Сравнение i7 6700. Упаковка и её дизайн. ⇡ Производительность в приложениях

Для Windows 23.03.2019
Для Windows

ВведениеПришедшееся на этот год обновление микроархитектуры процессоров Intel, в результате которого мы получили Skylake, нельзя назвать типичным или обычным. Хотя с точки зрения пользователей десктопов никаких особенно значительных улучшений в производительности или частотном потенциале эти CPU и не привнесли, их приход на рынок продемонстрировал совсем иные вещи. А именно, Intel впервые столкнулась с серьёзными проблемами при следовании своему принципу «тик-так», и проблемы эти так и не удалось разрешить в обозримые сроки. Иными словами, современные технологические процессы добрались до того качественного барьера, преодоление которого при внедрении более тонких норм производства требует настолько серьёзных усилий, что запуск и отладка массового выпуска чипов стала занимать значительно больше времени, чем на это требовалось раньше. Всё это в полный рост мы и увидели в новых процессорах, для производства которых должна применяться 14-нм технология с трёхмерными транзисторами второго поколения. Сначала произошла задержка и фактическая отмена десктопных Broadwell, а потом жертвой проблем пали и актуальные процессоры Skylake, поставки которых до сих пор происходят с заметными перебоями. В результате Intel даже заговорила о том, что трактовку закона Мура стоит ослабить, и новые процессорные дизайны теперь будут выходить не ежегодно, а примерно раз в полтора года.

Для нас же всё это значит, что жить с микроархитектурой Skylake придётся значительно дольше, чем с её предшественницами. Согласно тем глобальным планам, которыми делится Intel, приход следующего поколения микроархитектуры, Cannonlake, произойдёт теперь не ранее второй половины 2017 года. А в следующем году на суд пользователей будут представлены лишь своего рода Skylake Refresh – процессоры Kaby Lake, для производства которых будет использован всё тот же 14-нм техпроцесс.

И этого уже достаточно для того, чтобы уделить Skylake несколько больше внимания, чем обычно достаётся да долю тех или иных новых процессоров. На нашем сайте уже опубликовано три статьи, в той или иной степени обсуждающие построенные на микроархитектуре Skylake процессоры для настольных персональных компьютеров:


Обзор процессоров Core i5-6600K и Core i5-6500: знакомство с Intel Skylake ;
Пять поколений Core i7: от Sandy Bridge до Skylake. Сравнительное тестирование ;
Двухъядерные Skylake: обзор процессоров Core i3-6320, Core i3-6100 и Pentium G4400 .

Однако мы снова решили вернуться к теме Skylake и отдельно рассмотреть те десктопные процессоры, о которых подробно пока не говорили: речь в этом материале пойдёт о четырёхъядерниках, которые не ориентированы на оверклокерскую аудиторию и не предлагают разблокированных множителей.

Такие процессоры интересны сегодня как минимум по трём причинам. Во-первых, они несколько дешевле, чем Core i7-6700K и i5-6600K, что в сложившихся экономических условиях является очень заметным преимуществом, способным склонить на их сторону достаточно большую аудиторию покупателей. Во-вторых, из-за проблем с 14-нм техпроцессом флагманские Core i7-6700K и i5-6600K находятся в дефиците. Это не очень заметно по ассортименту российских магазинов (из-за низкого спроса на дорогие CPU), но на глобальном рынке поставки старших оверклокерских Skylake носят очень ограниченный характер. Поэтому даже если старшие Skylake и поступают в розницу, то их цены оказываются выше рекомендованных Intel значений. И в-третьих, неожиданно оказалось, что удовлетвориться младшими четырёхъядерными процессорами могут даже оверклокеры. Основные производители материнских плат нашли «лазейку», позволяющую разгонять любые процессоры Skylake через повышение базовой частоты BCLK. В результате, способность работать при частоте, существенно превышающей номинальную, имеют теперь и те LGA 1151-процессоры, которые изначально для этого считались совершенно неподходящими.

Именно поэтому главными героями нашего очередного тестирования процессоров мы сделали неоверклокерские четырёхъядерники Core i7-6700, i5-6600, i5-6500 и i5-6400. В рамках этого материала мы посмотрим на то, что эти CPU могут предложить их обладателям на фоне предшественников поколения Haswell и по сравнению с флагманскими процессорами Core i7-6700K и i5-6600K, рассмотренными в наших материалах ранее.

Что не так с 14-нм техпроцессом Intel

Скоро будет полгода, как Intel представила свои 14-нм процессоры Skylake, нацеленные на аудиторию энтузиастов: Core i7-6700K и Core i5-6600K. Однако за это время вопрос их повсеместной доступности так и не был решён. Наиболее остро эта проблема стоит в западноевропейских странах и в Северной Америке, что нетрудно проследить в ассортименте крупнейших онлайн-магазинов. Например, на момент написания статьи оба этих флагманских процессора отсутствовали в продаже на Newegg.com, а на Amazon.com распродавались последние экземпляры со склада. Такая несколько странная для интеловской продукции ситуация продолжается с лета – к сожалению, обеспечить старшими десктопными Skylake всех желающих у Intel до сих пор не получается.

Более того, отсутствие в продаже необходимых товарных количеств Core i7-6700K и Core i5-6600K приводит к тому, что продавцы начинают реализовывать их по ценам, заметно превышающим рекомендованные. Напомним, что официально для этой пары процессоров установлены цены в размере $339 и $242 соответственно. В реальности же, чтобы купить один из этих продуктов, требуется заметно переплатить. Причём, здесь речь идёт не только о зарубежных, но и об отечественных магазинах: как нетрудно заметить, эффект недопоставок оказал глобальное влияние.

