Неинвертирующий усилитель на операционном усилителе. Активный режим работы

Для Windows 25.05.2019
Для Windows

Как уже отмечалось, операционные усилители в настоящее время используются в самых различных электронных устройствах. Их широко применяют как в аналоговых, так и в импульсных устройствах электроники. В то же время существуют и часто используются типовые линейные схемы на основе операционных усилителей. Такие типовые схемы должен знать каждый инженер, использующий электронные устройства. Именно такие схемы рассматриваются ниже.

Очень полезно овладеть достаточно простыми приемами ручного анализа электронных схем на основе операционных усилителей. Это значительно облегчит понимание принципа действия конкретных устройств электроники и будет способствовать получению достоверных результатов машинного анализа. Указанные приемы анализа основаны на ряде допущений, принимаемых в предположении, что используемые операционные усилители достаточно близки к идеальным. Практика расчетов показывает, что результаты, получаемые на основе допущений, имеют вполне приемлемую погрешность.

Примем следующие допущения:

● Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (R вх → ∞, i + = i −).

● Выходное сопротивление операционного усилителя равно нулю, т. е. операционный усилитель со стороны выхода является идеальным источником (R вых = 0).

● Коэффициент усиления по напряжению (коэффициент усиления дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).

● В режиме насыщения на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.

● Синфазный сигнал не действует на операционный усилитель.

● смещения нуля равно нулю.

Рассмотрим схему инвертирующего усилителя (рис. 2.25), из которой видно, что в ней действует параллельная обратная связь по напряжению.

Так как i − = 0, то в соответствии с первым законом Кирхгофа i 1 = i 2 .

Предположим, что операционный усилитель работает в режиме усиления, тогда uдиф = 0. В соответствии с этим на основании второго закона Кирхгофа получим i 1 = uвх/ R 1 i 2 = − uвых/ R 2

Учитывая, что i 1 = i 2 , получаем uвых= −uвх· R 2 / R 1

Таким образом, инвертирующий усилитель характеризуется коэффициентом усиления по напряжению, равным Кu= −R2/R1

Например, если R1= 1кОм,R2=10 кОм, тогда uвых= − 10 ·uвх

Для уменьшения влияния входных токов операционного усилителя на выходное в цепь неинвертирующего входа включают резистор с сопротивлением R 3 (рис. 2.26), которое определяется из выражения R3=R1//R2=R1·R2/ (R1+R2)

Входное сопротивление инвертирующего усилителя на низких частотах значительно ниже собственного входного сопротивления операционного усилителя. Это полностью соответствует сделанному раннее выводу о том, что параллельная отрицательная обратная связь, имеющая место в схеме, уменьшает входное сопротивление. Учитывая, что uдиф~ 0, легко заметить, что иходное сопротивление усилителя на низких частотах приблизительно равно R 1 .

Выходное сопротивление инвертирующего усилителя на низких частотах R вых.ос существенно меньше выходного сопротивления на низких частотах R вых собственно операционного усилителя. Это является следствием действия отрицательной обратной связи по напряжению.

Можно показать, что R вых.ос = R вых / (1 + К ·R1/R2) где К - коэффициент усиления по напряжению операционного усилителя.

Было показано, что при использовании операционного усилителя в различных схемах включения, усиление каскада на одном операционном усилителе (ОУ), зависит только от глубины обратной связи. Поэтому в формулах для определения усиления конкретной схемы не используется коэффициент усиления самого, если так можно выразиться, «голого» ОУ. То есть как раз тот огромный коэффициент, который указывается в справочниках.

Тогда вполне уместно задать вопрос: «Если от этого огромного «справочного» коэффициента не зависит конечный результат (усиление), тогда в чем же разница между ОУ с усилением в несколько тысяч раз, и с таким же ОУ, но с усилением в несколько сотен тысяч и даже миллионов?».

Ответ достаточно простой. И в том и в другом случае результат будет одинаковый, усиление каскада будет определяться элементами ООС, но во втором случае (ОУ с большим усилением) схема работает более стабильно, более точно, быстродействие таких схем намного выше. Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные.

