп, поддержка менеджеров среднего звена и выделенные ресурсы на уровне проекта – эти вопросы обсуждаются в области знаний “Процесс программной инженерии”.

Процессы управления качеством программного обеспечения (Software Quality Processes)

Управление качеством программного обеспечения (SQM, Software Quality Management) применяется ко всем аспектам процессов, продуктов и ресурсов. SQM определяет процессы, владельцев процессов, а также требования к процессам, измерения процессов и их результатов, плюс – каналы обратной связи.

Процессы управления качеством содержат много действий. Некоторые из них позволяют напрямую находить дефекты, в то время, как другие помогают определить где именно может быть важно провести более детальные исследования, после чего, опять-таки, проводятся работы по непосредственному обнаружению ошибок. Многие действия также могут вестись с целью достижения и тех и других целей.

Планирование качества программного обеспечения включает:

  1. Определение требуемого продукта в терминах характеристик качества.
  2. Планирование процессов для получения требуемого продукта.

Эти процессы отличаются от процессов SQM, как таковых, которые, в свою очередь, направлены на оценку планируемых характеристик качества, а не на реальную реализацию этих планов. Процессы управления качеством должны адресоваться вопросам, насколько хорошо продукт будет удовлетворять потребностям заказчика и требованиям заинтересованных лиц, обладать ценностью для заказчика и заинтересованных лиц и качеством, необходимым для соответствия сформулированным требованиям к программному обеспечению.

SQM может использоваться для оценки и конечных и промежуточных продуктов. Некоторые из специализированных процессов SQM определены в стандарте 12207:

  • Процесс обеспечения качества (quality assurance process);
  • Процесс верификации (verification process);
  • Процесс аттестации (validation process);
  • Процесс совместного анализа (joint review process);
  • Процесс аудита (audit process).

Все эти процессы поддерживают стремление к достижению качества и, кроме того, помогают в поиске возможных ошибок. Однако, они отличаются в том, на чем концентрируют внимание.

Процессы SQM состоят из задач и техник, предназначенных для оценки того, как начинают реализовываться планы по созданию программного обеспечения и насколько хорошо промежуточные и конечные продукты соответствуют заданным требованиям. Результаты выполнения этих задач представляются в виде отчетов для менеджеров перед тем, как будут предприняты соответствующие корректирующие действия. Управление SQM-процессом ведется исходя из уверенности, что данные отчетов точны.
Как описано в данной области знаний, процессы SQM тесно связаны между собой. Они могут перекрываться, а иногда даже и совмещаться. Они кажутся реактивными по своей природе, в силу того, что они рассматривают процессы в контексте полученной практики и уже произведенные продукты. Однако, они играют главную роль на стадии планирования, являясь проактивными как процессы и процедуры, необходимые для достижения характеристик и уровня качества, востребованных заинтересованными лицами <проекта> программного обеспечения.

Управление рисками также может играть значительную роль для выпуска качественного программного обеспечения. Включение “регулярного” (как постоянно действующего, а не периодического; в оригинале – disciplined) анализа рисков и <соответствующих> техник управления <рисками> в процессы жизненного цикла программного обеспечения может увеличить потенциал для производства качественного продукта. Более подробную информацию по управлению рисками можно найти в области знаний “Управление программной инженерией”.

Подтверждение качества программного обеспечения (Software Quality Assurance, SQA)

Процессы SQA обеспечивают подтверждение того, что программные продукты и процессы жизненного цикла проекта соответствуют заданным требованиям. Такое подтверждение проводится на основе планирования (planning), постановки <работ> (enacting) и исполнения (performing) набора действий, направленных на то, чтобы качество стало неотъемлемой частью программного обеспечения.
Такой взгляд подразумевает ясное и точное формулирование проблемы, а также то, что определены и четко выражены, полны и однозначно интерпретируемы требования к соответствующему <программному> решению. SQA добивается обеспечения качества в процессе разработки и сопровождения за счет выполнения различных действий на всех этапах <жизненного цикла>, что позволяет идентифицировать проблемы еще на ранних стадиях, которые практически неизбежны в любой сложной деятельности.

Управление рисками (Risk Management) является серьезным дополнительным инструментом для обеспечения качества программного обеспечения.

SQA, как это сформулировано SWEBOK, концентрируется на процессах. Роль SQA состоит в том, чтобы обеспечить соответствующее планирование процессов, дальнейшее исполнение процессов на основе заданного плана и проведение необходимых измерений процессов с передачей результатов измерений заинтересованным сторонам (организационными структурам и лицам).

SQA-план определяет средства, которые будут использоваться для обеспечения соответствия разрабатываемого продукта заданным пользовательским требованиям с максимальным уровнем качества, возможным при заданных ограничениях проекта.

Для того, чтобы этого добиться, в первую очередь необходимо, чтобы цели качества были четко определены и понимаемы (а также, однозначно интерпретируемы, что является обязательным условием любых целей и соответствующих требований). Это, в обязательном порядке, должно быть отражено в соответствующих планах управления <проектом>, разработки и сопровождения.

Конкретные работы и задачи по обеспечению качества структурируются с детализацией требований по их стоимости и ассоциированным ресурсам, целям с точки зрения управления и соответствующим расписанием в контексте целей, заданных планами управления, разработки и сопровождения. План SQA идентифицирует документы, стандарты, практики и соглашения, применяемые при контроле проекта, а также то, как эти аспекты будут проверяться и отслеживаться для обеспечения достаточности и соответствия заданному плану.
SQA-план идентифицирует метрики, статистические техники, процедуры формирования сообщений о проблемах и проведения корректирующих действий, такие средства как инструменты, техники и методологии, вопросы безопасности физических носителей, тренинги, а также формирование отчетности и документации, относящиеся к вопросам SQA.

Кроме того, SQA-план касается и вопросов работ по обеспечению качества, относящихся к другим типам деятельности, описанным в <различных> планах по созданию программного обеспечения, к которым также относятся поставка, установка, обслуживание заказных и/или тиражируемых/готовых программных решений (commercial off-the-shelf, COTS), необходимых для данного проекта программного обеспечения. SQA-план может содержать необходимые для обеспечения качества критерии приемки программного обеспечения и действия по формированию отчетности и управлению <и контролю над> работами.

Проверка (верификация) и аттестация (Verification and Validation, V&V)

Проверка и аттестация программного обеспечения – упорядоченный подход в оценке программных продуктов, применяемый на протяжении всего жизненного цикла. Усилия, прилагаемые в рамках работ по проверке и аттестации, направлены на обеспечение качества как неотъемлемой характеристики программного обеспечения и удовлетворение пользовательских требований.
V&V напрямую адресуется вопросам качества программного обеспечения и использует соответствующие техники тестирования для обнаружения тех или иных дефектов. V&V может применяться для промежуточных продуктов, однако, в том объеме, который соответствует промежуточным “шагам” <соответствующих> процессов жизненного цикла.

