Системные и локальные шины. Доступ AGP к системной памяти

На iOS - iPhone, iPod touch 05.04.2019
На iOS - iPhone, iPod touch

Инструкция

Если такой пробел надо вставить в веб-страницу, то следует использовать специальный символ («мнемокод») языка HTML. В исходном коде страницы он будет выглядеть как такой набор символов: . Например:Это&nbsр;образец&nbsр;неразрывного&nbsр;текста.Этот фрагмент можно поместить в любое место текста страницы, и везде браузер будет помещать эти слова в одну строку, смещая переход на следующую строку либо на позицию перед этим блоком, либо после него.

Это свойство неразрывного пробела часто используют при веб-страниц не только для «склеивания» слов в , но и в качестве «распорки» в таблицах и других блочных элементах. Например, если в таблице не задана ширина, то в любую ее можно вставить (один или больше), и браузер не «сплющит» эту колонку до нулевой ширины, даже если все колонки будут пусты. Кроме того, с помощью таких пробелов можно без использования языка CSS (Cascading Style Sheets - «Каскадные таблицы стилей») изменять расстояние , вставляя их по два или больше.

Если неразрывный пробел надо поместить в текстовый документ, хранимый в файле с форматом какого-либо из офисных приложений (например, doc или docx), то можно воспользоваться соответствующей опцией текстового редактора Microsoft Word. Например, в версии Word 2007 для этого надо перейти на вкладку «Вставка» и в группе команд «Символы» открыть выпадающий список на кнопке «Символ». Выберите в нем самый нижний пункт - «Другие символы».

Перейдите на вкладку «Специальные знаки» открывшегося окошка и найдите в перечне строку, в которой написано «Неразрывный пробел». Затем нажмите кнопку «Вставить» и закройте окошко. Всю эту процедуру можно заменить нажатием сочетания назначенных ей горячих клавиш CTRL + SHIFT + Пробел.

Источники:

  • Неразрывный пробел снова перестал быть растяжимым

Автоформатирование в Microsoft Word не всегда соответствует тому, что вы пытаетесь написать, и время от времени программа редактирует формат текста некорректно. Например, существуют случаи, когда некоторые слова и фразы недопустимо разрывать автоматическим переносом части фразы на другую строку. Среди них – различные даты, инициалы, единицы измерения и многое другое. В этом случае победить автоформатирование, которое переносит часть важного сочетания слов или знаков на другую строчку, можно, установив неразрывный , который не дает разрывать строки и предотвращает ненужные переносы. Как поставить в своем тексте неразрывный пробел?

Инструкция

Откройте в основном меню Microsoft word раздел «Вставка» и выберите вставку символов. В появившемся окне нажмите «Другие » и на вкладке специальных знаков найдите в списке «Неразрывный пробел».

По умолчанию неразрывные являются скрытыми символами, поэтому для того, чтобы увидеть их, найдите на панели меню значок отображения скрытых символов. Также их можно отобразить, открыв раздел «Абзац» и щелкнув на пункт «Отобразить все знаки».

Вы увидите обычные пробелы в виде точек, а только что установленные неразрывные пробелы - в виде маленьких кружочков. Чтобы , снова нажмите на пиктограмму видимости скрытых символов, и все скрытые символы пропадут. В любой момент их видимость можно включать и отключать.

Видео по теме

Текстовые редакторы позволяют пользователям экономить время, набирая слова полностью и не разделяя их при переносе на следующую строку. Читать слово целиком, конечно, удобнее, однако иногда целесообразно использовать перенос нескольких слогов.

Инструкция

Если при наборе текста вы придерживаетесь определенного формата, например, выравнивания по левому краю, вы неизбежно столкнетесь с проблемой переноса слова на , ведь вам важно не оставлять пустого места, не доходящего до . Если это единичный случай, вы можете поставить вручную. Просто нажмите клавишу « » перед концом строчки, при этом соблюдая слоговой принцип деления слов. Помните, что нельзя переносить на другую строку только одну букву слова или же сочетание согласной и мягкого знака. Идеальным для слогоделения является сочетание согласной и гласной буквы, образующих общий слог. Переносить можно несколько слогов сразу, разделяя слово на половину.

Если при наборе текста вам важна исключительно скорость, а проверку вы предпочитаете отдавать компьютеру, воспользуйтесь сервисом «Автоматический перенос» текстового документа MC Word. Задать такую функцию в MC Word 2003 можно с помощью меню «Сервис», находящегося на главной панели инструментов. Нажав на кнопку «Сервис» левой кнопкой мыши, наведите курсор на раздел «Язык». В открывшемся контекстном меню выберите функцию «Расстановка ». Поставьте галочку в графе «Автоматическая » и подтвердите свои действия, нажав кнопку «ОК». Вы можете дополнить настройки автоматических переносов, выбрав ширину зоны переноса слов и максимальное число последовательных переносов. Ввделите необходимые числовые значения в соответствующие поля и нажмите «ОК». Сохраненные изменения будут применяться ко всем последующим документам MC Word.

Чтобы поставить автоматические в MC Word 2007 и выше, нажмите на кнопку «Макет страницы», которая находится на главной панели инструментов открытого документа MC Word. Наведите курсор на графу «Параметры страницы» и поставьте галочку рядом с полем «Расстановка переносов». Выберите вариант «Авто». Сохраните изменения, нажав «ОК».

Настроить автоматический перенос слов можно и в текстовом документе «Блокнот». Для этого в открытом окне программы нажмите на кнопку «Формат» на главной панели инструментов. Поставьте галочку в графе «Перенос по словам.

Вставка а в html необходима для корректного отображения текста на веб-странице в соответствии с задуманными автором эффектами. В зависимости от сложности задачи можно использовать как обычные неразрывные пробелы, так и управлять количеством пробелов с помощью css-свойств.

Вам понадобится

  • - html-редактор

Инструкция

Если вам нужно вставить один обычный пробел между словами (получается при нажатии клавиши Space), не нужно выполнять никаких специальных действий - любое количество идущих подряд обычных пробелов в html-коде будет выглядеть на веб-странице как один.

Для сохранения точного количества пробелов между словами замените каждый обычный пробел символами " " (без кавычек) - это код неразрывного пробела в html. Например: «Между каждым словом два пробела ». Неразрывный пробел вставляется между двумя словами и для того, чтобы они не разделялись при переносе на другую строку. Для автоматической расстановки неразрывных пробелов в тексте удобно использовать известный инструмент Артемия Лебедева - «Типограф» (http://www.artlebedev.ru/tools/typograf/).

Еще один способ вставить задуманное количество пробелов в html между словами: заключите нужную часть текста в теги и. Тогда слова будут отображаться моноширинным шрифтом, но все обычные пробелы между словами при отображении на веб-странице сохранятся. Обратите внимание, у тега есть особенности: внутри него не допускается использование некоторых других тегов: и, .