Как уже было сказано свое название «операционные» рассматриваемые усилители получили в то далекое время, когда в основном применялись для выполнения математических операций в аналоговых вычислительных машинах (АВМ). Это были операции сложения, вычитания, умножения, деления, возведения в квадрат и еще множества других функций.

Эти допотопные ОУ выполнялись на электронных лампах, позднее на дискретных транзисторах и прочих радиодеталях. Естественно, габариты даже транзисторных ОУ были достаточно велики, чтобы использовать их в любительских конструкциях.

И только после того, как благодаря достижениям интегральной электроники, ОУ стали размером с обычный маломощный транзистор, то использование этих деталей в бытовой аппаратуре и любительских схемах стало оправданным.

Кстати, современные ОУ, даже достаточно высокого качества, по цене ненамного выше двух - трех транзисторов. Это утверждение касается ОУ общего применения. Прецизионные усилители могут стоить несколько дороже.

По поводу схем на ОУ сразу стоит сделать замечание, что все они рассчитаны на питание от двухполярного источника питания. Такой режим является для ОУ наиболее «привычным», позволяющим усиливать не только сигналы переменного напряжения, например синусоиду, но также и сигналы постоянного тока или попросту напряжение.

И все-таки достаточно часто питание схем на ОУ производится от однополярного источника. Правда, в этом случае не удается усилить постоянное напряжение. Но часто случается, что в этом просто нет необходимости. О схемах с однополярным питанием будет рассказано далее, а пока продолжим о схемах включения ОУ с двухполярным питанием.

Напряжение питания большинства ОУ чаще всего находится в пределах ±15В. Но это вовсе не значит, что это напряжение нельзя сделать несколько ниже (выше не рекомендуется). Многие ОУ весьма стабильно работают начиная от ±3В, а некоторые модели даже ±1,5В. Такая возможность указывается в технической документации (DataSheet).

Повторитель напряжения

Является самым простым по схемотехнике устройством на ОУ, его схема показана на рисунке 1.

Рисунок 1. Схема повторителя напряжения на операционном усилителе

Нетрудно видеть, что для создания такой схемы не понадобилось ни одной детали, кроме собственно ОУ. Правда, на рисунке не показано подключение питания, но такое начертание схем встречается сплошь и рядом. Единственное, что хотелось бы заметить, - между выводами питания ОУ (например для ОУ КР140УД708 это выводы 7 и 4) и общим проводом следует подключить емкостью 0,01…0,5мкФ.

Их назначение в том, чтобы сделать работу ОУ более стабильной, избавиться от самовозбуждения схемы по цепям питания. Конденсаторы должны быть подключены по возможности ближе к выводам питания микросхемы. Иногда один конденсатор подключается из расчета на группу из нескольких микросхем. Такие же конденсаторы можно увидеть и на платах с цифровыми микросхемами, назначение их то же самое.

Коэффициент усиления повторителя равен единице, или, сказать по- другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными.

Входное сопротивление повторителя на ОУ рассчитывается как произведение входного сопротивления ОУ на его же коэффициент усиления. Например, для упомянутого УД708 входное сопротивление составляет приблизительно 0,5МОм, коэффициент усиления как минимум 30 000, а может быть и более. Если эти числа перемножить, то входное сопротивление получается, 15ГОм, что сравнимо с сопротивлением не очень качественной изоляции, например бумаги. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем.

Чтобы описания не вызывали сомнения, ниже будут приведены рисунки, показывающие работу всех описываемых схем в программе - симуляторе Multisim. Конечно все эти схемы можно собрать на макетных платах, но ничуть не худшие результаты можно получить и на экране монитора.

Собственно, тут даже несколько лучше: совсем не надо лезть куда-то на полку, чтобы поменять резистор или микросхему. Здесь все, даже измерительные приборы, находится в программе, и «достается» при помощи мышки или клавиатуры.

На рисунке 2 показана схема повторителя, выполненная в программе Multisim.

Рисунок 2.