Процесс V&V определяет в какой степени продукт (результат) тех или иных работ по разработке и сопровождению соответствует требованиям, сформулированным в рамках этих работ, а конечный продукт удовлетворяет заданным целям и пользовательским требованиям.

Верификация – попытка обеспечить правильную разработку продукта (продукт построен правильным образом; обычно, для промежуточных, иногда, для конечного продукта), в том значении, что получаемый в рамках соответствующей деятельности продукт соответствует спецификациям, заданным в процессе предыдущей деятельности.
Аттестация – попытка обеспечить создание правильного продукта (построен правильный продукт; обычно, в контексте конечного продукта), с точки зрения достижения поставленной цели.

Оба процесса – верификация и аттестация – начинаются на ранних стадиях разработки и сопровождения. Они обеспечивают исследованию (экспертизу) ключевых возможностей продукта как в контексте непосредственно предшествующих результатов (промежуточных продуктов), так и с точки зрения удовлетворения соответствующих спецификаций. Целью планирования V&V является обеспечение процессов верификации и аттестации необходимыми ресурсами, четкое назначение ролей и обязанностей. Получаемый план V&V документирует и <детально> описывает различные ресурсы, роли и действия, а также используемые техники и инструменты.
План также касается аспектов управления, коммуникаций (взаимодействия), политик и процедур в отношении действий по верификации и аттестации и их взаимодействия. Кроме того, в нем могут быть отражены вопросы формирования отчетности по дефектам и документирования требований.

Оценка (обзор) и аудит (Review and Audits)

Пять типов оценок и аудитов:

  • Управленческие оценки (management reviews)
  • Технические оценки (technical reviews)
  • Инспекции (inspections)
  • “Прогонки” (walk-throughs)
  • Аудиты (audtis)

Управленческие оценки (Management Reviews)

Назначение управленческих оценок состоит в отслеживании развития <проекта/продукта>, определения статуса планов и расписаний, утверждения требования и распределения ресурсов, или оценки эффективности управленческих подходов, используемых для достижения поставленных целей.

Управленческие оценки поддерживают принятие решений о внесении изменений и выполнении корректирующих действий, необходимых в процессе выполнения программного проекта.

Управленческие оценки определяют адекватность планов, расписаний и требований, в то же время, контролируя их прогресс или несоответствие. Эти оценки могут выполняться в отношении продукта, будучи фиксируемы в форме отчетов аудита, отчетов о состоянии (развитии), V&V-отчетов, а также различных типов планов - управления рисками проекта/проектного управления, конфигурационного управления, безопасности <использования> программного обеспечения (safety), оценки рисков и т.п.

Технические оценки (Technical Reviews)

Назначением технических оценок является исследование программного продукта для определения его пригодности для использования в надлежащих целях. Цель состоит в идентификации расхождений с утвержденными спецификациями и стандартами. Для обеспечения технических оценок необходимо распределение следующих ролей: лицо, принимающее решения (decision-maker); лидер оценки (review leader); регистратор (recorder); а также технический персонал, поддерживающий (непосредственно исполняющий) действия по оценке.

Техническая оценка требует, в обязательном порядке, наличия следующих входных данных:

  • Формулировки целей
  • Конкретного программного продукта (подвергаемого оценке)
  • Заданного плана проекта (плана управления проектом)
  • Списка проблем (вопросов), ассоциированных с продуктом
  • Процедуры технической оценки

Команда <технической оценки> следует заданной процедуре оценки. Квалифицированные (с технической точки зрения) лица представляют обзор продукта (представляя команду разработки). Исследование <продукта> проводится в течение одной и более встреч (между теми, кто представляет продукт и теми, кто провидит оценку). Техническая оценка завершается после того, как выполнены все предписанные действия по исследованию продукта.

Инспекции (Inspections)

Назначение инспекций состоит в обнаружении и идентификации аномалий в программном продукте. Существует два серьезных отличия инспекций от оценок (управленческой и технической):

  1. Лица, занимающие управленческие позиции (менеджеры) в отношении к любым членам команды инспектирования, не должны участвовать в инспекциях.
  2. Инспекция должна вестись под руководством непредвзятого (независимого от проекта и его целей) лидера, обученного техникам инспектирования.

Инспектирование программного обеспечения всегда вовлекает авторов промежуточного или конечного продукта, в отличие от оценок, которые не требуют этого в обязательном порядке. Инспекции (как временные организационные единицы – группы, команды) включают лидера, регистратора, рецензента и нескольких (от 2 до 5) инспекторов. Члены команды инспектирования могут специализироваться в различных областями экспертизы (обладать различными областями компетенции), например, предметной области, методах проектирования, языке и т.п. В заданный момент (промежуток) времени инспекции проводятся в отношении отдельного небольшого фрагмента продукта (в большинстве случаев, фокусируясь на отдельных функциональных или других характеристиках; часто, отталкиваясь от отдельных бизнес-правил, функциональных требований или атрибутов качества, прим. автора). Каждый член команды должен исследовать программный продукт и другие входные данные до проведения инспекционной встречи, применяя, возможно, те или иные аналитические техники в небольшим фрагментам продукта или к продукту, в целом, рассматривая в последнем случае только один его аспект, например, интерфейсы. Любая найденная аномалия должна документироваться, а информация передаваться лидеру инспекции. В процессе инспекции лидер руководит сессией <инспекции> и проверяет, что все <члены команды> подготовились к инспектированию.

Общим инструментом, используемым при инспектировании, является проверочный лист (checklist), содержащий аномалии и вопросы, связанные с аспектами <программного продукта>, вызывающими интерес. Результирующий лист часто классифицирует аномалии и оценивается командой с точки зрения его завершенности и точности. Решение о завершении инспекции принимается в соответствии с одним (любым) из трех критериев:

  1. Принятие <продукта> с отсутствием либо малой необходимостью переработки
  2. Принятие <продукта> с проверкой переработанных фрагментов
  3. Необходимость повторной инспекции

Инспекционные встречи занимают, обычно, несколько часов, в отличие от технической оценки и аудита, предполагающих, в большинстве случаев, больший объем работ и, соответственно, длящиеся дольше.

Прогонки (Walk-throughs)

Назначение прогонки состоит в оценке программного продукта. Прогонка может проводиться с целью ознакомления (обучения) аудитории с программным продуктом.

Главные цели прогонки состоят в:

  • Поиске аномалий
  • Улучшении продукта
  • Обсуждении альтернативных путей реализации
  • Оценке соответствия стандартам и спецификациям

Прогонка похожа на инспекцию, однако, обычно проводится менее формальным образом. В основном, прогонка организуется инженерами для других членов команды с целью получения отклика от них на свою работу, как одного из элементов (техник) обеспечения качества.

Аудиты (Audits)

Назначением аудита программного обеспечения является независимая оценка программных продуктов и процессов на предмет их соответствия применимым регулирующим документам, стандартам, руководящим указаниям, планам и процедурам.