Более сложный метод управления обработкой пробелов: используйте css-свойство white-space со значением pre или pre-wrap (без переноса строк внутри элемента и с переносом строк соответственно). Укажите это свойство в описании стиля страницы или отдельно взятого элемента html-вёрстки. При использовании этого метода шрифт на моноширинный, а количество пробелов между словами сохраняется. Пример: Как вставить пробел в html-код?Или: .free_spaces {white-space: pre-wrap;}… Как вставить пробел в html-код?

Gigabyte предложит наборы из платы Z390 Aorus Xtreme WaterForce и разогнанного Core i9-9900K. Компания Gigabyte в ближайшее время выведет на рынок комплекты из материнской платы Z390 Aorus Xtreme WaterForce и разогнанного до 5,1 ГГц процессора Intel Core i9-9900K (8 ядер/16 потоков, 3,6/5 ГГц). Эти наборы в первую очередь

Samsung Galaxy A90 впервые протестировали в бенчмарке Geekbench. 10 апреля компания Samsung проведет свою очередную презентацию, где наверняка представит ряд смартфонов среднего ценового диапазона. Среди них должен быть Samsung Galaxy A90, который буквально только что был протестирован в

На сайте Slahsleaks, который часто выкладывает эксклюзивные фотографии новых мобильных устройств и аксессуаров для них, опубликовали живое фото фронтальной панели смартфона Nokia 8.1 Plus. Смартфон получил очень узкие рамки по периметру, чуть более широкую рамку под дисплеем,

Международная группа ученых продемонстрировала новый способ преобразования света, излучаемого обычным лазером, в так называемый квантовый свет. Особенностью такого света являются идентичные квантовые свойства его фотонов, которые выдвигаются на первый план по

В большинстве современных устройств, начиная от простейших электронных часов, используются специальные компоненты, называемые тактовыми генераторами, которые при подаче на них соответствующего сигнала начинают выдавать колебания со строго заданной частотой. Более

Ученые-астрономы обнаружили 83 новые сверхмассивные черные дыры, возраст которых почти равен возрасту доступной для изучения части Вселенной. Идентификация этих черных дыр и определение их параметров проводилось путем анализа их яркости и спектра излучения. Они

Google анонсировал новую функцию для отправки писем в Gmail. Теперь их отправку можно будет запланировать на удобное время. Для планирования письма нужно нажать на стрелочку рядом с кнопкой «Отправить» и выбрать нужное время и дату отправки, пишет Хроника.инфо со ссылкой на

Специалисты iFixit изучили конструкцию планшетного компьютера iPad mini нового поколения, который компания Apple официально представила в прошлом месяце. Устройство, напомним, оборудовано дисплеем Retina размером 7,9 дюйма по диагонали. Разрешение составляет 2048 × 1536 точек,

Телевизоры и дисплеи Vizio получат поддержку AirPlay. Американский производитель бытовой электроники Vizio ранее объявил о поддержке AirPlay 2 и приложения Дом. Сейчас стало известно, что специалисты компании работают над приложением SmartCast, совместимым с AirPlay, пишет Хроника.инфо

Компания BIOSTAR, ведущий мировой производитель материнских плат, видеокарт и устройств хранения данных, представила материнскую плату A68MHEдля массового пользователя. BIOSTAR A68MHE оснащена чипсетом AMD A68H, который поддерживает процессоры AMD серии FM2+ Athlon™/A- и оперативную память


С повышением тактовых частот и разрядности процессоров настала насущная проблема в повышении скорости передачи данных в шинах (какой смысл использовать камень с тактовой частотой, скажем, 66 МГц, если шина работает на частоте лишь 8,33 МГц). В одних случаях, например клавиатуре или мышке, высокая скорость ни к чему. Но инженеры фирм производителей плат расширения готовы были изготовлять устройства со скоростью, которую шины не могли предоставить.

В
ыход из создавшегося положения был найден следующий: часть операций обмена данными, требующих высоких скоростей, должна осуществляться не через стандартные разъемы шины ввода/вывода, а через дополнительные высокоскоростные интерфейсы - шину процессора, примерно так же, как подключается внешний кэш.

Дело в том, что эти самые высокоскоростные интерфейсы подключаются к шине процессора. Из этого следует, что подключаемые платы будут иметь доступ непосредственно к процессору через его шину. Такая конструкция получила название локальной шины (LB, Local Bus). Локальная шина не заменяла собой прежние стандарты, а дополняла их. Рисунок демонстрирует различие между обычной архитектурой и архитектурой с локальной шиной. Между прочим, первые шины ISA как раз и были локальными, но когда их тактовая частота превысила 8 МГц, произошло разделение.

Основными шинами в компьютере по-прежнему оставались ISA или EISA, но к ним добавлялись один или несколько слотов локальной шины. Первоначально эти слоты использовались почти исключительно для установки видеоадаптеров, при этом к 1992 году было разработано несколько несовместимых между собой вариантов локальных шин, исключительные права на которые принадлежали фирмам-изготовителям.

Такое разнообразие сдерживала распространение локальных шин, поэтому Ассоциация по стандартам в области видеоэлектроники VESA (Video Electronic Standard Association), представляющая более 100 компаний, предложила в августе 1992 года свою спецификацию локальной шины VESA Local Bus (VL-bus или VLB) , которая не изменяла, а дополняла существующие стандарты. Шина VLB разработана с целью увеличить пропускную способность между основным процессором и видеокартой, для этого просто к основным шинам добавлялось несколько новых быстродействующих локальных слотов. Основная функция, для которой была предназначена новая шина, – обмен данными с видеоадаптером.

Представляла собой 32-битную шину, которая использовала третий и четвёртый разъём в виде продолжения обычного слота ISA. Шина работала на номинальной частоте 33 МГц и обеспечивала существенный прирост производительности по сравнению с ISA. В дальнейшем шину VLB стали использовать производители контроллеров жестких дисков и других устройств, требующих высокоскоростной передачи данных. Выпускались даже 100-мегабитные Ethernet контроллеры с шиной VLB. Широкое распространение шины VESA обусловила ее относительная дешевизна и совместимость “сверху вниз” со своей предшественницей – шиной ISA. Разъем VLB есть разъем ISA с “продолжением”.