Исследование схемы провести достаточно просто. На вход повторителя от функционального генератора подан синусоидальный сигнал частотой 1КГц и амплитудой 2В, как показано на рисунке 3.

Рисунок 3.

Сигнал на входе и выходе повторителя наблюдается осциллографом: входной сигнал отображается лучом синего цвета, выходной луч - красный.

Рисунок 4.

А почему, спросит внимательный читатель, выходной (красный) сигнал в два раза больше входного синего? Все очень просто: при одинаковой чувствительности каналов осциллографа обе синусоиды с одной амплитудой и фазой сливаются в одну, прячутся друг за друга.

Для того чтобы разглядеть из сразу обе, пришлось снизить чувствительность одного из каналов, в данном случае входного. В результате синяя синусоида стала на экране ровно вдвое меньше, и перестала прятаться за красную. Хотя для достижения подобного результата можно просто сместить лучи органами управления осциллографа, оставив чувствительность каналов одинаковой.

Обе синусоиды расположены симметрично относительно оси времени, что говорит о том, что постоянная составляющая сигнала равна нулю. А что будет, если к входному сигналу добавить небольшую постоянную составляющую? Виртуальный генератор позволяет сдвинуть синусоиду по оси Y. Попробуем сдвинуть ее вверх на 500мВ.

Рисунок 5.

Что из этого получилось показано на рисунке 6.

Рисунок 6.

Заметно, что входная и выходная синусоиды поднялись вверх на полвольта, при этом ничуть не изменившись. Это говорит о том, что повторитель в точности передал и постоянную составляющую сигнала. Но чаще всего от этой постоянной составляющей стараются избавиться, сделать ее равной нулю, что позволяет избежать применения таких элементов схемы, как межкаскадные разделительные конденсаторы.

Повторитель это, конечно, хорошо и даже красиво: не понадобилось ни одной дополнительной детали (хотя бывают схемы повторителей и с незначительными «добавками»), но ведь усиления никакого не получили. Какой же это тогда усилитель? Чтобы получился усилитель достаточно добавить всего несколько деталей, как это сделать будет рассказано дальше.

Инвертирующий усилитель

Для того, чтобы из ОУ получился инвертирующий усилитель достаточно добавить всего два резистора. Что из этого получилось, показано на рисунке 7.

Рисунок 7. Схема инвертирующего усилителя

Коэффициент усиления такого усилителя рассчитывается по формуле K=-(R2/R1). Знак «минус» говорит не о том, что усилитель получился плохой, а всего лишь, что выходной сигнал будет противоположен по фазе входному. Недаром усилитель и называется инвертирующим. Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. Там тоже выходной сигнал на коллекторе транзистора находится в противофазе с входным сигналом, поданным на базу.

Вот тут как раз и стоит вспомнить, сколько усилий придется приложить, чтобы на коллекторе транзистора получить чистую неискаженную синусоиду. Требуется соответствующим образом подобрать смещение на базе транзистора. Это, как правило, достаточно сложно, зависит от множества параметров.

При использовании ОУ достаточно просто подсчитать сопротивление резисторов согласно формулы и получить заданный коэффициент усиления. Получается, что настройка схемы на ОУ намного проще, чем настройка нескольких транзисторных каскадов. Поэтому не надо бояться, что схема не заработает, не получится.

Рисунок 8.

Здесь все так же, как и на предыдущих рисунках: синим цветом показан входной сигнал, красным он же после усилителя. Все соответствует формуле K=-(R2/R1). Выходной сигнал находится в противофазе с входным (что соответствует знаку «минус» в формуле), и амплитуда выходного сигнала ровно в два раза больше входного. Что также справедливо при соотношении (R2/R1)=(20/10)=2. Чтобы сделать коэффициент усиления, например, 10 достаточно увеличить сопротивление резистора R2 до 100КОм.

На самом деле схема инвертирующего усилителя может быть несколько сложнее, такой вариант показан на рисунке 9.

Рисунок 9.