Аудит является формально организованной деятельностью, участники которой выполняют определенные роли, такие как главный аудитор (lead auditor), второй аудитор (another auditor), регистратор (recorder) и инициатор (initiator). В аудите принимает участие представитель оцениваемой организации/организационной единицы. В результате аудита идентифицируются случаи несоответствия и формируется отчет, необходимый команде <разработки> для принятия корректирующих действий.

При том, что существуют различные формальные названия (и классификации) оценок и аудита, важно отметить, что такого рода действия могут проводиться почти для любого продукта на любой стадии процесса разработки или сопровождения.

Практические соображения (Practical Considerations)

Требования к качеству программного обеспечения (Software Quality Requirements)

Факторы влияния (Influence factors)

На планирование, управление и выбор SQM-действий и техник оказывают влияние различные факторы, среди которых:

  • Область применения системы, в которой будет работать программное обеспечение (критичное для безопасности <людей>), критичное для бизнеса и т.п.)
  • Системные и программные требования
  • Какие компоненты используются в системе – коммерческие (внешние) или стандартные (внутренние)
  • Какие стандарты программной инженерии применимы в заданном контексте
  • Каковы методы и программные инструменты, применяемые для разработки и сопровождения, а также для обеспечения качества и совершенствования (продукта и процессов)
  • Бюджет, персонал, организация проектной деятельности, планы и расписания для всех процессов
  • Кто целевые пользователи и каково назначение системы
  • Уровень целостности системы

Информация об этих факторах влияет на то, как именно будут организованы и документированы процессы SQM, какие SQM-работы будут отобраны (стандартизированы в рамках проекта, команды, организационной единицы, организации), какие необходимы ресурсы и каковы ограничения, накладываемые в отношении усилий, направляемых на обеспечение качества.

Гарантоспособность (Dependability)

Гарантоспособость – гарантия <высокой> надежности, защищенности от сбоев.
В случаях, когда сбой системы может привести к крайне тяжелым последствиям (такие системы иногда называют в англоязычных источниках “high confidence” или “high integrity system”, в русском языке к ним иногда применяют название “системы повышенной надежности”, “высокой доступности” и т.п.), общая (совокупная) гарантоспособность системы (как сочетания аппаратной части, программного обеспечения и человека) является главным и приоритетным требованием качества, по отношению к основной функциональности <системы>.

Гарантоспособность (dependability) программного обеспечения включает такие характеристики, как защищенность от сбоев (fault-tolerance), безопасность использования (safety – безопасность в контексте приемлемого риска для здоровья людей, бизнеса, имущества и т.п.), информационная безопасность или защищенность (security – защита информации от несанкционированных операций, включая доступ на чтение, а также гарантия доступности информации авторизованным пользователям, в объеме заданных для них прав), а также удобство и простота использования (usability). Надежность (reliability) также является критерием, который может быть определен в терминах гарантоспособности.

В обсуждении данного вопроса существенную роль играет обширная литература по системам повышенной надежности. При этом, применяется терминология, пришедшая из области традиционных механических и электрических систем (в т.ч. не включающих программное обеспечение) и описывающая концепции опасности, рисков, целостности систем и т.п.

Уровни целостности программного обеспечения (Integrity levels of software)

Уровень целостности программного обеспечения определяется на основании возможных последствий сбоя программного обеспечения и вероятности возникновения такого сбоя. Когда важны различные аспекты безопасности (применения и информационной безопасности), при разработке планов работ в области идентификации возможных очагов аварий могут использоваться техники анализа опасностей (в контексте безопасности использования, safety) и анализа угроз (в информационной безопасности, security). История сбоев аналогичных систем может также помочь в идентификации наиболее полезных техник, направленных на обнаружение сбоев и <всесторонней> оценки качества программного обеспечения.

При более детальном рассмотрении целостности программного обеспечения в контексте конкретных проектов, необходимо уделять специальное внимание (выделяя соответствующие ресурсы и проводя необходимые работы) не только SQM-процессам (особенно, формальным, включая аудит и аттестацию), но и аспектам управления требованиями (в части критериев целостности), управления рисками (включая планирование рисков как на этапе разработки, так и на этапе эксплуатации и сопровождения системы), проектирования (которое, для повышения гарантоспособности, в обязательном порядке предполагает глубокий анализ и проверку планируемых к применению архитектурных и технологических решений, часто, посредством создания пилотных проектов, демонстрационных стендов и т.п.) и тестирования (для обеспечения всестороннего исследования поведенческих характеристик системы, в том числе с эмуляцией рабочего окружения/конфигурации, в которых система должна использоваться в процессе эксплуатации).

Характеристика дефектов (Defect Characterization)

SQM-процессы обеспечивают нахождение дефектов. Описание характеристик дефектов играет основную роль в понимании продукта, облегчает корректировку процесса или продукта, а также информирует менеджеров проектов и заказчиков о статусе (состоянии) процесса или продукта. Существуют множество таксономий (классификации и методов структурирования) дефектов (сбоев). Характеристика дефектов (аномалий) также используется в аудите и оценках, когда лидер оценки часто представляет для обсуждения на соответствующих встречах список аномалий, сформированный членами оценочной команды.

На фоне эволюции (и появления новых) методов проектирования и языков, наравне с новыми программными технологиями, появляются и новые классы дефектов. Это требует огромных усилий по интерпретации (и корректировке) ранее определенных классов дефектов (сбоев). При отслеживании дефектов инженер интересуется не только их количеством, но и типом. Распределение дефектов по типам особенно важно для определения наиболее слабых элементов системы, с точки зрения используемых технологий и архитектурных решений, что приводит к необходимости их углубленного изучения, создания специализированных пилотных проектов, дополнительной проверки концепции (proof of concept, POC – часто применяемый подход при использовании новых технологий), привлечения сторонних экспертов и т.п. Сама по себе информация, без классификации, часто бывает просто бесполезна для обнаружения причин сбоев, так как для определения путей решения проблем необходима их группировка по соответствующим типам. Вопрос состоит в определении такой таксономии дефектов, которая будет значима для инженеров и организации, в целом.

SQM обеспечивает сбор информации на всех стадиях разработки и сопровождения программного обеспечения. Обычно, когда мы говорим “дефект”, мы подразумеваем “сбой”, в соответствии с определением, представленным ниже. Однако, различные культуры и стандарты могут предполагать различное смысловое наполнение этих терминов.

Частичные определения понятий такого рода выглядят следующим образом:

  • Ошибка (error): “Отличие … между корректным результатом и вычисленным результатом <полученным с использованием программного обеспечения>”
  • Недостаток (fault): “Некорректный шаг, процесс или определение данных в компьютерной программе”
  • Сбой (failure): “<Некорректный> результат, полученный в результате недостатка”
  • Человеческая/пользовательская ошибка (mistake): “Действие человека, приведшее к некорректному результату”

При обсуждении данной темы, под дефектом (defect) понимается результат сбоя программного обеспечения. Модели надежности строятся на основании данных о сбоях, собранных в процессе тестирования программного обеспечения или его использования. Такие модели могут быть использованы для предсказания будущих сбоев и помогают в принятии решения о прекращении тестирования.