Что же является первопричиной описанных негативных явлений? К сожалению, ответить на этот вопрос коротко и ясно не может даже сама Intel. На всех проводимых компанией отчётных мероприятиях официальные лица уверенно говорят о том, что внедрение 14-нм технологии происходит по плану, а выход годных кристаллов Broadwell и Skylake постепенно приближается к тому уровню, который обеспечивает прошлая 22-нм технология.

Однако этот график, на котором изображена доля годных кристаллов, производимых по разным технологическим процессам, на самом деле полную картину не описывает. Дело в том, что на фоне дефицита старших оверклокерских Skylake мы не видим никаких затруднений с поставками процессоров, рассчитанных на более низкие тактовые частоты. И это значит, что проблема, поразившая интеловский 14-нм процесс, касается не столько выхода годных кристаллов вообще, сколько затрагивает лишь старшие высокочастотные модели.

Иными словами, похоже, что дефицит Core i7-6700K и Core i5-6600K возникает на этапе отбора наиболее удачных полупроводниковых кристаллов. Доля чипов Skylake, способных работать на сравнительно высоких частотах при приемлемых уровнях напряжения питания, то есть таких, которые можно сделать основой флагманских процессоров для энтузиастов, оказывается слишком низкой для удовлетворения спроса. В результате Intel вполне справляется с поставками требуемых количеств обычных четырёхъядерников, но вот Core i7-6700K и Core i5-6600K, которые не только имеют более высокие тактовые частоты, но и должны располагать некоторым «запасом прочности», востребованным оверклокерами, даются микропроцессорному гиганту с очень большим трудом. И это, кстати, очень похоже на повторение той ситуации, которая имела место с 14-нм процессорами поколения Broadwell. Ведь 14-нм процессоры первого поколения тоже демонстрировали явные признаки несовершенства техпроцесса: после многочисленных задержек с выходом они не только получили более низкие по сравнению с предшественниками номинальные частоты, но и плохо разгоняются.

Всё это в очередной раз указывает, что главная проблема с выпуском скоростных Skylake кроется не столько в микроархитектуре, сколько в производственном процессе. И как утверждают некоторые знакомые с ситуацией эксперты, Intel, похоже, на этот раз несколько переборщила с масштабированием техпроцесса. Причём, речь идёт не столько о ключевом параметре – размере транзисторов, сколько о слишком агрессивном уменьшении шага в толщине слоёв металлизации по сравнению с 22-нм техпроцессом.



Действительно, ранее с каждым переходом на более «тонкие» производственные нормы толщина слоёв металлизации уменьшалась примерно в 1,4 раза. Однако с внедрением 14-нм норм компания Intel в целях снижения себестоимости чипов решила изменить шаг более агрессивно, и уменьшила его по сравнению с 22-нм процессом примерно в 1,5 раза. И такое стремление к снижению расходов обернулось для Intel неожиданными проблемами. Доля полупроводниковых кристаллов, способных к работе на высоких частотах, в общем объёме продукции заметно снизилась, а их себестоимость, напротив, стала выше.

Всё это в итоге и привело к описанной ситуации. Для того, чтобы изготавливать процессоры Core i7-6700K и Core i5-6600K, необходимые особо качественные полупроводниковые кристаллы с удачным сочетанием частотного потенциала и потребляемой мощности. Но получить их в должном количестве Intel пока не удаётся.

Впрочем, говоря о проблемах, нельзя упомянуть и о том, что в будущее Intel смотрит с оптимизмом и делает вид, что недопоставки флагманских Skylake не способны повлиять на глобальную картину. Игровые высокопроизводительные системы продолжат оставаться одним из основных приоритетов компании, и в 2016 году в этом сегменте Intel ожидает заметный рост, который должен достигнуть 26 процентов.



Правда, удовлетворяться он, возможно, будет не процессорами Skylake, а их предшественниками поколения Haswell. В свете сложившейся в настоящее время ситуации с поставками флагманских модификаций новейших процессоров, их 22-нм предшественники поколения Haswell предлагаются клиентам с существенными скидками. И отголоски этих скидок нередко можно увидеть и на ценниках в розничных магазинах, что в определённых ситуациях может стать хорошим аргументом в пользу приобретения компьютера на базе CPU прошлого поколения.

Однако не стоит забывать о том, что системы, построенные на базе десктопных Skylake, интересны не только благодаря новой микроархитектуре и 14-нм техпроцессу. Выводя на рынок это поколение процессоров, Intel уделила немалое внимание и совершенствованию всей платформы, которая обрела поддержку более скоростной DDR4-памяти и высокоскоростных интерфейсов для подключения дополнительных компонентов. Именно поэтому на фоне дефицита флагманских Skylake пользовательский интерес вполне может сместиться и в сторону четырёхъядерников Core шестого поколения, изначально на разгон не ориентированных. С этой позиции мы и попробуем на них посмотреть.