Основные характеристики VL-bus таковы:


  • поддержка процессоров серий 80386 и 80486. Шина разработана для использования в однопроцессорных системах, при этом в спецификации предусмотрена возможность поддержки х86-несовместимых процессоров с помощью моста (bridge chip);

  • максимальное число bus master - 3 (не включая контроллер шины). При необходимости возможна установка нескольких подсистем для поддержки большего числа master. Несмотря на то что изначально шина была разработана для поддержки видеоконтроллеров, возможна поддержка и других устройств (например, контроллеров жесткого диска);

  • допускается работа шины на частоте до 66 МГц, однако электрические характеристики разъема VL-bus ограничивают ее до 50 МГц (это ограничение, естественно, не относится к интегрированным в материнскую плату устройствам);

  • двунаправленная (bi-directional) 32-разрядная шина данных поддерживает и 16-разрядный обмен. В спецификацию заложена возможность 64-разрядного обмена;

  • поддержка DMA обеспечивается только для bus masters. Шина не поддерживает специальных "инициаторов" DMA;

  • максимальная теоретическая пропускная способность шины 160 Мб/с (при частоте шины 50 МГц), стандартная - 107 Мб/с при частоте 33 МГц;

  • поддержка пакетного режима обмена (для материнских плат 80486, поддерживающих этот режим). Пять линий используется для идентификации типа и скорости процессора, сигнал Burst Last (BLAST#) используется для активизации этого режима. Для систем, не поддерживающих этот режим, линия устанавливается в 0;

  • использование 58-контактного разъема МСА. Максимально поддерживается 3 слота (на некоторых 50-мегагерцовых шинах возможна установка только 1 слота). Слот VL-bus устанавливается в линию за слотами ISA/EISA/MCA, поэтому VL-платам доступны все линии этих шин;

  • поддержка, как интегрированного кэш- процессора, так и кэша на материнской плате. Напряжение питания - 5 В. Устройства с уровнем выходного сигнала 3,3 В поддерживаются при условии, что они могут работать с уровнем входного сигнала 5 В.
Конструктивно шина VLB представляет собой дополнительный разъем (116-контактный) при разъеме ISA. Электрически шина выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации.

Эта 32/32-разрядная шина разрабатывалась для машин с 386, 486 и Pentium процессорами. Наиболее широкое распространение шина VLB получила на материнских платах 486. На них VESA – это линии адреса, данных и управления процессора, выведенные на разъем. Это обстоятельство накладывает значительные ограничения на VLB- карты расширения – временные и нагрузочные параметры должны быть четко выдержаны. Как указано в инструкциях на многие материнские платы, число VLB- карт при тактовой частоте 25 МГц не должно превышать трех, при 33 МГц – двух, при 40 и 50 МГц – одной. В случае нарушения этих требований система будет работать нестабильно, поскольку превышена нагрузочная способность процессора.

Для оценки скорости шины можно привести следующий расчет: если карта расширения работает на частоте 50 МГц, тогда пропускная способность шины будет равна 32*50*10 6 = 1,6*10 9 Мбит/с = 200 Мбайт/с, что довольно много. Однако не следует забывать, что такая скорость почти никогда не может быть востребована, поскольку данные из видеопамяти не могут читаться с такой скоростью. Кроме того, во время обращения к VLB- карте процессор не может больше заниматься ничем, сколько бы медленным не было устройство на этой карте (например, последовательный порт).

Шина VL-bus явилась огромным шагом вперед по сравнению с ISA как по производительности, так и по дизайну. Одним из преимуществ шины являлось то, что она позволяла создавать карты, работающие с существующими чипсетами и не содержащие большого количества схем дорогостоящей управляющей логики. В результате VL-карты получались дешевле аналогичных EISA-карт. Однако и эта шина не была лишена недостатков, главными из которых являлись следующие:


  • ориентация на 486-й процессор. VL-bus жестко привязана к шине процессора 80486, которая отличается от шин Pentium и Pentium Pro /Pentium II.

  • ограниченное быстродействие. Как уже было сказано, реальная частота VL-bus - не больше 50 МГц. Причем при использовании процессоров с множителем частоты шина использует основную частоту (так, для 486DX2-66 частота шины будет 33 МГц);

  • схемотехнические ограничения. К качеству сигналов, передаваемых по шине процессора, предъявляются очень жесткие требования, соблюсти которые можно только при определенных параметрах нагрузки каждой линии шины. По мнению Intel, установка недостаточно аккуратно разработанных VL-плат может привести не только к потерям данных и нарушениям синхронизации, но и к повреждению системы;

  • ограничение количества плат. Это ограничение вытекает также из необходимости соблюдения ограничений на нагрузку каждой линии.
Несмотря на существующие недостатки, VL-bus была несомненным лидером на рынке, так как позволяла устранить узкое место сразу в двух подсистемах - видеоподсистеме и подсистеме обмена с жестким диском. Однако лидерство было недолгим, поскольку корпорация Intel разработала свою новинку - шину PCI. По мнению компании, VL-bus базировалась на технологиях 11-летней давности и являлась всего лишь "заплаткой", компромиссом между производителями. Справедливости ради надо сказать, что PCI действительно была избавлена от большинства недостатков, присущих VL-bus.

Популярность шины VLB продлилась до 1994 года. Главная особенность шины, которая позволяла достичь высокой производительности, послужила и причиной ухода VLB с рынка. Шина являлась прямым расширением шины 486 процессора/памяти, работающим на той же скорости, что и процессор (отсюда и имя - локальная шина - local bus). Прямое соединение означает, что подключение слишком большого числа устройств приводило к опасности создания помех самому процессору, особенно если сигналы проходили через слот. VESA рекомендовала использовать не более двух слотов на тактовых частотах 33 МГц или трёх слотов, если они использовали специальный буфер. На более высоких тактовых частотах следовало подключать не более двух устройств, а на частоте 50 МГц оба устройства VLB должны быть встроены в материнскую плату.

Поскольку шина VLB работает синхронно с процессором, увеличение частоты процессора приводило к появлению проблем с периферией VLB. Чем быстрее должна была работать периферия, тем она дороже стоила по причине трудностей, связанных с производством высокоскоростных компонент. Лишь немногие устройства VLB поддерживали скорость выше 40 МГц.


ВВЕДЕНИЕ

Шина – это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий, вытравленных на печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Компоненты компьютерной системы физически расположены на одной или нескольких печатных платах, причем их число и функции зависят от конфигурации системы, её изготовителя, а часто и от поколения микропроцессора.

Основными характеристиками шин являются разрядность передаваемых данных и скорость передачи данных.

Наибольший интерес вызывают два типа шин – системный и локальный.

Системная шина предназначена для обеспечения передачи данных между периферийными устройствами и центральным процессором, а также оперативной памятью.

Локальной шиной, как правило, называется шина, непосредственно подключенная к контактам микропроцессора, т.е. шина процессора.

1. СИСТЕМНЫЕ ШИНЫ

Основной обязанностью системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине осуществляется также адресация устройств и происходит обмен специальными служебными сигналами. Таким образом, упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных по их назначению (данные, адреса, управление). Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый арбитром шины.

Системная шина IBM PC и IBM PC/XT была предназначена для одновременной передачи только 8 бит информации, так как используемый в компьютерах микропроцессор 18088 имел 8 линий данных. Кроме того, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа в память (DMA, Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные разъемы. Заметим, что системная шина и микропроцессор синхронизировались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи данных могла достигать более 4,5 Мбайта/с.