Здесь появилась новая деталь - резистор R3 (скорее она просто пропала из предыдущей схемы). Его назначение в компенсации входных токов реального ОУ с тем, чтобы уменьшить температурную нестабильность постоянной составляющей на выходе. Величину этого резистора выбирают по формуле R3=R1*R2/(R1+R2).

Современные высокостабильные ОУ допускают подключение неинвертирующего входа на общий провод напрямую без резистора R3. Хотя присутствие этого элемента ничего плохого и не сделает, но при теперешних масштабах производства, когда на всем экономят, этот резистор предпочитают не ставить.

Формулы для расчета инвертирующего усилителя показаны на рисунке 10. Почему на рисунке? Да просто для наглядности, в строке текста они смотрелись бы не так привычно и понятно, были бы не столь заметны.

Рисунок 10.

Про коэффициент усиления было сказано ранее. Здесь заслуживают внимания разве что входные и выходные сопротивления неинвертирующего усилителя. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке 11.

Буквой K” обозначен справочный коэффициент ОУ. Вот, пожалуйста, посчитайте чему будет равно выходное сопротивление. Получится достаточно маленькая цифра, даже для среднего ОУ типа УД7 при его K” равным не более 30 000. В данном случае это хорошо: ведь чем ниже выходное сопротивление каскада (это касается не только каскадов на ОУ), тем более мощную нагрузку, в разумных, конечно, пределах, к этому каскаду можно подключить.

Следует сделать отдельное замечание по поводу единицы в знаменателе формулы для расчета выходного сопротивления. Предположим, что соотношение R2/R1 будет, например, 100. Именно такое отношение получится в случае коэффициента усиления инвертирующего усилителя 100. Получается, что если эту единицу отбросить, то особо ничего не изменится. На самом деле это не совсем так.

Предположим, что сопротивление резистора R2 равно нулю, как в случае с повторителем. Тогда без единицы весь знаменатель превращается в нуль, и таким же нулевым будет выходное сопротивление. А если потом этот нуль окажется где-то в знаменателе формулы, как на него прикажете делить? Поэтому от этой вроде бы незначительной единицы избавиться просто невозможно.

В одной статье, даже достаточно большой, всего не написать. Поэтому придется все, что не уместилось рассказать в следующей статье. Там будет описание неинвертирующего усилителя, дифференциального усилителя, усилителя с однополярным питанием. Также будет приведено описание простых схем для проверки ОУ.

Неинвертирующий усилитель (НУ) – это усилитель, обладающий стабильным коэффициентом усиления при нулевой разности фаз между входными и выходными сигналами.

В НУ (рис. 5.3) имеет место последовательная ООС по напряжению. При идеальном ОУ (K д = К oc сф = ¥, R ВХ = ¥ и R ВЫХ = 0) R ВЫХ. F = 0 (связь отрицательная и по напряжению), R ВХ. F = ¥ (последовательная ООС).

, (5.6)

и согласно рис. 5.4,

Подставляя (5.7) в (5.6), получим

. (5.8)

Коэффициент усиления НУ не зависит от сопротивления источника сигнала R С , так как входное сопротивление НУ равно ¥, и ток через R С не протекает, то падение напряжения на этом сопротивлении отсутствует и . При R 2 = 0, R 1 = ¥ K e F = 1. Значит, выходное напряжение полностью повторяет входное (только на более высоком уровне мощности). Отсюда и название – повторитель напряжения.

Единичный коэффициент передачи, бесконечно большое входное сопротивление и нулевое выходное делает повторитель идеальным буферным каскадом (трансформатором полного сопротивления).

Метод резистивной балансировки этой схемы зависит от обстоятельств. Если R С = 0, то симметрирующий резистор R СМ включается последовательно с неинвертирующим входом (рис. 5.5).

При этом Du ВЫХ описывается выражением (5.5). Ненулевое, но известное и фиксированное внутреннее сопротивление R C можно было бы сбалансировать только резисторами ОС, при условии, что R 1 R 2 /(R 1 +R 2)=R C . Однако при этом будет изменяться и коэффициент усиления схемы (5.8). Проще резисторы R 1 и R 2 выбрать исходя из требуемого коэффициента усиления, а токовую балансировку схемы обеспечить R CM , включённым последовательно с инвертирующим входом (рис. 5.6). Для этой схемы

. (5.9)

Если имеет неопределённое и нестабильное значение, то лучше применить ОУ с входным каскадом (дифференциальным) на полевых транзисторах.