Простые четырёхъядерные Skylake-S: подробности

Итак, главными героями сегодня выступают самые обычные процессоры Skylake в LGA 1151-исполнении, не ориентированные на оверклокерские эксперименты, но имеющие тем не менее достаточно передовые характеристики: по четыре процессорных ядра с поддержкой технологии Hyper-Threading или без неё и располагающие кеш-памятью третьего уровня объёмом 8 или 6 Мбайт. С точки зрения своего базового строения эти процессоры подобны предшественникам поколения Haswell – с внедрением новой микроархитектуры и с переходом на передовой 14-нм техпроцесс Intel оставила привычные характеристики нетронутыми. Таким образом, к линейке Core i7 продолжают относиться четырёхъядерные процессоры с 8-мегабайтным L3-кешем, способные исполнять по восемь потоков одновременно, а в семейство Core i5 входят четырёхъядерники попроще – без виртуальных ядер и с кеш-памятью объёмом 6 Мбайт. При этом любые Core i7 и Core i5 в отличие от их младших собратьев имеют также технологию авторазгона Turbo Boost, а также укомплектованы встроенным графическим ядром девятого поколения Intel HD Graphics 530.

Иными словами, мы имеем дело с той самой разновидностью, которую принято обозначать как Skylake-S. В основе таких процессоров лежит процессорный кристалл, описываемый формулой 4+2 – четыре вычислительных ядра и графика класса GT2.

Как хорошо известно, флагманские процессоры Core i7 и Core i5, которые позиционируются в качестве решений для энтузиастов, имеют разблокированные множители, и это позволяет беспрепятственно изменять их рабочую частоту, частоту памяти и графического ядра. Такие оверклокерские модели легко отличить по наличию в конце модельного номера литеры K. Обычные же общеупотребительные модели Core i7 и Core i5 в названии не имеют никаких букв, и для них разгон через изменение коэффициентов умножения аппаратно заблокирован.

Однако отсутствие свободы в установке множителей – не единственный признак, который отличает «обычные» четырёхъядерные процессоры Skylake от их оверклокерских собратьев. На самом деле им свойственны и более низкие тактовые частоты. Причём, отличие может быть достаточно существенным. Например, в случае процессоров Core i7 оно составляет целых 600 МГц, а у Core i5 – 200 МГц. Правда, у этого преимущества есть и обратная сторона: процессоры, не относящиеся к оверклокерской серии, более экономичны. Для них Intel декларирует достаточно скромный 65-ваттный тепловой пакет, в то время как расчётное тепловыделение Core i7-6700K и Core i5-6600K – 91 Вт. К этому нужно добавить и то, что процессоры K-серии лишены поддержки технологии vPro, необходимой для обслуживания и обеспечения безопасности компьютеров в условиях крупных предприятий. Довершает картину и весьма заметная разница в цене. Даже согласно официальному прайс-листу предложения для энтузиастов примерно на 8-15 процентов дороже старших Core i7 и i5 общего назначения. Что, скорее всего, и станет основной причиной, по которой покупатели могут захотеть отдать предпочтение младшим четырёхъядерникам без функций разгона.

Линейка ординарных неоверклокерских четырёхъядерников семейства Skylake, ориентированная на использование в классических настольных системах, включает в себя четыре процессора. Три чипа относится к серии Core i5 и один – входит в серию Core i7. Такой набор моделей призван полностью заменить линейку предложений поколения Haswell Refresh, число «обычных» четырёхъядерников в которой было ровно таким же. Для того, чтобы подчеркнуть преемственность модельных рядов, Intel установила на процессоры одного и того же класса, но разных поколений, одинаковые цены. Иными словами, Core i7-6700 подменяет Core i7-4790, Core i5-6600 – Core i5-4690, Core i5-6500 – Core i5-4590, а Core i5-6400 – Core i5-4460. Полное представление о новом модельном ряде можно получить из следующей таблице, в которой мы собрали вместе характеристики всех неоверклокерских Skylake с четырьмя вычислительными ядрами.



Если не считать более современную микроархитектуру, которой располагают процессоры Core шестого поколения, отличий у новинок от аналогичных LGA 1150-процессоров на самом деле не так уж и много. Однако и частоты, и тепловыделение, всё-таки изменились. Причём по сравнению с Haswell частоты неожиданно стали ниже, что, по всей видимости, будет компенсироваться более совершенной микроархитектурой, и никакого спада в производительности заметно быть не должно. Что же касается типичного тепловыделения, то оно тоже понизилось. Обуславливается это как тем, что в новых процессорах интегрированный стабилизатор напряжения переехал из самого процессора на материнскую плату, так и повышением энергоэффективности, которое обеспечивает переход на 14-нм технологию.

Давайте же посмотрим, как всё это сказалось на реальных потребительских качествах – быстродействии в приложениях и теплоэнергетических параметрах.

Как мы тестировали

Основной целью настоящего тестирования было сравнение четырёхъядерных неоверклокерских процессоров Skylake для настольных компьютеров с флагманскими собратьями, относящимися к K-серии. Однако помимо разнообразных LGA 1151-процессоров в число участников испытаний мы включили и процессоры поколения Haswell, которые в тестах должны обеспечить для основных героев соответствующий фон. Помимо этого, на итоговых диаграммах вы также сможете найти и результаты старшего процессора компании AMD – FX-9590, который по своей рекомендуемой цене спустился до отметки в $240 и посему может рассматриваться в качестве альтернативы интеловским четырёхъядерникам.