По результатам SQM-работ, направленных на обнаружение дефектов, выполняются действия по удалению дефектов из исследуемого продукта. Однако, этим дело не ограничивается. Есть и другие возможные действия, позволяющие получить полную отдачу от результатов выполнения соответствующих SQM-работ. Среди них – анализ и подведение итогов (резюмирование) <по обнаруженным несоответствиям/дефектам>, использование техник количественной оценки (получение метрик) для улучшения продукта и процесса, отслеживание дефектов и удаления их из системы (с управленческим и техническим контролем проведения необходимых корректирующих действий). В свою очередь источником информации для улучшения процесса, в частности, является SQM-процесс.

Данные о несоответствиях и дефектах, найденных в процессе реализации соответствующих техник SQM, должны фиксироваться для предотвращения их потери. Для некоторых техник (например, технической оценки, аудита, инспекций), присутствие регистратора (recorder) – обязательно, именно для фиксирования такой информации, наравне с вопросами (в том числе, требующими дополнительного рассмотрения) и принятыми решениями. В тех случаях, когда используются соответствующие средства автоматизации, они могут обеспечить и получение необходимой выходной информации о дефектах (например, сводную статистику по статусам дефектов, ответственным исполнителям и т.п.). Данные о дефектах могут собираться и записываться в форме запросов на изменения (SCR, software change request) и могут, впоследствии, заноситься в определенные типы баз данных (например, в целях отслеживания кросс-проектной/исторической статистики для дальнейшего анализа и совершенствования процессов), как вручную, так и в автоматическом режиме из соответствующих средств анализа (ряд современных средств проектирования и специализированных инструментов позволяют анализировать код и модели с применением соответствующих метрик, значимых для обеспечения качества продуктов и процессов). Отчеты о дефектах направляются управленческому звену организации/организационной единицы или структуры (для принятия соответствующих решений в отношении проекта, продукта, процесса, персонала, бюджета и т.п.).

Техники управления качеством программного обеспечения (Software Quality Management Techniques)

Техники SQM могут быть распределены по нескольким категориям:

  • статические
  • техники, требующие интенсивного использования человеческих ресурсов
  • аналитические
  • динамические

Статические техники (Static techniques)

Статические техники предполагают <детальное> исследование (examination) проектной документации, программного обеспечения и другой информации о программном продукте без его исполнения. Эти техники могут включать другие, рассматриваемые ниже, действия по “коллективной” оценке или “индивидуальному” анализу, вне зависимости от степени использования средств автоматизации.

Техники коллективной оценки (People-intensive techniques)

Форма такого рода техник, включая оценку и аудит, может варьироваться от формальных собраний до неформальных встреч или обсуждения продукта даже без обращения к его коду. Обычно, такого рода техники предполагают очного взаимодействия минимум двух, а в большинстве случаев, и более специалистов. При этом, такие встречи могут требовать предварительной подготовки (практически всегда касающейся определения содержания встреч, то есть перечня выносимых на обсуждение вопросов). К ресурсам, используемым в таких техниках, наравне с исследуемыми артефактами (продуктом, документацией, моделями и т.п.) могут относится различного рода листы проверки (checklists) и результаты аналитических техник (рассматриваются ниже) и работ по тестированию. Данные техники рассматриваются, например, в стандарте 12207 при обсуждении оценки (review) и аудита (audit).

Аналитические техники (Analytical techniques)

Инженеры, занимающиеся программным обеспечением, как правило, применяют аналитические техники. С точки зрения Agile-методик и подходов, individuals and interactions предполагает <непосредственное> общение и постоянное взаимодействие членов команды.

Иногда, несколько инженеров используют одну и ту же технику, но в отношении разных частей продукта. Некоторые техники базируются на специфике применяемых инструментальных средств, другие – предполагают “ручную” работу. Многие могут помогать находить дефекты напрямую, но чаще всего они используются для поддержки других техник. Ряд техник также включает различного рода экспертизу (assessment) как составной элемент общего анализа качества. Примеры таких техник - анализ сложности (complexity analysis), анализ управляющей логики (или анализ контроля потоков управления - control flow analysis) и алгоритмический анализ (algorithmic analysis).

Каждый тип анализа обладает конкретным назначением и не все типы применимы к любому проекту. Примером техники поддержки является анализ сложности, который полезен для определения фрагментов дизайна системы, обладающих слишком высокой сложностью для корректной реализации, тестирования или сопровождения. Результат анализа сложности может также применяться для разработки тестовых сценариев (test cases). Такие техники поиска дефектов, как анализ управляющей логики, может также использоваться и в других случаях. Для программного обеспечения с обширной алгоритмической логикой крайне важно применять алгоритмические техники, особенно в тех случаях, когда некорректный алгоритм (не его реализация, а именно логика, прим. автора) может привести к катастрофическим результатам (например, программное обеспечение авионики, для которой вопросы безопасности использования – safety играют решающую роль).

Другие, более формальные типы аналитических техник известны как формальные методы. Они применяются для проверки требований и дизайна (надо признать, лишь иногда, в реальной сегодняшней практике промышленной разработки программного обеспечения). Проверка корректности применяется к критическим фрагментам программного обеспечения (что, вообще говоря, мало связано с формальными методами – это естественный путь достижения приемлемого качества при минимизации затрат). Чаще всего они используются для верификации особо важных частей критически-важных систем, например, конкректных требований <информационной> безопасности и надежности.

Динамические техники (Dynamic techniques)

В процессе разработки и сопровождения программного обеспечения приходится обращаться к различным видам динамических техник. В основном, это техники тестирования. Однако, в качестве динамических техник могут рассматриваться техники симуляции, проверки моделей и “символического” исполнения (symbolic execution, часто предполагает использование модулей-“пустышек” с точки зрения выполняемой логики, с эмулируемым входом и выходом при рассмотрении общего сценария поведения многомодульных систем; иногда под этим термином понимаются и другие техники, в зависимости, от выбранного первоисточника).

Просмотр (чтение) кода обычно рассматривается как статическая техника, но опытный инженер может исполнять код непосредственно “в процессе” его чтения (например, используя диалоговые средства пошаговой отладки для ознакомления или оценки чужого кода). Таким образом, данная техника вполне может обсуждаться и как динамическая. Такие расхождения в классификации техник ясно показывают, что в зависимости от роли человека в организации, он может принимать и применять одни и те же техники по-разному.

В зависимости от организации <ведения> проекта, определенные работы по тестированию могут выполняться при разработке программных систем в SQA и V&V процессах. В силу того, что план SQM адресуется вопросам тестирования, данная тема включает некоторые комментарии по тестированию.

Тестирование (Testing)

Процессы подтверждения <качества> , описанные в SQA и V&V <планах>, исследуют и оценивают любой выходной продукт (включая промежуточный и конечный), связанный со спецификацией требований к программному обеспечению, на предмет:

  • трассируемости (traceability),
  • согласованности (consistency),
  • полноты/завершенности (completeness),
  • корректности (correctness)
  • и непосредственно выполнения <требований> (performance).