1.1 Шина ISA

Шина ISA (Industry Standart Architecture) – шина, применявшаяся с первых моделей PC и ставшая промышленным стандартом. В PC моделей XT применялась шина с разрядностью данных 8 бит и адреса – 20 бит. В моделях AT шина была расширена до 16 бит данных и 24 бита адреса, какой она остается до сих пор. Конструктивно шина выполнена в виде двух слотов. Подмножество ISA-8 использует только первый 62-контактный слот, в ISA-16 применяется дополнительный 36-контактный слот. Тактовая частота – 8 МГц. Скорость передачи данных до 16 Мбайт\с. Обладает хорошей помехоустойчивостью.

Шина обеспечивает своим абонентам возможность отображения 8- или 16-битных регистров на пространство ввода-вывода и памяти. Диапазон доступных адресов памяти ограничен областью UMA (U nified M emory A rchitecture - унифицированная архитектура памяти), но для шины ISA-16 специальными опциями BIOS Setup может быть разрешено и пространство в области между15-м и 16-м мегабайтом памяти (правда при этом компьютер не сможет использовать более 15 Мбайт ОЗУ). Диапазон адресов ввода-вывода сверху ограничен количеством используемых для дешифрации бит адреса, нижняя граница ограничена областью адресов 0-FFh, зарезервированных под устройства систнемной платы. В PC была принята 10-битная адресация ввода-вывода, при которой линии адреса A устройствами игнорировались. Таким образом, диапазон адресов устройств шины ISA ограничивается областью 100h-3FFh, то есть всего 758 адресов 8-битных регистров. На некоторые области этих адресов претендуют и системные устройства. Впоследствии стали применять и 12-битную адресацию (диапазон 100h-FFFh), но при ее использовании всегда необходимо учитывать возможность присутствия на шине и старых 10-битных адаптеров, которые "отзовутся" на адрес с подходящими ему битами A во всей допустимой области четыре раза.

В распоряжении абонентов шины ISA-8 может быть до 6 линий запросов прерываний IRQ (Interrupt Request), для ISA-16 их число достигает 11. Заметим, что при конфигурировании BIOS Setup часть из этих запросов могут отобрать устройства системной платы или шина PCI.

Абоненты шины могут использовать до трех 8-битных каналов DMA (D irect M emory A ccess - прямой доступ к памяти), а на 16-битной шине могут быть доступными еще три 16-битных канала. Сигналы 16-битных каналов могут использоваться и для получения прямого управления шиной устройством Bus-Master. При этом канал DMA используется для обеспечения арбитража управления шиной, а адаптер Bus-Master формирует все адресные и управляющие сигналы шины, не забывая "отдать" управление шиной процессору не более, чем через 15 микросекунд (чтобы не нарушить регенерацию памяти).

Все перечисленные ресурсы системной шины должны быть бесконфликтно распределены между абонентами. Бесконфликтность подразумевает следующее:

    Каждый абонент должен при операциях чтения управлять шиной данных (выдавать информацию) только по своим адресам или по обращению к используемому им каналу DMA. Области адресов для чтения не должны пересекаться. "Подсматривать" не ему адресованные операции записи не возбраняется.

    Назначенную линию запроса прерывания IRQx абонент должен держать на низком уровне в пассивном состоянии и переводить в высокий уровень для активации запроса. Неиспользуемыми линиями запросов абонент управлять не имеет права, они должны быть электрически откоммутированы или подключаться к буферу, находящемуся в третьем состоянии. Одной линией запроса может пользоваться только одно устройство. Такая нелепость (с точки зрения схемотехники ТТЛ) была допущена в первых PC и в жертву совместимости старательно тиражируется уже много лет.

Задача распределения ресурсов в старых адаптерах решалась с помощью джамперов, затем появились программно-конфигурируемые устройства, которые практически вытеснены автоматически конфигурируемыми платами PnP.

Для шин ISA ряд фирм выпускает карты-прототипы (Protitype Card), представляющие собой печатные платы полного или уменьшенного формата с крепежной скобой. На платах установлены обязательные интерфейсные цепи - буфер данных, дешифратор адреса и некоторые другие. Остальное поле платы представляет собой "слепыш", на котором разработчик может разместить макетный вариант своего устройства. Эти платы удобны для макетной проверки нового изделия, а также для монтажа единичных экземпляров устройства, когда разработка и изготовление печатной платы нерентабельно.

С появлением 32-битных процессоров делались попытки расширения разрядности шины, но все 32-битные шины ISA не являются стандартизованными, кроме шины EISA.

1.2 Шина EISA

С появлением 32-разрядных микропроцессоров 80386 (версия DX) фирмами Compaq, NEC и рядом других фирм, была создана 32-разрядная шина EISA, полностью совместимая с ISA.

Шина EISA (Extended ISA) - жестко стандартизованное расширение ISA до 32 бит. Конструктивное исполнение обеспечивает совместимость с ней и обычных ISA-адаптеров. Узкие дополнительные контакты расширения расположены между ламелями разъема ISA и ниже таким образом, что адаптер ISA, не имеющий дополнительных ключевых прорезей в краевом разъеме, не достает до них. Установка карт EISA в слоты ISA недопустима, поскольку ее специфические цепи попадут на контакты цепей ISA, в результате чего системная плата окажется неработоспособной.

Расширение шины касается не только увеличения разрядности данных и адреса: для режимов EISA используются дополнительные управляющие сигналы, обеспечивающие возможность применения более эффективных режимов передачи. В обычном (не пакетном) режиме передачи за каждую пару тактов может быть передано до 32 бит данных (один такт на фазу адреса, один - на фазу данных). Максимальную производительность шины реализует пакетный режим (Burst Mode) – скоростной режим пересылки пакетов данных без указания текущего адреса внутри пакета. Внутри пакета очередные данные могут передаваться в каждом такте шины, длина пакета может достигать 1024 байт. Шина предусматривает и более производительные режимы DMA, при которых скорость обмена может достигать 33 Мбайт/с. Линии запросов прерываний допускают разделяемое использование, причем сохраняется и совместимость с ISA-картами: каждая линия запроса может программироваться на чувствительность как по перепаду, как в ISA, так и по низкому уровню. Шина допускает потребление каждой картой расширения мощности до 45 Вт, но полную мощность, как правило не потребляет ни один адаптер.