В результате, список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-6700K (Skylake, 4 ядра + Hyper-Threading, 4,0-4,2 ГГц, 8 Мбайт L3);
Intel Core i7-6700 (Skylake, 4 ядра + Hyper-Threading, 3,4-4,0 ГГц, 8 Мбайт L3);
Intel Core i5-6600K (Skylake, 4 ядра, 3,5-3,9 ГГц, 6 Мбайт L3);
Intel Core i5-6600 (Skylake, 4 ядра, 3,3-3,9 ГГц, 6 Мбайт L3);
Intel Core i5-6500 (Skylake, 4 ядра, 3,2-3,6 ГГц, 6 Мбайт L3);
Intel Core i5-6400 (Skylake, 4 ядра, 2,7-3,3 ГГц, 6 Мбайт L3);
Intel Core i7-4790K (Haswell, 4 ядра + Hyper-Threading, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i5-4690K (Haswell, 4 ядра, 3,5-3,9 ГГц, 6 Мбайт L3);
Intel Core i5-4590 (Haswell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3);
Intel Core i5-4460 (Haswell, 4 ядра, 3,2-3,4 ГГц, 6 Мбайт L3);
AMD FX-9590 (Vishera, 8 ядер, 4,7-5,0 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Maximus VIII Ranger (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS M5A99FX Pro R2.0 (Socket AM3+, AMD 990FX + SB950).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

AMD Chipset Drivers Crimson Edition;
Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 355.98 Driver.

И перед тем, как перейти непосредственно к результатам тестов, приведём скриншоты диагностической утилиты CPU-Z, снятые для всех процессоров – героев настоящего обзора. По ним можно ещё раз уточнить характеристики четырёхъядерных Skylake, не относящихся к серии оверклокерских процессоров.


Core i7-6700Core i5-6600Core i5-6500Core i5-6400

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



Естественно, никаких сюрпризов в производительности четырёхъядерников поколения Skylake быть попросту не может. Во-первых, ввиду более низкой тактовой частоты они несколько медленнее своих оверклокерских собратьев. В частности, Core i7-6700 отстаёт от Core i7-6700K на 8 процентов. Правда, при этом Core i5-6600 работает почти с той же скоростью, что и Core i5-6600K – разница в частотах этих процессоров не так заметна. Во-вторых, процессоры поколения Skylake в целом немного производительнее процессоров Haswell. Их преимущество принципиальный характер не носит, но примерно 3-процентная разница между их результатами прослеживается. Следовательно, новая микроархитектура действительно компенсирует слегка снизившиеся частоты новинок.

Впрочем, нужно иметь в виду, что показатель в SYSmark 2014 1.5 – это некая средневзвешенная метрика производительности и в отдельных ситуациях положение дел может кардинально различаться. И мы это увидим далее, в тестах в приложениях.

Более же глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



В сценариях Media Creation и Office Productivity мы видим именно ту картину, которую уже описывали при анализе общего рейтинга производительности в SYSmark. Однако сценарий Data/Financial Analysis вносит в результаты некоторое разнообразие. Оно возникает из-за того, что при интенсивных математических вычислениях, которые моделируются в данном случае, неплохо себя показывает старший процессор Devil’s Canyon, Core i7-4790K. И здесь уместно будет напомнить о том, что старшие процессоры Core i7, нацеленные на оверклокерскую аудиторию, традиционно получают заметно более высокие частоты, чем вся остальная линейка. Как и Core i7-6700K, его предшественник, Core i7-4790K, имеет тактовую частоту, перевалившую за 4-гигагерцовую отметку, что выделяет такие процессоры в своих семействах. Впрочем, несмотря на всё это, Core i7-6700 оказывается способен соперничать с Core i7-4790K на равных, что ещё раз указывает на существенность микроархитектурных улучшений, сделанных в Skylake.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Вообще говоря, игровая производительность систем, построенных на четырёхъядерных процессорах компании Intel, различается не слишком сильно. Всё-таки основное влияние на частоту кадров в играх оказывает не центральный процессор, а видеокарта. А мощности современных четырёхъядерников (если, конечно, они спроектированы не инженерами AMD) вполне хватает для того, чтобы раскрыть производительность сколь угодно дорогостоящей игровой однопроцессорной видеокарты.

Впрочем, некоторые различия в игровом быстродействии у героев сегодняшнего обзора обнаружить всё-таки можно. Так, процессоры Core i7 и Core i5 поколения Skylake оказываются способны выдать чуть более высокую частоту кадров по сравнению с равноценными процессорами поколения Haswell. Однако старший из Devil’s Canyon всё-таки свои позиции сдавать не намерен – его производительность выше, чем у любых неоверклокерских Skylake. Что же касается разницы в скорости новых LGA 1151-процессоров с возможностями разгона и без них, то она носит совершенно гомеопатический характер. А это значит, что для игровых систем выбирать процессоры с литерой K в названии имеет лишь в том случае, если вы собираетесь заняться серьёзными оверклокерскими экспериментами.

Результаты при сниженном разрешении


















Снижение разрешения позволяет увидеть игровую процессорозависимость более явно. И, глядя на эти результаты, можно однозначно говорить о том, что четырёхъядерные процессоры Skylake в целом быстрее своих предшественников с равной ценой. Разрыв получается таким, что младший из Core i5 шестого поколения дотягивает по быстродействию до старшего Core i5 серии Haswell. А Core i7-6700 вполне успешно конкурирует с Core i7-4790K.