Такое подтверждение также охватывает любые выходные артефакты процессов разработки и сопровождения, сбора, анализа и количественной оценки результатов. SQA-деятельность обеспечивает гарантию того, что соответствующие (необходимые в заданном контексте проекта) типы тестов спланированы, разработаны и реализованы, а V&V – разработку планов тестов, стратегий, сценариев и процедур <тестирования>.
Вопросы тестирования детально обсуждаются в области знаний “Тестирование”. Два типа тестирования следуют задачам, задаваемым SQA и V&V, потому как на них ложится ответственность за качество данных, используемых в проекте:

  • Оценка и тестирование инструментов, используемых в проекте
  • Тестирование на соответствие (или оценка тестов на соответствие) компонент и COTS-продуктов (COTS - commercial of-the-shelf, готовый к использованию продукт) для использования в создаваемом продукте.

Иногда, независимые V&V-организации могут требовать возможности мониторинга процесса тестирования и, в определенных случаях, заверять (или, чаще, документировать/фиксировать) реальное выполнение <тестов> на предмет их проведения в соответствии с заданными процедурами. С другой стороны, может быть сделано обращение к V&V может быть направлено на оценку и самого тестирования: достаточности планов и процедур, соответствия и точности результатов.

Другой тип тестирования, которое проводится под началом V&V-организации – тестирование третьей стороной (third-party testing). Такая третья сторона сама не является разработчиком продукта и ни в какой форме не связана с разработчиком продукта. Более того, третья сторона является независимым источником оценки, обычно аккредитованным на предмет обладания соответствующими полномочиями (например, организацией-разработчиком того или иного стандарта, соответствие которому оценивается независимым экспертом и чьи действия подтверждены создателем стандарта). Назначение такого рода тестирования состоит в проверке продукта на соответствие определенному набору требований (например, по информационной безопасности).

Количественная оценка качества программного обеспечения (Software Quality Measurement)

Модели качества программных продуктов часто включают метрики для определения уровня каждой характеристики качества, присущей продукту.

Если характеристики качества выбраны правильно, такие измерения могут поддержать качество (уровень качества) многими способами. Метрики могут помочь в управлении процессом принятия решений. Метрики могут способствовать поиску проблемных аспектов и узких мест в процессах. Метрики являются инструментом оценки качества своей работы самими инженерами – как в целях, определенных SQA, так и с точки зрения более долгосрочного процесса совершенствования <достигаемого> качества.
С увеличением внутренней сложности, изощренности программного обеспечения, вопросы качества выходят далеко за рамки констатации факта – работает или на работает программное обеспечение. Вопрос ставится – насколько хорошо достигаются количественно оцениваемые цели качества.

Существует еще несколько тем, предметом обсуждения которых являются метрики, напрямую поддерживающие SQM. Они включают содействие в принятии решения о моменте прекращения тестирования. В этом контексте представляются полезными модели надежности и сравнение с образцами (эталонами, принятыми в качестве примеров определенного качества – benchmarks).

Стоимость процесса SQM является одним из <проблемных> вопросов, который всегда всплывает в процессе принятия решения о том, как будет организован проект (проектные работы). Часто, используются общие (generic) модели стоимости, основанные на определении того, когда именно дефект обнаружен и как много усилий необходимо затратить на его исправление по сравнению с ситуацией, если бы дефект был найден на более ранних этапах жизненного цикла. Проектные данные могут помочь в получении более четкой картины стоимости.

Наконец, сама по себе SQM-отчетность обладает полезной информацией не только о самих процессах (подразумевая их текущее состояние, прим. автора), но и о том, как можно улучшить все процессы жизненного цикла.

Хотя, как количественные оценки (в данном случае речь идет о результатах оценок, а не о процессе измерений) характеристик качества могут полезны сами по себе (например, число неудовлетворенных требований и пропорция таких требований), могут <эффективно> применяться математические и графические техники, облегчающие интерпретацию значений метрик. Такие техники вполне естественно классифицируются, например, следующим образом:

  • Основанные на статистических методах (например, анализ Pareto, нормальное распределение и т.п.)
  • Статистические тесты
  • Анализ тенденций
  • Предсказание (например, модели надежности)

Техники, основанные на статистических методах и статистические тесты часто предоставляют “снимок” наиболее проблемных областей исследуемого программного продукта (и, кстати, то же часто верно и в отношении процессов). Результирующие графики и диаграммы визуально помогают лицам, принимающим решения, в определении аспектов, на которых необходимо сфокусировать ресурсы <проекта>. Результаты анализа тенденций могут демонстрировать, что нарушается расписание, например, при тестировании; или что сбои определенных классов становятся все более частыми до тех пор, пока не предпринимаются корректирующие действия в процессе разработки. Техники предсказания помогают в планировании времени тестов и в предсказании сбоев.

Характеристики качества программного обеспечения

Мобильность (Portability) - Набор атрибутов, относящихся к способности программного обеспечения быть перенесенным из одного окружения в другое.
Примечание - Окружающая обстановка может включать организационное, техническое или программное окружение.

Надежность (Reliability) - Набор атрибутов, относящихся к способности программного обеспечения сохранять свой уровень качества функционирования при установленных условиях за установленный период времени.

Примечания:

  1. Износ или старение программного обеспечения не происходит. Ограничения надежности проявляются из-за ошибок в требованиях, проекте и реализации. Отказы из-за этих ошибок зависят от способа использования программного обеспечения и ранее выбранных версий программ.
  2. В определении ИСО 8402 «надежность» - «способность элемента выполнять требуемую функцию». В настоящем стандарте функциональная.возможность является только одной из характеристик качества программного обеспечения. Поэтому определение надежности расширено до «сохранения своего уровня качества функционирования» вместо «выполнения требуемой функции».

Практичность (Usability) - Набор атрибутов, относящихся к объему работ, требуемых для использования и индивидуальной оценки такого использования определенным или предполагаемым кругом пользователей.

Примечания:

  1. «Пользователи» могут интерпретироваться как большинство непосредственных пользователей интерактивного программного обеспечения. Круг пользователей может включать операторов, конечных пользователей и косвенных пользователей, на которых влияет данное программное обеспечение или которые зависят от его использования. Практичность должна рассматриваться во всем разнообразии условий эксплуатации пользователем, которые могут влиять на программное обеспечение, включая подготовку к использованию и оценку результатов.
  2. Практичность, определенная в данном стандарте как конкретный набор атрибутов программной продукции, отличается от определения с точки зрения эргономики, где рассматриваются как составные части практичности другие характеристики, такие как эффективность и неэффективность.

Сопровождаемость (Maintainability) - Набор атрибутов, относящихся к объему работ, требуемых для проведения конкретных изменений (модификаций).
Примечание - Изменение может включать исправления, усовершенствования или адаптацию программного обеспечения к изменениям в окружающей обстановке, требованиях и условиях функционирования.