Каждый слот (максимум - 8) и системная плата могут иметь селективное разрешение адресации ввода-вывода и отдельные линии запроса и подтверждения управления шиной. Арбитраж запросов выполняет устройство ISP (Integrated System Peripheral). Обязательной принадлежностью системной платы с шиной EISA является энергонезависимая память конфигурации NVRAM, в которой хранится информация об устройствах EISA для каждого слота. Формат записей стандартизован, для модификации конфигурационной информации применяется специальная утилита ECU (EISA Configuration Utility). Архитектура позволяет при использовании программно-конфигурируемых адаптеров автоматически разрешать конфликты использования системных ресурсов программным путем, но в отличие от спецификации PnP, EISA не допускает динамического реконфигурирования. Все изменения конфигурации возможны только в режиме конфигурирования, после выхода из которого необходима перезагрузка компьютера. Изолированный доступ к портам ввода-вывода каждой карты во время конфигурирования обеспечивает просто: сигнал AEN, разрешающий декодирования адреса в цикле ввода-вывода, на каждый слот приходит по отдельной линии AENx, в это время программно-управляемой. Таким образом можно по отдельности обращаться и к обычным картам ISA, но из это бесполезно, поскольку карты ISA не поддерживают обмена конфигурационной информацией, предусмотренного шиной EISA. На некоторых идеях конфигурирования EISA выросла спецификация PnP для шины ISA (формат конфигурационных записей ESCD во многом напоминает NVRAM EISA).

EISA - дорогая, но оправдывающая себя архитектура, применяющаяся в многозадачных системах, на файл-серверах и везде, где требуется высокоэффективное расширение шины ввода-вывода.

1.3 Шина MCA

Шина MCA (MicroChannel Architecture) - микроканальная архитектура - была введена в пику конкурентам фирмой IBM для своих компьютеров PS/2 начиная с модели 50 в 1987 году. Обеспечивает быстрый обмен данными между отдельными устройствами, в частности с оперативной памятью. Шина MCA абсолютно несовместима с ISA/EISA и другими адаптерами. Состав управляющих сигналов, протокол и архитектура ориентированы на асинхронное функционирование шины и процессора, что снимает проблемы согласования скоростей процессора и периферийных устройств. Адаптеры MCA широко используют Bus-Mastering, все запросы идут через устройство CACP (Central Arbitration Control Point). Архитектура позволяет эффективно и автоматически конфигурировать все устройства программным путем (в MCA PS/2 нет ни одного переключателя).

При всей прогрессивности архитектуры (относительно ISA) шина MCA не пользуется популярностью из-за узости круга производителей MCA-устройств и полной их несовместимости с массовыми ISA-системами. Однако MCA еще находит применение в мощных файл-серверах, где требуется обеспечение высоконадежного производительного ввода-вывода.

2. ЛОКАЛЬНЫЕ ШИНЫ

Разработчики компьютеров, системные платы которых основывались на микропроцессорах 180386/486, стали использовать раздельные шины для памяти и устройств ввода-вывода, что позволило максимально задействовать возможности оперативной памяти, так как именно в данном случае память может работать с наивысшей для нее скоростью. Тем не менее, при таком подходе вся система не может обеспечить достаточной производительности, так как устройства, подключенные через разъемы расширения, не могут достичь скорости обмена, сравнимой с процессором. В основном это касается работы с контроллерами накопителей и видеоадаптерами. Для решения возникшей проблемы стали использовать так называемые локальные (local) шины, которые непосредственно связывают процессор с контроллерами периферийных устройств.

Первые IBM PC-совместимые компьютеры с локальными шинами не были, естественно, стандартизованы. Одним из ведущих изготовителей персональных компьютеров, впервые реализовавшим видеоподсистему с локальной шиной, была компанияNECTechnologies. Еще в 1991 году эта фирма представила свою оригинальную разработку Image Video.

В последнее время появились две локальные шины, признанные промышленными: шина VLB, предложенная ассоциацией VESA (Video Electronics Standards Association), и PCI (Peripheral Component Interconnect), разработанная фирмой Intel. Обе эти шины предназначены, вообще говоря, для одного и того же - для увеличения быстродействия компьютера, позволяя таким периферийным устройствам, как видеоадаптеры и контроллеры накопителей, работать с тактовой частотой до 33 МГц и выше. Обе шины используют разъемы типа МСА. На этом, впрочем, их сходство и заканчивается, поскольку требуемая цель достигается разными средствами.

Если VL-bus является, по сути, расширением шины процессора (вспомним шину IBM PC/XT), то PCI по своей организации более тяготеет к системным шинам, например к EISA, и представляет собой абсолютно новую разработку. Строго говоря, PCI относится к классу так называемых mezzanine-шин, то есть шин-"пристроек", поскольку между локальной шиной процессора и самой PCI находится специальная микросхема согласующего "моста" (bridge).

2.1 Шина VLB

Локальная шина стандарта VLB (VESA Local Bus, VESA – Video Equipment Standart Association – Ассоциация стандартов видеооборудования) разработана в 1992 году. Главным недостатком шины VLB является невозможность её использования с процессорами, пришедшими на замену МП 80486 или существующими параллельно с ним (Alpha, PowerPC и др.).

Шины ввода-вывода ISA, MCA, EISA имеют низкую производительность, обусловленную их местом в структуре PC. Современные приложения (особенно графические) требуют существенного повышения пропускной способности, которое могут обеспечить современные процессоры. Одним из решений проблемы повышения пропускной способности было применение в качестве шины подключения периферийных устройств локальной шины процессора 80486. Шину процессора использовали как место подключения встроенной периферии системной платы (контроллер дисков, графического адаптера).

VLB - стандартизованная 32-битная локальная шина, практически представляющая собой сигналы системной шины процессора 486, выведенные на дополнительные разъемы системной платы. Шина сильно ориентирована на 486 процессор, хотя возможно ее использование и с процессорами класса 386. Для процессоров Pentium была принята спецификация 2.0, в которой разрядность шины данных увеличена до 64, но она распространения не получила. Аппаратные преобразователи шины новых процессоров в шину VLB, будучи искусственными "наростами" на шиннной архитектуре, не прижились, и VLB дальнейшего развития не получила.

Конструктивно VLB-слот аналогичен 16-битному обычному MCA-слоту, но является расширением системного слота шины ISA-16, EISA или MCA, располагаясь позади него вблизи от процессора. Из-за ограниченной нагрузочной способности шины процессора больше трех слотов VLB на системной плате не устанавливают. Максимальная тактовая частота шины - 66 МГц, хотя надежнее шина работает на частоте 33 МГц. При этом декларируется пиковая пропускная способность 132 Мбайт/с (33 МГц x 4 байта), но она достигается только внутри пакетного цикла во время передач данных. Реально в пакетном цикле передача 4 x 4 = 16 байт данных требует 5 тактов шины, так что даже в пакетном режиме пропускная способность составляет 105.6 Мбайт/с, а в обычном режиме (такт на фазу адреса и такт на фазу данных) - всего 66 Мбайт/с, хотя это и значительно больше, чем у ISA. Жесткие требования к временным характеристикам процессорной шины при большой нагрузке (в т. ч. и микросхемами внешнего кэша) могут привести к неустойчивой работе: все три VLB-слота могут использоваться только на частоте 40 МГц, при нагруженной системной плате на 50 МГц может работать только один слот. Шина в принципе допускает и применение активных (Bus-Master) адаптеров, но арбитраж запросов возлагается на сами адаптеры. Обычно шина допускает установку не более двух Bus-Master адаптеров, один из которых устанавливается в "Master"-слот.