Также необходимо отметить и ещё пару примечательных фактов. Обычный процессор Core i5-6600 предлагает практически точно такой же уровень игровой производительности, как и его оверклокерский собрат Core i5-6600K. Однако подобную параллель для Core i7 провести уже нельзя. Флагманский LGA 1151-процессор Core i7-6700K опережает единственную неоверклокерскую модель этой серии, Core i7-6700, в среднем на 9 процентов.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









В тестовом приложении 3DMark, которое отличается достаточно заметной процессорозависимостью, картина получается несколько иной. Здесь первые места удерживают оверклокерские Core i7 поколений Haswell и Skylake, а Core i7-6700 лишь приближается к их результату снизу. В серии же Core i5 разница в показателях быстродействия между представителем K-серии и его собратом с таким же номером гораздо меньше. Однако здесь же можно отметить и относительно небольшое преимущество, которое могут предложить процессоры поколения Skylake. Если во время тестов старших процессоров представители поколения Skylake могли похвастать примерно 10-процентным приростом производительности по сравнению с предшественниками поколения Haswell, то в случае младших четырёхъядерников этот разрыв явно меньше. Дело в том, что достаточно строгие рамки теплового пакета и проблемы с производственным процессом ограничили тактовые частоты новых четырёхъядерников. Вследствие этого их превосходство оказывается не слишком заметным.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2638, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.8.



Никаких неожиданностей не обнаруживается и при тестировании четырёхъядерных Skylake в ресурсоёмких приложениях. Процессоры Core i7 благодаря поддержке технологии Hyper-Threading оказывается тут заметно быстрее, чем Core i5, опережая их в среднем где-то на 30 процентов. При этом Core i7-4790K, относящийся к поколению Haswell, на фоне новых Skylake смотрится совсем неплохо. Мало того, что он заметно опережает любые Core i5 шеститысячной серии, но и оказывается способен конкурировать с Core i7-6700. Однако флагманский Core i7-6700K всё-таки явно быстрее: разница в средней производительности между ним и аналогом без буквы K в конце наименования составляет где-то в районе 7 процентов.

Если же сравнивать процессоры внутри серии Core i5, то в ней разница между оверклокерским флагманом и старшим CPU с заблокированным множителем практически незаметна. А при сопоставлении быстродействия Haswell и Skylake нетрудно увидеть следующий эмпирический принцип: Skylake близки по своей производительности с Haswell со следующей ценовой ступеньки. То есть, Core i5-6500 сравним с Core i5-4690, а Core i5-6400 – с Core i5-4590. Прогресс небольшой, но всё равно приятный: за ту же стоимость Intel позволяет получить примерно на 6-8 процентов более высокую, чем раньше, производительность.

Энергопотребление

При измерении производительности мы вновь не увидели никаких кардинальных различий между Haswell и Skylake. Да, быстродействие новинок стало выше, но в целом назвать полученный ими прирост кардинальным совершенно невозможно. Однако с точки зрения энергетических характеристик изменения могут быть значительно заметнее. Предпосылок к тому есть сразу несколько. Во-первых, для производства процессоров Skylake применяется более современный 14-нм техпроцесс с трёхмерными транзисторами второго поколения. Во-вторых, конвертер питания, который раньше находился в процессоре, переместился на материнскую плату, что позволяет реализовывать более эффективные схемы.

С точки зрения формальных характеристик расчётное тепловыделение четырёхъядерных Skylake стало меньше, чем у Haswell, на целых 19 Вт. Благодаря этому, кстати, в нынешней линейке CPU была упразднена серия процессоров с литерой S в конце модельного номера. Все обычные Core i7 и Core i5 (за исключением оверклокерских моделей) теперь имеют TDP, установленный в 65 Вт. Раньше же такие процессоры формировали отдельную серию, которая процессорам в которой присваивались искусственно заниженные частоты. Впрочем, как мы знаем, интеловский TDP – величина, которая описывает реальное энергопотребление и тепловыделение процессоров лишь опосредованно. Как же обстоит дело в реальности, покажет наш традиционный натурный эксперимент.

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся у процессоров энергосберегающие технологии.



Благодаря внедрению более глубоких энергосберегающих режимов платформы, построенные на процессорах Skylake, стали потреблять заметно меньше своих предшественников даже в состоянии простоя.



Экономичность Skylake видна и при нагрузке. Однако при перекодировании видео той самой 19-ваттной разницы, которая обещана в TDP, между Haswell и Skylake не видно. Платформы на базе новых четырёхъядерников позволяют сэкономить в лучшем случае до 10 Вт.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



Зато при наиболее тяжёлой нагрузке разница в потреблении процессоров разных поколений становится более очевидна. Даже Core i7-6700 оказывается экономичнее, чем Core i5-4690K, а Core i5-6600 уступает в потреблении самому младшему четёрхъядерному Haswell.

Всё это означает, что процессоры Skylake существенно лучше своих предшественников по удельной производительности в пересчёте на каждый ватт затраченной электроэнергии. И более того, если по этому показателю сравнивать протестированные нами четырёхъядерные Core шестого поколения, то лучшими вариантами окажутся самые младшие представители в сериях Core i5 и Core i7, то есть Core i5-6400 и Core i7-6700.

Разгон

Если вы следите за тем, что происходит на оверклокерской арене, то наверняка знаете, что в последнее время внимание энтузиастов стало обращено в сторону процессоров Skylake, не относящихся к K-серии, то есть, не имеющих разблокированных коэффициентов умножения. Раньше эти процессоры считались к разгону полностью неспособными, но последние события такое представление перевернули. Дело в том, что ведущие производители материнских плат смогли, наконец, разобраться с тем, как можно управлять частотой BCLK у любых процессоров Skylake, а не только у оверклокерских модификаций. В результате, для некоторых материнских плат на базе набора системной логики Intel Z170 появились экспериментальные версии прошивок, в которых добавилась долгожданная возможность разгона любых CPU через изменение частоты базового генератора.