Функциональные возможности (Functionality) - Набор атрибутов, относящихся к сути набора функций и их конкретным свойствам. Функциями являются те, которые реализуют установленные или предполагаемые потребности.

Примечания:

  1. Данный набор атрибутов характеризует то, что программное обеспечение выполняет для удовлетворения потребностей, тогда как другие наборы, главным образом, характеризуют, когда и как это выполняется.
  2. В данной характеристике для установленных и предполагаемых потребностей учитывают примечание к определению качества.

Эффективность (Efficiences) - Набор атрибутов, относящихся к соотношению между уровнем качества функционирования программного обеспечения и объемом используемых ресурсов при установленных условиях.
Примечание - Ресурсы могут включать другие программные продукты, технические средства, материалы (например бумага для печати, гибкие диски) и услуги эксплуатирующего, сопровождающего или обслуживающего персонала.

Качество программного продукта

Качество программного продукта (software quality) - весь объем признаков и характеристик программной продукции, который относится к ее способности удовлетворять установленным или предполагаемым потребностям.

Важность каждой характеристики качества меняется в зависимости от класса программного обеспечения. Например, надежность наиболее важна для программного обеспечения боевых критичных систем, эффективность наиболее важна для программного обеспечения критичных по времени систем реального времени, а практичность наиболее важна для программного обеспечения диалога конечного пользователя.

Важность каждой характеристики качества также меняется в зависимости от принятых точек зрения.

Представление пользователя

Пользователи в основном проявляют заинтересованность в применении программного обеспечения, его производительности и результатах использования. Пользователи оценивают программное обеспечение без изучения его внутренних аспектов или того, как программное обеспечение создавалось.

Пользователя могут интересовать следующие вопросы:

  • Имеются ли требуемые функции в программном обеспечении?
  • Насколько надежно программное обеспечение?
  • Насколько эффективно программное обеспечение?
  • Является ли программное обеспечение удобным для использования?
  • Насколько просто переносится программное обеспечение и другую среду?

Представление разработчика

Процесс создания требует от пользователя и разработчика использования одних и тех же характеристик качества программного обеспечения, так как они применяются для установления требований и приемки. Когда разрабатывается программное обеспечение для продажи, в требованиях качества должны быть отражены предполагаемые потребности.

Так как разработчики отвечают за создание программного обеспечения, которое должно удовлетворять требованиям качества, они заинтересованы в качестве промежуточной продукции так же, как и в качестве конечной продукции. Для того, чтобы оценить качество промежуточной продукции на каждой фазе цикла разработки, разработчики должны использовать различные метрики для одних и тех же характеристик, потому что одни и те же метрики неприменимы для всех фаз жизненного цикла.

Например, пользователь понимает эффективность в терминах времени реакции, тогда как разработчик использует в проектной спецификации термины длины маршрута и времени ожидания и доступа. Метрики, применяемые для внешнего интерфейса продукции, заменимы метриками, применяемыми для ее структуры.

Представление руководителя

Руководитель может быть более заинтересован в общем качестве, чем в конкретной характеристике качества, и по этой причине будет нуждаться в определении важности значений, отражающих коммерческие требования для индивидуальных характеристик.
Руководителю может также потребоваться сопоставление повышения качества с критериями управляемости, такими как плановая задержка или перерасход стоимости, потому что он желает оптимизировать качество в пределах ограниченной стоимости, трудовых ресурсов и установленного времени.

Оценка качества программного продукта

Следующий рисунок отражает основные этапы, требуемые для оценивания качества программного обеспечения.

Рисунок «Модель процесса оценивания»

Процесс оценивания состоит из трех стадий: установление (определение) требований к качеству, подготовка к оцениванию и процедура оценивания. Данный процесс может применяться в любой подходящей фазе жизненного цикла для каждого компонента программной продукции.
Целью начальной стадии является установление требований в терминах характеристик качества. Требования выражают потребности внешнего окружения для рассматриваемой программной продукции и должны быть определены до начала разработки.
Целью второй стадии является подготовка основы для оценивания.
Результатом третьей является заключение о качестве программной продукции. Затем обобщенное качество сравнивается с другими факторами, такими, как время и стоимость. Окончательное решение руководства принимается на основе критерия управляемости. Результатом является решение руководства по приемке или отбраковке, или по выпуску или не выпуску программной продукции.

Модель качества процесса

Процесс разработки должен быть построен таким образом, чтобы обеспечить возможность измерения качества продукта. Проведенные исследования показывают: чем выше качество процесса разработки, тем выше качество разработанного в этом процессе качества программного обеспечения. Качество на каждой стадии проекта возрастает, во-первых, как прямое следствие зрелости процесса, во-вторых, вследствие использования промежуточного продукта более высокого качества, произведенного на предыдущей стадии. При этом подчеркивается, что значение второй причины обеспечивающей нарастание качества в процессе жизненного цикла для зрелых процессов оказывается гораздо более важным. Всё это можно представить в виде некоторой модели.

Рисунок «Концептуальная модель качества процесса разработки»

Отсюда вытекают следующие следствия:
Первое: качество накапливается в продукте при сложном производстве кумулятивным образом, причем, вклад в качество, осуществленный на ранних стадиях, имеет более сильное влияние на конечный продукт, чем на более поздних стадиях. Это подтверждается всей практикой программирования, например, известно, что недостатки проектирования систем не могут быть компенсированы высоким качеством кодирования.
Таким образом, для управления качеством построения сложной системы необходимо производить выбор производителей на основе измерения степени зрелости и прозрачности используемых процессов разработки. Измерение качества процесса разработки подрядчиков является важной составной частью общего управления качеством, более важным, чем измерение качества результирующего продукта, производимого в ходе приемо-сдаточных испытаний.
Второе: тестирование и измерение качества должно происходить на всех стадиях жизненного цикла. Извлечение данных о качестве, которое было заложено на ранних стадиях, может быть очень дорогим, при отсутствии полных результатов

Руководство по применению характеристик качества

1 Применяемость

2 Представления о качестве программного

2.1 Представление пользователя
2.2 Представление разработчика
2.3 Представление руководителя

3.1 Установление требований к качеству

3.2 Подготовка к оцениванию

3.2.1 Выбор метрик (показателей) качества
3.2.2 Определение уровней ранжирования
3.2.3 Определение критерия оценки

3.3 Процедура оценивания

3.3.1 Измерение
3.3.2 Ранжирование
3.3.3 Оценка

1 Введение

2 Определение комплексных показателей качества

2.1 Функциональные возможности (Functionality)

2.1.1 Пригодность (Suitability)
2.1.2 Правильность (Accuracy)
2.1.3 Способность к взаимодействию (Interoperability)
2.1.4 Согласованность (Compliance)
2.1.5 Защищенность (Security)

2.2 Надежность (Reliability)