Для уменьшения потенциальной составляющей выходной статической погрешности Du ВЫХ нужно либо использовать соответствующие выводы ОУ, либо при их отсутствии, осуществлять балансировку схемы по входу (рис. 5.7). Настройка нуля в этой схеме немного снижает его коэффициент усиления.

Конец работы -

Эта тема принадлежит разделу:

Аналоговые электронные устройства

Аналоговые электронные устройства. Часть II. Конспект лекций для студентов специальности “Радиотехника” всех форм обучения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Назначение, параметры
Компараторы являются простейшими аналого-цифровыми преобразователями (АЦП), т.е. устройствами, преобразующими непрерывный сигнал в дискретный.Они предназначены для сравнения входного сиг

Особенности применения полупроводниковых компараторов
Компараторы, получившие наибольшее распространение, можно разделить на четыре группы: общего применения (К521СА2, К521СА5) , прецизионные (К521СА3, К597СА3), быстродействующие (К597СА1, К597СА2) и

Специализированные компараторы на операционных усилителях
При сравнении низкочастотных сигналов с высокой точностью (десятки микровольт) при минимальной потребляемой мощности использование компараторов на базе ОУ часто оказывается более предпочтительное,

Следовательно, .

Так как U вых = U д · К и U д =U вых / К, при К → ∞ и U д ≈ 0, можно написать, что
. Решая уравнение, получим выражение для коэффициента усиления с замкнутой обратной связьюK ос
,(15.3)

которое справедливо при условии К » K ос.

В схеме повторителя напряжения на ОУ ( рис.15.4) U вых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ - U д, то можно увидеть, что напряжение на выходе усилителя U вых = U д · К.

Рис.15.4. Повторитель напряжения на ОУ

Выходное напряжение ОУ U вых = U вх + U д. Так как U вых =U д ·К, получим, что U д =U вых /К. Следовательно,
. Так как К велико (К → ∞), тоU вых /К стремится к нулю, и в результате получаем равенство U вх =U вых.

Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.

Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным U ос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.

Рис. 15.5. Усилитель с дифференциальным входом

Если задать U 1 равным нулю и подать входной сигнал по входу U 2 , то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R 2 и R΄ ос. Если оба напряжения U 1 и U 2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R 1 и R ос станет равным U ос, где
.

Вследствие того, что усилитель имеет очень высокое входное сопротивление,

имеем

.

Решая полученное уравнение относительно U вых, имеем:

Подставляя выражение для U ос, получим:

Если положить R 1 = R 2 и R oc = R´ oc (ситуация, которая наиболее часто встречается), получим
. Полярность выходного напряжения определяется большим из напряженийU 1 и U 2 .

Очевидно, что если U 2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U 1 как инвертирующий усилитель.

Входное сопротивление схемы ОУ можно определить следующим образом. К дифференциальному входному сопротивлению ОУ r д приложено напряжение. U д. Благодаря наличию обратной связи это напряжение имеет малую величину.

U д = U вых /K U = U 1 /(1+K U b), (15.6)

где b = R 1 /(R 1 +R 2) - коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U 1 /r д (1+K U b). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1+K U b. Согласно рис. 12, для результирующего входного сопротивления схемы имеем:

R вх = r д (1+K U b)||r вх

Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине ; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.

Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.

Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:

(15.7)

При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R 1 , R 2 . Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

В общем случае выходное сопротивление может иметь достаточно высокое значение (в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление

Для усилителя, охваченного обратной связью, эта формула принимает вид:

(15.8)

При этом величина U д не остается постоянной, а изменяется на величину

dU д = - dU n = -bdU вых

Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

dU вых =K U dU д - r вых dI вых

Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dU д, получим искомый результат:

(15.9)

Если, например, b =0,1, что соответствует усилению входного сигнала в 10 раз, а K U =10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя f п, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |K U | с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более f т становится равным величине выходного сопротивления усилителя без обратной связи.