Шину VLB обычно использовали для подключения графического адаптера и контроллера дисков. Адаптеры локальных сетей для VLB практически не встречаются. Иногда встречаются системные платы, у которых в описании указано, что они имеют встроенный графический и дисковый адаптер с шиной VLB, но самих слотов VLB нет. Это означает, что на плате установлены микросхемы указанных адаптеров, предназначенные для подключения к шине VLB. Такая неявная шина по производительности, естественно, не уступает шине с явными слотами. С точки зрения надежности и совместимости это даже лучше, поскольку проблемы совместимости карт и системных плат для шины VLB стоят особенно остро.

2.2 Шина PCI

Шина PCI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) - шина соединения периферийных компонентов. Была анонсирована компанией Intel в июне 1992 года на выставке PC Expo.

Эта шина занимает особое место в современной PC-архитектуре (mezzanine bus), являясь мостом между локальной шиной процессора и шиной ввода-вывода ISA/EISA или MCA. Эта шина разрабатывалась в расчете на Pentium-системы, но хорошо сочетается и с 486 процессорами, а также с не-Intel"овскими процессорами. Шина PCI является четко стандартизованной высокопроизводительной шиной расширения ввода-вывода. PCI – мультиплексная 32-разрядная шина. Существует также 64-разрядная версия. Частота шины 20-33 МГц. Стандарт PCI 2.1 допускает и частоту 66 МГц. Теоретическая максимальная скорость 132/264 Mбайт/с для 32/64 бит при 33 МГц, и 528 Мбайт/с при 66 МГц. Слот PCI достаточен для подключения адаптера (в отличие от VLB), на системной плате он может сосуществовать с любой из шин ввода-вывода и даже с VLB (хотя в этом и нет необходимости).

На одной шине PCI может быть не более четырех устройств (слотов). Мост шины PCI (PCI Bridge) - это аппаратные средства подключения шины PCI к другим шинам. Host Bridge - главный мост - используется для подключения PCI к системной шине (шине процессора или процессоров). Peer-to-Peer Bridge - одноранговый мост - используется для соединения двух шин PCI. Две и более шины PCI применяются в мощных серверных платформах - дополнительные шины PCI позволяют увеличить количество подключаемых устройств.

Автоконфигурирование устройств (выбор адресов, запросов прерывания) поддерживается средствами BIOS и ориентировано на технологию Plug and Play. Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода-вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода-вывода.

В состав шины PCI введены сигналы для тестирования адаптеров по интерфейсу JTAG. На системной плате эти сигналы не всегда задействованы, но могут и организовывать логическую цепочку тестируемых адаптеров.

Шина PCI все обмены трактует как пакетные: каждый кадр начинается фазой адреса, за которой может следовать одна или несколько фаз данных. Количество фаз данных в пакете неопределенно, но ограничено таймером, определяющим максимальное время, в течении которого устройство может пользоваться шиной. Каждое устройство имеет собственный таймер, значение для которого задается при конфигурировании устройств шины.

В каждом обмене участвуют два устройства - инициатор обмена (Initiator) и целевое устройство (Target). Арбитражем запросов на использование шины занимается специальный функциональный узел, входящий в состав чипсета системной платы. Для согласования быстродействия устройств-участников обмена предусмотрены два сигнала готовности IRDY# и TRDY#. Для адреса и данных на шине используются общие мультиплексированные линии AD. Четыре мультиплексированных линии C/BE используются для кодирования команд в фазе адреса и разрешения байт в фазе данных.

Шина имеет версии с питанием 5 В, 3.3 В. Также существует универсальная версия (с переключением линий +V I/O c 5 В на 3.3 В). Ключами являются пропущенные ряды контактов 12, 13 и 50, 51. Для 5 В-слота ключ расположен на месте контактов 50, 51; для 3 В - 12, 13; для универсального - два ключа: 12, 13 и 50, 51. Ключи не позволяют установить карту в слот с неподходящим напряжением питания. 32-битный слот заканчивается контактами A62/B62, 64-битный - A94/B94.

В отличие от адаптеров остальных шин, компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно разделяет использование посадочного места адаптера с соседним ISA-слотом (Shared slot).

Шина PCI являлась до последнего времени второй (после ISA) по популярности применения. В современных системах происходит отказ от шин ISA, и шина PCI выходит на главные позиции. Некоторые фирмы для этой шины выпускают карты-прототипы, но, конечно же, доукомплектовать их периферийным адаптером или устройством собственной разработки гораздо сложнее, чем карту ISA. Здесь сказываются и более сложные протоколы, и более высокие частоты (8 МГц у шины ISA против 33 или 66 МГц у шины PCI). Также шина PCI обладает плохой помехоустойчивостью, поэтому для построения измерительных систем и промышленных компьютеров используется все еще относительно редко.

На некоторых системных (материнских) платах имеется небольшой разъем, который называется Media Bus. Он расположен позади разъема шины PCI одного из слотов. На этот разъем выводятся сигналы обычной шины ISA, и предназначен он для того, чтобы на графическом адаптере с шиной PCI можно было разместить и недорогой чипсет звуковой карты, предназначенный для шины ISA. Этот разъем, а тем более и такие комбинированные аудио-видео карты, широкого распространения не получили.

ЗАКЛЮЧЕНИЕ

С самого развития и до сих пор шина ввода/вывода является узким местом современных персональных компьютеров, что отрицательно сказывается на общих скоростных характеристиках системы. Появлялись новые шины, увеличивалась разрядность, быстродействие шин, их пропускная способность. Но разработки новых стандартов шин продолжаются. Многие фирмы объединяют свои усилия для разработки новых стандартов.

На примерах существующих стандартов видно, что у каждого стандарта шин есть свои достоинства, но есть и свои недостатки. Одни шины позволяют получать вполне удовлетворительное быстродействие, но очень дороги и сложны в изготовлении, и зачастую затраты не окупаются. Другие дешевы, но очень требовательны к системе в целом.

Список использованных источников

1. Информатика: Практикум по технологии работ на компьютере: Учебное пособие для вузов / Под ред. Н.В. Макаровой. – М.: Финансы и статистика, 1997. - 384 с.

2. Могилев А.В. и др. Информатика: Учебное пособие для студентов пед. вузов / А.В. Могилев, Н.И. Пак – М.: Академия, 1999. – 816 с.

3. Острейковский В.А. Информатика: Учебник для технических вузов – М.: Высшая школа, 1999. – 511 с.

4. Информатика: Базовый курс: Учебное пособие для втузов / Под ред С.В. Симоновича – СПб. : Питер, 2003. – 640 с.

5. Хохлова Н.В. и др. Информатика: Учебное пособие для вузов / Н.В. Хохлова, А.И. Истеменко, Б.В. Петренко. – М.: Высшая школа, 1990. – 195 с.

Шини розподіляються на ряд локальних шин , кожна... такої мікросхеми. Крім того, відновлення стандарт ів периферії відбувається дуже часто...