История вопроса такова. В последних поколениях своих процессоров компания Intel стала выделять особые продукты для разгона, перечень модификаций которых сильно ограничен, а стоимость – выше, чем у общеупотребительных собратьев. Такие процессоры отличаются тем, что их множители, посредством которых формируются рабочая частота, на аппаратном уровне не блокируются и благодаря этому могут изменяться через установки BIOS Setup материнской платы по желанию пользователя. Неоверклокерские же CPU такой возможности лишены.

Однако не стоит забывать о том, что тактовая частота, на которой работает процессор, является произведением двух параметров – множителя и базовой частоты. И в то время, как множитель в обычных, не предназначенных для разгона процессорах, жёстко заблокирован, для разгона всё равно остаётся альтернативный путь – через увеличение базовой частоты BCLK. Проблема лишь в том, что в последних интеловских платформах для процессоров Sandy Bridge, Ivy Bridge и Haswell частота BCLK жёстко связана с другими частотами в системе, например, с частотой работы шин DMI и PCI Express, которые даже при небольшом отклонении от номинальных значений теряют способность к нормальной работе. В результате, повышение частоты BCLK более чем на 3-5 процентов обычно приводит к искажению передаваемых по шинам данных и вызывает нестабильность или полную неработоспособность системы.

Но с выходом процессоров Skylake и платформы LGA 1151 привычная ситуация изменилась. В этой платформе шина PCI Express и набор системной логики выделены в отдельный домен, частота которого остаётся фиксированной вне зависимости от того, как изменяется BCLK. На базовую частоту BCLK остались жёстко завязаны лишь внутрипроцессорные компоненты: вычислительные ядра, кеш, интегрированное графическое ядро, контроллер памяти и прочие Uncore-компоненты, которые могут переносить заметное её увеличение.



Тем не менее, первые эксперименты по разгону процессоров Skylake, не относящихся к K-серии, никаких плодов не приносили. Несмотря на всё сказанное, компания Intel смогла реализовать защиту от разгона BCLK, которая у обычных процессоров Skylake не позволяла поднимать базовую частоту свыше 103-104 МГц. Но к счастью, как теперь оказалось, защита эта имеет не аппаратный характер, и может быть обойдена на программном уровне. Иными словами, производители материнских плат при определённом желании могут средствами BIOS эту защиту обходить.



Первой прорыв на данном направлении совершила Supermicro – именно на плате C7H170-M этой компании была продемонстрирована принципиальная возможность работы неоверклокерских процессоров Skylake с сильно повышенной частотой BCLK. А вслед за Supermicro быстро реализовали подобную функциональность и другие фирмы. На сегодняшний день практически все флагманские материнки ASUS, ASRock, Biostar и MSI обрели экспериментальные версии BIOS, в которых добавлена полноценная возможность управления частотой BCLK для не-K процессоров.

Впрочем, не всё так просто. Очевидно, что на данный момент функция разгона неоверклокерских процессоров проработана всё же не до конца. В частности, повышение у них частоты BCLK приводит к блокированию некоторых возможностей энергосбережения и не только. Более того, список нерешённых проблем отнюдь не маленький. Вот что бросается в глаза при разгоне не-K процессоров в первую очередь:

Процессор перестаёт переходить в энергосберегающие состояния (C-states) и всегда работает на предельной частоте и при предельном напряжении питания. Технология Intel Enhanced SpeedStep также оказывается неработоспособной.
Пропадает возможность температурного мониторинга с использованием встроенных в CPU датчиков. Любые инструменты, позволяющие контролировать тепловой режим процессора, всегда возвращают для его ядер температуру 100 градусов.
Теряет работоспособность технология Turbo Boost.
Отказывается работать интегрированное в процессор графическое ядро.
Теряется стабильность системы при высоких частотах памяти.
Существенно снижается скорость выполнения AVX/AVX2-инструкций. Скорость алгоритмов, активно работающих с этими векторными командами, может даже упасть в несколько раз.

К тому же существует ненулевая вероятность, что многие из этих проблем не могут быть разрешены в принципе. И разгон процессоров, изначально не предназначенных для разгона, будет всё же не столь простым и результативным, как в случае использования специальных CPU, относящихся к K-серии. Но тем не менее, мы всё-таки решили не обходить стороной открывшиеся многообещающие возможности и попробовали разогнать наши тестовые процессоры при помощи увеличения частоты BCLK. Благо, для используемой нами в тестовой системе материнской платы ASUS Maximus VIII Ranger недавно вышла специализированная неофициальная версия прошивки, позволяющая при использовании неоверклокерских процессоров выполнять разгон путём манипулирования базовой частотой.

Сразу оговоримся, наши тесты на разгон через изменение частоты BCLK носили прикидочный характер. За неимением официальной релизной версии BIOS говорить о каких-то финальных результата разгона пока что явно преждевременно. Кроме того, вызывает определённые проблемы и проверка стабильности системы. Если контроль температур ещё как-то возможен посредством датчиков, которыми располагает материнская плата, создать экстремальную процессорную нагрузку оказывается далеко не так просто. Все общепринятые инструменты проверки стабильности вроде Linpack или Prime95 активно пользуются AVX-инструкциями, ведь именно векторные команды заставляют процессор нагреваться особенно сильно. Однако при разгоне не-К процессоров такие инструкции исполняются с замедленным темпом и уже не порождают высокого нагрева CPU. Поэтому полагаться приходиться на стабильность в обычных ресурсоёмких приложениях вроде финального рендеринга, но устойчивая работа в них не даёт полной гарантии стабильности.