Динамические параметры ОУ, характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания f п, частота единичного усиления f т и время установления t у. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DU вых <1В). Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания f р. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |U вых.уст - U вых(t) | = d, где U вых.уст - установившееся значение выходного напряжения, d - допустимая ошибка.

Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала U вых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания f р соответствует значению U вых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.

Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения U п; допустимый диапазон питающих напряжений; ток, потребляемый от источника I пот; максимальный выходной ток I вых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений

Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.

Рис.15.7. АЧХ операционного усилителя

На рис.15.7. показана типичная частотная характеристика операционного усилителя.

Рис. 15.8. Упрощенная эквивалентная схема ОУ

При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = R н* С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе U вых окажется меньше, чем КU д.

Выражение для коэффициента усиления К на любойчастоте

имеет вид
, где К – коэффициент усиления без обратной связи на низких частотах;f – рабочая частота; f 1 – граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.

Если, как это обычно бывает, R н » R вых, то
.

Обычно амплитудно-частотная характеристика дается в общем виде. как:

. (15.10)

где f - интересующая нас частота, в то время как f 1 – фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):

, где К(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f 1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи
, получим

. (15.11)

Это выражение можно переписать в виде
, гдеf 1 oc = f 1 (1+Аβ); K 1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f 1oc – граничная частота при наличии обратной связи.

Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1+Кβ)>1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f 1oc > f 1 для усилителя с коэффициентом усиления равным 40 дБ.

Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf 1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

Тогда получим произведение усиления на полосу пропускания:

, где К – коэффициент усиления без обратной связи на низких частотах.

Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.

Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов

У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала r д составляет несколько мегаом, а входное сопротивление для синфазного сигнала r вх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.

Неинвертирующий усилитель является базовой схемой с ОУ. Выглядит он до боли просто:

В этой схеме сигнал подается на НЕинвертирующий вход ОУ.

Итак, для того, чтобы понять принцип работы этой схемы, запомните самое важное правило, которое используется для анализа схем с ОУ: выходное напряжение ОУ стремится к тому, чтобы разность напряжения между его входами была равна нулю .

Принцип работы

Итак, давайте инвертирующий вход обозначим, буквой A:


Следуя главному правилу ОУ, получаем, что напряжение на инвертирующем входе равняется входному напряжению: U A =U вх. U A снимается с , который образован резисторами R1 и R2. Следовательно:

U A = U вых R1/(R1+R2)

Так как U A =U вх , получаем что U вх = U вых R1/(R1+R2) .

Коэффициент усиления по напряжению высчитывается как K U = U вых /U вх .

Подставляем сюда ранее полученные значения и получаем, что K U = 1+R2/R1 .

Проверка работы в Proteus

Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:


Давайте рассчитаем коэффициент усиления K U. K U = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:


Входной сигнал — это желтая осциллограмма, а выходной сигнал — это розовая осциллограмма:


Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим .

Но, как говорится, есть одно «НО». На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.

АЧХ и ФЧХ неинвертирующего усилителя на LM358

На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:


По оси Y у нас коэффициент усиления, а по оси Х — частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f 1 . То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.

В проектировании усилителей важен такой параметр, как граничная частота среза f гр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте K гр:

K гр = K Uo / √2 либо = K Uo х 0,707 , где K Uo — это коэффициент усиления на частоте в 0 Герц (постоянный ток).

Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем K гр .

K гр = 10 х 0,707 = 7,07

Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем f гр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.


Также очень просто определить граничную частоту, если построить график в . Граничная частота будет находиться на уровне K Uo -3dB . То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.


Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но как поведет себя усилитель на высоких частотах (ВЧ)?

Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:


Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.

Для наглядности АЧХ и ФЧХ можно разместить на одном графике:


Также в схемах с неинвертирующим усилителем часто вводят компенсирующий резистор R K .


Он определяется по формуле:

и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.

При участии Jeer



Рекомендуем почитать

Наверх