Организация ввода-вывода

В вычислительной системе, состоящей из множества подсистем, необходим механизм для их взаимодействия. Эти подсистемы должны быстро и эффективно обмениваться данными. Например, процессор, с одной стороны, должен быть связан с памятью, с другой стороны, необходима связь процессора с устройствами ввода/вывода.

В современных ПК такой механизм можно разделить на несколько уровней:

Системные и локальные шины;

Шины ввода/вывода.

BIOS (Basic Input/Output System) - основная система ввода/вывода, зашитая в ПЗУ (отсюда название ROM BIOS). Она представляет собой набор программ проверки и обслуживания аппаратуры компьютера, и выполняет роль посредника между DOS и аппаратурой. BIOS получает управление при включении и сбросе системной платы, тестирует саму плату и основные блоки компьютера - видеоадаптер, клавиатуру, контроллеры дисков и портов ввода/вывода, настраивает Chipset платы и зaгpужaeт внешнюю операционную систему. При работе под DOS, Windows BIOS управляет основными устройствами, при работе под OS/2, UNIX, WinNT BIOS практически не используется, выполняя лишь начальную проверку и настройку.

Обычно на системной плате установлено только ПЗУ с системным (Main, System) BIOS, отвечающим за саму плату и контроллеры FDD, HDD, портов и клавиатуры; в системный BIOS практически всегда входит System Setup - программа настройки системы. Видеоадаптеры и контроллеры HDD с интерфейсом SТ- 506 (MFM) и SCSI имеют собственные BIOS в отдельных ПЗУ; их также могут иметь и другие платы - интеллектуальные контроллеры дисков и портов, сетевые карты и т.п.

Одним из простейших механизмов, позволяющих организовать взаимодействие различных подсистем, является единственная центральная шина , к которой подсоединяются все подсистемы. Доступ к такой шине разделяется между всеми подсистемами. Подобная организация имеет два основных преимущества: низкая стоимость и универсальность. Поскольку такая шина является единственным местом подсоединения для разных устройств, новые устройства могут быть легко добавлены, и одни и те же периферийные устройства можно даже применять в разных вычислительных системах, использующих однотипную шину. Стоимость такой организации получается достаточно низкой, поскольку для реализации множества путей передачи информации используется единственный набор линий шины, разделяемый множеством устройств.

Главным недостатком организации с единственной шиной является то, что шина создает узкое горло, ограничивая, возможно, максимальную пропускную способность ввода/вывода. Если весь поток ввода/вывода должен проходить через центральную шину, такое ограничение пропускной способности весьма реально. В коммерческих системах, где ввод/вывод осуществляется очень часто, а также в суперкомпьютерах, где необходимые скорости ввода/вывода очень высоки из-за высокой производительности процессора, одним из главных вопросов разработки является создание системы нескольких шин, способной удовлетворить все запросы.

Одна из причин больших трудностей, возникающих при разработке шин, заключается в том, что максимальная скорость шины главным образом лимитируется физическими факторами: длиной шины и количеством подсоединяемых устройств (и, следовательно, нагрузкой на шину). Эти физические ограничения не позволяют произвольно ускорять шины. Требования быстродействия (малой задержки) системы ввода/вывода и высокой пропускной способности являются противоречивыми. В современных крупных системах используется целый комплекс взаимосвязанных шин, каждая из которых обеспечивает упрощение взаимодействия различных подсистем, высокую пропускную способность, избыточность (для увеличения отказоустойчивости) и эффективность.

Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода/вывода. Шины ввода/вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств, и обычно следуют одному из шинных стандартов. Шины процессор-память, с другой стороны, сравнительно короткие, обычно высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память-процессор. На этапе разработки системы, для шины процессор-память заранее известны все типы и параметры устройств, которые должны соединяться между собой, в то время как разработчик шины ввода/вывода должен иметь дело с устройствами, различающимися по задержке и пропускной способности.

Как уже было отмечено, с целью снижения стоимости некоторые компьютеры имеют единственную шину для памяти и устройств ввода/вывода. Такая шина часто называется системной . Персональные компьютеры, как правило, строятся на основе одной системной шины в стандартах ISA, EISA или MCA. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к двухуровневой организации шин в персональных компьютерах на основе локальной шины. Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VL-Bus и PCI.

Рассмотрим типичную транзакцию на шине. Шинная транзакция включает в себя две части: посылку адреса и прием (или посылку) данных. Шинные транзакции обычно определяются характером взаимодействия с памятью: транзакция типа "Чтение" передает данные из памяти (либо в ЦП, либо в устройство ввода/вывода), транзакция типа "Запись" записывает данные в память. В транзакции типа "Чтение" по шине сначала посылается в память адрес вместе с соответствующими сигналами управления, индицирующими чтение. Память отвечает, возвращая на шину данные с соответствующими сигналами управления. Транзакция типа "Запись" требует, чтобы ЦП или устройство в/в послало в память адрес и данные и не ожидает возврата данных. Обычно ЦП вынужден простаивать во время интервала между посылкой адреса и получением данных при выполнении чтения, но часто он не ожидает завершения операции при записи данных в память.

Разработка шины связана с реализацией ряда дополнительных возможностей. Решение о выборе той или иной возможности зависит от целевых параметров стоимости и производительности. Первые три возможности являются очевидными: раздельные линии адреса и данных, более широкие (имеющие большую разрядность) шины данных и режим групповых пересылок (пересылки нескольких слов) дают увеличение производительности за счет увеличения стоимости.

Главное устройство шины - это устройство, которое может инициировать транзакции чтения или записи. ЦП, например, всегда является главным устройством шины. Шина имеет несколько главных устройств, если имеется несколько ЦП или когда устройства ввода/вывода могут инициировать транзакции на шине. Если имеется несколько таких устройств, то требуется схема арбитража, чтобы решить, кто следующий захватит шину. Арбитраж часто основан либо на схеме с фиксированным приоритетом, либо на более "справедливой" схеме, которая случайным образом выбирает, какое главное устройство захватит шину.

В настоящее время используются два типа шин, отличающиеся способом коммутации: шины с коммутацией цепей (circuit-switched bus) и шины с коммутацией пакетов (packet-switched bus), получившие свои названия по аналогии со способами коммутации в сетях передачи данных. Шина с коммутацией пакетов при наличии нескольких главных устройств шины обеспечивает значительно большую пропускную способность по сравнению с шиной с коммутацией цепей за счет разделения транзакции на две логические части: запроса шины и ответа. Такая методика получила название "расщепления" транзакций (split transaction). (В некоторых системах такая возможность называется шиной соединения/разъединения (connect/disconnect) или конвейерной шиной (pipelined bus). Транзакция чтения разбивается на транзакцию запроса чтения, которая содержит адрес, и транзакцию ответа памяти, которая содержит данные. Каждая транзакция теперь должна быть помечена (тегирована) соответствующим образом, чтобы ЦП и память могли сообщить что есть что.