Тем не менее, несмотря на все эти проблемы и на то, что мы особенно не старались выжимать из имеющихся экземпляров CPU все соки, результаты разгона получились весьма обнадёживающими.

Core i7-6700 с повышением частоты BCLK до 136 МГц и увеличением напряжения питания до 1,36 В смог заработать на частоте выше 4,6 ГГц.



Core i5-6600 при аналогичном повышении напряжения питания покорил частоту 4,5 ГГц. При этом частота BCLK составила те же самые 136 МГц.



Процессор Core i5-6500 продемонстрировал ещё немного худший разгонный потенциал. Он при напряжении 1,36 В стабильно работал только на частоте 4,4 ГГц. Частота BCLK при этом составила 138 МГц.



Казалось бы, приведённые результаты указывают на возникновение проблем при повышении базовой частоты выше 136-137 МГц, но Core i5-6400 это опроверг. Этот процессор смог стабильно работать при разгоне до 4,5 ГГц, что, учитывая его низкий множитель, потребовало увеличения частоты BCLK до 167 МГц.



Надо сказать, что результаты разгона неоверклокерских CPU в абсолютном выражении оказались немного хуже, чем у типичных процессоров K-серии. Однако отличие это очень небольшое. Гораздо же важнее то, что разгон процессоров вроде Core i5-6400 оказывается всё равно гораздо выгоднее в относительном измерении. Как показывают эксперименты, частоту младших четырёхъядерников удаётся повысить более чем в полтора раза. Иными словами, настоящий результативный разгон возвращается!

Выводы

Изначально тестирование младших четырёхъядерников поколения Skylake обещало стать совершенно проходным материалом. Подумаешь, что может быть интересного в процессорах, которые уступают Core i7-6700K и Core i5-6600K по тактовой частоте и к тому же не поддерживают разгон? Однако интересного, как оказалось, в них немало.

В первую очередь следует сказать о производительности. Младшие процессоры Core i5 поколения Skylake, а это Core i5-6400 и Core i5-6500, получили немного более низкие тактовые частоты по сравнению с четырёхъядерными предшественниками Haswell. Однако несмотря на это они всё равно выдают лучшее быстродействие, что обеспечивается их более совершенной микроархитектурой. Согласно данным тестирования, если сравнивать Skylake и Haswell одинаковой стоимости, LGA 1151-новинки предлагают примерно 6-8-процентное превосходство в скорости. Что же касается Core i5-6600, то он может замахнуться и повыше – по производительности он почти эквивалентен Core i5-6600K, который на $19 дороже.

Старший же из рассмотренных сегодня неоверклокерских четырёхъядерников, Core i7-6700, в общую картину вписывается несколько иначе. Он примерно на 7 процентов уступает в быстродействии флагманскому Skylake, Core i7-6700K. Однако это на самом деле всё равно хороший результат: поддержка технологии Hyper-Threading делает Core i7-6700 предложением более высокого класса по сравнению с любыми Core i5, в том числе и по сравнению с Core i5-6600K. При этом цена Core i7-6700 ниже, чем у Core i7-6700K, весьма существенно – на $38.

Помимо неплохой производительности неоверклокерские четырёхъядерники могут похвастать и своей примечательной экономичностью. Их TDP установлен в 65 Вт не просто так. Раньше процессоры с таким тепловыделением было даже принято относить к специальному S-классу, но теперь лучшую, чем обычно, энергоэффективность можно получить и в ординарных моделях для платформы LGA 1151. В результате, рассмотренные нами младшие Skylake с четырьмя вычислительными ядрами уверенно борются за звание процессоров с самой лучшей на сегодняшний день производительностью в пересчёте на каждый ватт затраченной электроэнергии.

Но самое интересное: процессоры Core i7-6700, Core i5-6600, Core i5-6500 и Core i5-6400 даже можно разгонять! Конечно, с выполнением этой процедуры у них не всё так просто, как у оверклокерских процессоров K-серии: требуются специальные платы, в жертву нужно принести некоторые функции, а результат разгона немного ниже. Но тем не менее, многим пользователям из числа энтузиастов может оказаться вполне достаточно и возможностей, имеющихся у младших четырёхъядерных CPU, тем более, что разгонять с препятствиями даже интереснее. Поэтому младшие четырёхъядерники могут позволить заметно сэкономить даже при построении конфигураций, нацеленных на разгон.

В заключение же остаётся только добавить, что с массовыми поставками неоверклокерских процессоров поколения Skylake с четырьмя ядрами у Intel никаких проблем не возникает. Они широко представлены в продаже, а цены на них не завышаются продавцами, как это часто бывает с Core i7-6700K и Core i5-6600K. Иными словами, если вы собираетесь перейти на Skylake и хотите собрать себе производительную систему с четырёхъядерным CPU, списывать со счетов варианты вроде Core i7-6700, Core i5-6600, Core i5-6500 и Core i5-6400 явно не следует.