2.2.1 Стабильность (Maturity)
2.2.2 Устойчивость к ошибке (Fault tolerance)
2.2.3 Восстанавливаемость (Recoverability)

2.3 Практичность (Usability)

2.3.1 Понятность (Understandability)
2.3.2 Обучаемость (Learnability)
2.3.3 Простота использования (Operability)

2.4 Эффективность (Efficiences)

2.4.1 Характер изменения во времени (Time behavior)
2.4.2 Характер изменения ресурсов (Resource behavior)

2.5 Сопровождаемость (Maintainability)

2.5.1 Анализируемость (Analysability)
2.5.2 Изменяемость (Changeability)
2.5.3 Устойчивость (Stability)
2.5.4 Тестируемость (Testability)

2.6 Мобильность (Portability)

2.6.1 Адаптируемость (Adaptability)
2.6.2 Простота внедрения (Installability)
2.6.3 Соответствие (Conformance)
2.6.4 Взаимозаменяемость (Replaceabilily)

Примечания:

  1. Взаимозаменяемость используется вместо совместимости для того, чтобы избежать возможной путаницы со способностью к взаимодействию.
  2. Взаимозаменяемость с конкретным программным средством не предполагает, что данное средство заменимо рассматриваемым программным средством.
  3. Взаимозаменяемость может включать атрибуты простоты внедрения и адаптируемости. Понятие было введено в качестве отдельной подхарактеристики из-за его важности.

Качество проекта

Качество включает все деятельности проекта, которые обеспечивают соответствие проекта целям, ради которых он был предпринят. Поэтому управление качеством применимо как к проекту, так и продукту проекта.
Качество критически важно, поскольку озвучивает и фиксирует цели, делает их задокументированными (формализованными).
Следовательно, качество – критический компонент управления структурой проекта.
Для качества все является измеримым.

Управление качеством проекта

Если управление качеством сосредоточено в одном подразделении организации, оно не станет всеобщим. Менеджер проекта может делегировать аспекты управления качеством. Менеджер проекта сохраняет за собой окончательную ответственность.

Принципы качества (ISO 9000)

  1. Ориентация на потребителя
  2. Ответственность руководства
  3. Вовлечение людей
  4. Процессный подход
  5. Системный подход к менеджменту
  6. Постоянное улучшение
  7. Принятие решений, основанное на фактах
  8. Взаимовыгодные отношения с поставщиками

Рисунок «Различия в понимании управления качеством в ISO 9000 и PMBoK»

Управление качеством проекта (PMI): подпроцессы

  • Планирование качества
  • Обеспечение качества
  • Контроль качества

Планирование качества

Одна из стадий – определение, какие существующие стандарты относятся к данному проекту, и как им соответствовать. Результатом планирования качества является список всех стандартов качества, которые применимы к проекту. Прилагается список рекомендаций, как будут удовлетворены требования этих стандартов

Процесс планирования качества: входы

  • Политика качества. Документ, содержащий принципы того, как организация определяет качество, но не содержащий путей достижения качества.
  • Содержание проекта (scope). Определяет, что должно быть сделано в результате проекта и, следовательно, за чем надо следить в процессах управления качеством. Данный документ является выходом процесса планирования содержания проекта.
  • Описание продукта. Содержит технические детали и другие значимые аспекты, которые могут повлиять на планирование качества.
  • Стандарты и предписания. Список стандартов и предписаний, относимых к данной области или проекту.
  • Другие документы.

Процесс планирования качества: инструменты и технологии

  • Анализ выгода/стоимость. Имеет отношение к обсуждению стоимости качества. Цель данного инструмента сравнить реальную стоимость отсутствия качества с выгодами гарантии качества.
  • Сравнение. Используется для генерации идей для улучшения через сравнение с другими проектами. Наиболее эффективен, когда сравнение происходит с лучшими, а не просто с другими внутренними проектами.
  • Диаграммы. Используются, чтобы показать, как различные элементы взаимодействуют. Существует много типов диаграмм, включая диаграмму причин и следствий.
  • Постановка экспериментов. Используйте сценарии «что, если», для определения, какие переменные являются наиболее влиятельными на конечный результат проекта.
  • Стоимость качества.

Процесс планирования качества: выходы, результаты

  • План управления качеством. Описывает, как команда управления проектом будет проводить политику качества. Должен затрагивать следующие области:
  • Контроль проектирования.
  • Контроль документирования.
  • Контроль закупки материалов.
  • Инспекции.
  • Контроль испытаний (тестирования).
  • Контроль над контрольно-измерительным оборудованием.
  • Корректирующие действия.
  • Записи по качеству.
  • Аудиты (план и процедура)
  • Документированные процедуры и рабочие инструкции. Описывают детально процессы и то, как измерить качество процесса, подпроцесса и отдельных совершаемых действий.
  • Контрольные листы. Списки вопросов для проверки, что ничего не упущено.

Обеспечение качества

Процесс обеспечения качества – это принятие плановых систематических мер, обеспечивающих выполнение всех предусмотренных процессов, необходимых для того, чтобы проект (продукт, услуга) удовлетворял требованиям по качеству.
Обеспечение качества является основным подпроцессом управления качеством. Эта деятельность проводится в течение всего проекта.

Процесс обеспечения качества: входы

  • Рабочие инструкции. Еще один выход процесса планирования качества.
  • Результаты контрольных измерений качества. Выход процесса контроля качества.

Процесс обеспечения качества: инструменты и техники

Инструменты и техники планирования качества. Они включают анализ прибыли и затрат, сравнения, диаграммы, постановку экспериментов и оценку стоимости качества.

Аудиты качества

Структурированные «осмотры», которые подтверждают «выученные уроки». Типы аудита качества бывают:

  • внутренними / внешними,
  • системными / продукта / процессов / организации,
  • плановые / регулярные,
  • специальные и усложненные.

Процесс обеспечения качества: выходы

Улучшение качества. Включает совершение действий по увеличению эффективности и производительности проекта, чтобы обеспечить добавочные выгоды владельцам проекта.

Контроль качества

Мониторинг определенных результатов с целью определения их соответствия принятым стандартами качества и определение путей устранения причин, вызывающих неудовлетворительное исполнение.

Процесс контроля качества: входы

  • Результаты работы. Результаты появляются всегда в процессе сотрудничества, исполнения и перепланирования проекта.
  • План управления качеством. Выход процесса планирования качества.
  • Рабочие инструкции. Выход процесса планирования качества.
  • Проверочные списки.

Контроль качества: инструменты и техники

  • Инспекции. Включают такие деятельности, как измерения, испытания, тестирования, чтобы удостовериться, что результат удовлетворяет требованиям.
  • Контрольные диаграммы. Run-Диаграммы статистически определяют верхний и нижний пределы, отраженные по обе стороны от средних значений процесса.
  • Диаграммы: Ишикавы, Парето.
  • Статистическая выборка.
  • Анализ трендов.

«Цель использования инструментов – зафиксировать результаты или изменения, отобразить их графически, и далее выявить и скорректировать проблемы подходящим способом».