Шина с коммутацией цепей не делает расщепления транзакций, любая транзакция на ней есть неделимая операция. Главное устройство запрашивает шину, после арбитража помещает на нее адрес и блокирует шину до окончания обслуживания запроса. Большая часть этого времени обслуживания при этом тратится не на выполнение операций на шине (например, на задержку выборки из памяти). Таким образом, в шинах с коммутацией цепей это время просто теряется. Расщепленные транзакции делают шину доступной для других главных устройств пока память читает слово по запрошенному адресу. Это, правда, также означает, что ЦП должен бороться за шину для посылки данных, а память должна бороться за шину, чтобы вернуть данные. Таким образом, шина с расщеплением транзакций имеет более высокую пропускную способность, но обычно она имеет и большую задержку, чем шина, которая захватывается на все время выполнения транзакции. Транзакция называется расщепленной, поскольку произвольное количество других пакетов или транзакций могут использовать шину между запросом и ответом.

Последний вопрос связан с выбором типа синхронизации и определяет является ли шина синхронной или асинхронной. Если шина синхронная, то она включает сигналы синхронизации, которые передаются по линиям управления шины, и фиксированный протокол, определяющий расположение сигналов адреса и данных относительно сигналов синхронизации. Поскольку практически никакой дополнительной логики не требуется для того, чтобы решить, что делать в следующий момент времени, эти шины могут быть и быстрыми, и дешевыми. Однако они имеют два главных недостатка. Все на шине должно происходить с одной и той же частотой синхронизации, поэтому из-за проблемы перекоса синхросигналов, синхронные шины не могут быть длинными. Обычно шины процессор-память синхронные.

Асинхронная шина, с другой стороны, не тактируется. Вместо этого обычно используется старт-стопный режим передачи и протокол "рукопожатия" (handshaking) между источником и приемником данных на шине. Эта схема позволяет гораздо проще приспособить широкое разнообразие устройств и удлинить шину без беспокойства о перекосе сигналов синхронизации и о системе синхронизации. Если может использоваться синхронная шина, то она обычно быстрее, чем асинхронная, из-за отсутствия накладных расходов на синхронизацию шины для каждой транзакции. Выбор типа шины (синхронной или асинхронной) определяет не только пропускную способность, но также непосредственно влияет на емкость системы ввода/вывода в терминах физического расстояния и количества устройств, которые могут быть подсоединены к шине. Асинхронные шины по мере изменения технологии лучше масштабируются. Шины ввода/вывода обычно асинхронные.

Обычно количество и типы устройств ввода/вывода в вычислительных системах не фиксируются, что позволяет пользователю самому подобрать необходимую конфигурацию. Шина ввода/вывода компьютера может рассматриваться как шина расширения, обеспечивающая постепенное наращивание устройств ввода/вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода/вывода работать независимо. Появление стандартов определяется разными обстоятельствами.

Иногда широкое распространение и популярность конкретных машин становятся причиной того, что их шина ввода/вывода становится стандартом де факто. Примерами таких шин могут служить PDP-11 Unibus и IBM PC-AT Bus. Иногда стандарты появляются также в результате определенных достижений по стандартизации в некотором секторе рынка устройств ввода/вывода. Интеллектуальный периферийный интерфейс (IPI - Intelligent Peripheral Interface) и Ethernet являются примерами стандартов, появившихся в результате кооперации производителей. Успех того или иного стандарта в значительной степени определяется его принятием такими организациями как ANSI (Национальный институт по стандартизации США) или IEEE (Институт инженеров по электротехнике и радиоэлектронике). Иногда стандарт шины может быть прямо разработан одним из комитетов по стандартизации: примером такого стандарта шины является FutureBus.

Одной из популярных шин персональных компьютеров была системная шина, XT- Bus - шина архитектуры XT - первая в семействе IBM PC. Относительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как "разрядность 8/20"), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture - архитектура промышленного стандарта) - основная шина на компьютерах типа PC АТ (другое название - АТ-Bus). Является расширением XT-Bus, разрядность - 16/24 (16 Мб), тактовая частота - 8 МГц, предельная пропускная способность -5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктивно выполнено в виде 62-контактного разъема XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA - расширенная ISA) - функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность - 32/32 (адресное пространство - 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность - 32 Мб/с. Поддерживает Bus Mastering - режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств у шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

Bus Mastering - cпособностъ внешнего устройства самостоятельно, без участия процессора, управлять шиной (пересылать данные, выдавать команды и сигналы управления). На время обмена устройство захватывает шину и становится главным, или ведущим (master) устройством. Такой подход обычно используется для освобождения процессора от операций пересылки команд и/или данных между двумя устройствами на одной нише. Частным случаем Bus Mastering является режим DMA, который осуществляет только внепроцессорную пересылку данных; в классической архитектуре PC этим занимается контроллер DMA, общий для всех устройств. Каждое же Bus Mastering-устройство имеет собственный подобный контроллер, что позволяет избавиться от проблем с распределением DMA- каналов и преодолеть ограничения стандартного DMA- контроллера (16- разрядность, способность адресовать только первые 16 Мб ОЗУ, низкое быстродействие и т.п.).

МСA (Micro (Сhannel Architecture - микроканальная архитектура) - шинакомпьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность - 32/32, (базовая - 8/24, остальные - в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность - 40 Мб/с. Конструктивно выглядит, как одно- трехсекционный разъем (такой же, как у VLB). Первая, основная, секция - 8-разрядная (90 контактов), вторая - 16- разрядное расширение (22 контакта), третья - 32- разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и МСА во многом параллельны, появление EISA было обусловлено собственностью IBM на архнтектуру МCА.

VLВ (VESA Local Bus - локальная шина стандарта VESA) - 32-разрядное (дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116- контактный, как у МСА) при разъеме ISA. Разрядность - 32/32, тактовая частота - 25..50 МГц, предельная скорость обмена - 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из- за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 MГц - три, 40 МГц - два, и при 50 МГц - одно, причем желательно - интегрированное в системную плату.

РCI (Peripheral Component Interconnect - соединение внешних компонент) - развитие VLB в сторону EISA/MCA. He совместима ни с какими другими, разрядность - 32/32 (расширенный вариант - 64/64), тактовая частота -до 33 МГц (PCI 2.1 - до 66 МГц), пропускная способность - до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничено четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время, используется также на других компьютерах. Разъем похож на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Cуществует также расширение MediaBus, введенное фирмой ASUSTek -дополнительный разъем содержит сигналы шины ISA.

PCMCIA (Personal Computer Memory Card International Association -ассоциация производителей плат памяти для персональных компьютеров) - внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA - PC Card. Предельно проста, разрядность - 16/26 (адресное пространство - 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив - миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

7.3. Шины ввода/вывода



Рекомендуем почитать

Наверх