Процесс контроля качества: выходы

  • Улучшение качества. Выход из процесса обеспечения качества.
  • Принятие решений. Решения принимаются в зависимости от того, принят или отклонен проинспектированный объект.
  • Корректирующие действия. Действие, проводимое, чтобы привести в соответствие несоответствующий объект.
  • Заполненные проверочные списки.
  • Настройка процесса.

Использованная литература

  • http://sorlik.blogspot.com, Сергей Орлик, 2004-2005
  • Генельт А.Е. Учебно-методическое пособие по дисциплине «Управление качеством разработки ПО» 2007, Санкт-Петербург

Основной проблемой в управлении качеством является тот факт, что определение качества слишком неясное и неоднозначное. Это вызвано тем, что обычно термин качество понимается неправильно. Такая путаница может объясняться несколькими причинами...

Попробуем ответить на вопросы:

  • Популярный взгляд на качество
  • Выводы

Что такое качество программного обеспечения?

В нашем первом выпуске мы попытаемся дать определение терминами качество и качество программного обеспечения.

Основной проблемой в управлении качеством является тот факт, что определение качества слишком неясное и неоднозначное. Это вызвано тем, что обычно термин качество понимается неправильно. Такая путаница может объясняться несколькими причинами.

Первая , качество это не отдельно взятая идея или понятие, скорее многомерная и разноплановая концепция.

Вторая , для любого понятия и определения существует несколько уровней абстракции, например, когда люди говорят о качестве, одна часть понимает под этим слишком широкий и размытый смысл, в то время как другая может ссылаться на конкретное определение и значение.

Третья , термин качество является неотъемлемой частью нашего повседневного общения, однако общепринятое и профессиональное использование может быть весьма сильно отличаться.

Популярный взгляд на качество

Общепринятое мнение о качестве таково, что это нечто нематериальное и "неосязаемое" - о нем могут вестись споры и дискуссии, его можно критиковать и восхвалять, но взвесить и измерить качество невозможно. Такие выражения как «хорошее качество» и «плохое качество» служат наглядным примером, как люди говорят о чем-нибудь неопределенном для них, то, что они не могут четко характеризовать и определить. Такое мнение отражает тот факт, что люди воспринимают и интерпретируют качество по-разному. Подразумевается, что качество не может быть контролируемым и управляемым, и тем более оно не может быть количественно измеримым. Такой взгляд ярко контрастирует с профессиональным подходом к управлению качеством - качество это четко определенная величина, которую можно измерить и проконтролировать, она поддается управлению и улучшению.

Другое популярное мнение, что качество неразрывно связанно с роскошью, первым сортом и тонким вкусом. Дорогой, досконально продуманный и более технически сложный продукт рассматривается как гарантия высочайшего качества, нежели более дешевые аналоги. Следуя такой логике Кадиллак - это качественная машина, а Шевроле нет, невзирая на надежность и количество поломок; или же HI-FI система это качественная система, а обыкновенное радио - нет. Согласно такому подходу, качество ограниченно определенным классом дорогостоящих продуктов с замысловатой функциональностью и классовым продуктам. Проще говоря, едва ли недорогой продукт будет классифицирован как качественный продукт.

Профессиональный подход к качеству

К сожалению, такое неопределенное и расплывчатое представление не может быть использовано для улучшения процессов разработки программного обеспечения. Следовательно, необходимо дать четкое и удобное для работы определение. В 1979 году Crosby определил качество как «соответствие требованиям» ("conformance to requirements"), а Juran и Gryna в 1970 определили качество как «пригодность к использованию» ("fitness for use"). Эти два определения тесно связанны и прекрасно согласуются, как мы увидим позже.

«Соответствие требованиям» предполагает, что требования должны быть настолько четко определены, что они не могут быть поняты и интерпретированы некорректно. Позже, на этапе разработки, производятся регулярные измерения разработанного продукта, для определения соответствия требованиям. Любые несоответствия должны рассматриваются как дефекты – отсутствие качества. Например, спецификация на определенную модель радиостанции может требовать возможности принимать определенную частоту радиоволн на расстоянии более чем 30 километров от источника вещания. В случае, если радиостанция неспособна выполнить данное требование, она не удовлетворяет требования к качеству и должна быть признана негодной и некачественной. Исходя из тех же принципов, если Кадиллак соответствует всем требованиям к машинам Кадиллак, значит это качественная машина. Если Шевроле соответствует всем требованиям к машинам Шевроле, следовательно, это тоже качественная машина. Эти две машины могут быть совершенно разными по стилю, скорости и экономичности, но если обе измерять по стандартным для них наборам, тогда они обе будут являться качественными машинами.

Определение «Пригодность к использованию» принимает во внимание требования и ожидания конечных пользователей продукта, которые ожидают, что продукт или предоставляемый сервис будет удобным для их нужд. Однако разные пользователи могут использовать продукт по-разному, это означает, что продукт должен обладать максимально разнообразными вариантами использования. Согласно определению Juran каждый вариант использования это характеристика качества и все они могут быть классифицированы по категориям в качестве параметров пригодности к использованию.

Эти два определения качества («соответствие требованиям» и «пригодность к использованию») по существу одинаковы. Разница в том, что вариант «пригодность к использованию» указывает на важную роль требований и ожиданий заказчика. Роль заказчика, связанная с качеством, никогда не может быть переоценена. С точки зрения заказчика, качество продукта, который он приобрел, состоит из множества различных факторов, таких как: цена, производительность, надежность и т.д.

Только ваш заказчик может рассказать вам о качестве, потому что это единственное что он действительно покупает. Заказчик не покупает продукт. Он покупает ваши гарантии того, что все его ожидания к продукту будут реализованы.

Guaspari ”I Know It When I See It”

Выводы

Давайте еще раз попытаемся дать определение качеству с точки зрения заказчика или пользователя продукта.

Качество - это пригодность к использованию. Делает ли данный продукт то, в чем я нуждаюсь, облегчает ли он мою работу, могу ли я его использовать так, как мне удобно.

А теперь посмотрим на точку зрения разработчика.

Качество - это соответствие специфицированным и собранным требованиям делает ли данный продукт все то, что указано в требованиях.

Проблема в том, что специфицированные и собранные требования это обычно лишь часть всех реальных требований и ожиданий заказчика. Где же правильное определение качества?

Качество это соответствие реальным требованиям, явным и неявным. Очень часто неявные требования настолько очевидны для заказчика или пользователя, что он даже не предполагает, что они неизвестны разработчикам. Для примера вернемся к нашим автомобилям - заказчик может детально описать требования к дизайну, параметрам двигателя, оформлению салона, цвету кузова, но нигде не указать, что шины должны быть круглыми, а лобовое стекло - прозрачным.

Заказчик будет удовлетворен только тогда, когда купленный продукт будет полностью удовлетворять его реальным и жизненным требованиям, как специфицированным, так и нет.



Рекомендуем почитать

Наверх