Описание тестовых систем и методики тестирования

Оба новых четырёхъядерных процессора Skylake-S, Core i7-6700K и Core i5-6600K, мы сравнили с их предшественниками серий Core i7 и Core i5 двух предыдущих поколений — Haswell (Devil’s Canyon) и Broadwell-DT. Также в тесте принял участие и младший из процессоров Haswell-E, цена которого позволяет противопоставлять его старшему процессору Core i7-6700K, и процессор AMD FX-9590, который всё ещё претендует на то, чтобы конкурировать с представителями семейства Core i5.

Таким образом, список комплектующих, задействованных в тестировании, получился достаточно обширным:

  • Процессоры:
    • Intel Core i7-6700K (Skylake, 4 ядра + HT, 4,0-4,2 ГГц, 8 Мбайт L3);
    • Intel Core i7-5820K (Haswell-E, 6 ядер + HT, 3,3-3,6 ГГц, 15 Мбайт L3);
    • Intel Core i7-5775C (Broadwell, 4 ядра + HT, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4);
    • Intel Core i7-4790K (Haswell, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
    • Intel Core i5-6600K (Skylake, 4 ядра, 3,5-3,9 ГГц, 6 Мбайт L3);
    • Intel Core i5-5675C (Broadwell, 4 ядра, 3,1-3,6 ГГц, 4 Мбайт L3);
    • Intel Core i5-4690K (Haswell, 4 ядра, 3,5-3,9 ГГц, 6 Мбайт L3);
    • AMD FX-9590 (Vishera, 8 ядер, 4,7-5,0 ГГц, 8 Мбайт L3).
  • Процессорный кулер: Noctua NH-U14S.
  • Материнские платы:
    • ASUS Z170-Deluxe (LGA1151, Intel Z170)
    • ASUS X99-Deluxe (LGA2011-v3, Intel X99);
    • ASUS Z97-Pro (LGA1150, Intel Z97);
    • ASUS M5A99FX Pro R2.0 (Socket AM3+, AMD 990FX + SB950).
  • Память:
    • 2 × 8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX).
    • 4 × 4 Гбайт DDR4-2666 SDRAM, 15-17-17-35 (G.Skill F4-2666C15Q-16GRR).
  • Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
  • Дисковая подсистема: Crucial M550 512 Гбайт (CT512M550SSD1).
  • Блок питания: Seasonic Platinum SS-760XP2 (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Professional x64 with Update с использованием следующего комплекта драйверов:

  • Intel Chipset Driver 10.0.27;
  • Intel Management Engine Driver 11.0.0.1137;
  • NVIDIA GeForce 353.30 Driver.

Все принявшие участие в этом тестировании интеловские процессоры испытывались дважды - не только при работе в номинальном режиме, но и при их стабильном и подходящем для долговременного использования разгоне, который достижим с применяемым нами охлаждением:

  • Core i7-6700K при разгоне до 4,6 ГГц с напряжением 1,33 В;
  • Core i7-5820K при разгоне до 4,2 ГГц с напряжением 1,25 В.
  • Core i7-5775C при разгоне до 4,2 ГГц с напряжением 1,4 В;
  • Core i7-4790K при разгоне до 4,5 ГГц с напряжением 1,2 В;
  • Core i5-6600K при разгоне до 4,5 ГГц с напряжением 1,31 В;
  • Core i5-5675C при разгоне до 4,2 ГГц с напряжением 1,3 В;
  • Core i5-4690K при разгоне до 4,5 ГГц с напряжением 1,36 В.

Описание использовавшихся для измерения производительности инструментов:

  • Бенчмарки:
    • Futuremark PCMark 8 Professional Edition 2.4.304 — тестирование в сценариях Home (обычное домашнее использование PC), Creative (использование PC для развлечений и для работы с мультимедийным контентом) и Work (использование PC для типичной офисной работы).
    • Futuremark 3DMark Professional Edition 1.5.915 — тестирование в сценах Sky Diver, Cloud Gate и Fire Strike.
  • Приложения:
    • Adobe After Effects CC 2014 — тестирование скорости рендеринга методом трассировки лучей. Измеряется время, затрачиваемое системой на обсчёт в разрешении 1920 × 1080@30fps заранее подготовленного видеоролика.
    • Adobe Photoshop CC 2014 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
    • Adobe Photoshop Lightroom 5.7.1 - тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.
    • Adobe Premiere Pro CC 2014 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.
    • Autodesk 3ds max 2016 — тестирование скорости финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920 × 1080 с применением рендерера mental ray стандартной сцены Hummer.
    • Internet Explorer 11 — тестирование производительности при работе интернет-приложений, построенных с использованием современных технологий. Применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.
    • TrueCrypt 7.2 — тестирование криптографической производительности. Используется встроенный в программу бенчмарк, задействующий тройное шифрование AES-Twofish-Serpent.
    • WinRAR 5.21 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
    • x264 r2538 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный 1080p@50FPS AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
    • X265 1.7+357 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется тот же видеофайл, что и в тесте скорости транскодирования кодером x264.
  • Игры:
    • Civilization: Beyond Earth. Настройки для разрешения 1280 × 800: DirectX11, Ultra Quality, Anti-aliasing = Off, Multithreaded rendering = On. Настройки для разрешения 1920 × 1080: DirectX11, Ultra Quality, 8x MSAA, Multithreaded rendering = On.
    • Company of Heroes 2. Настройки для разрешения 1280 × 800: Maximum Image Quality, Anti-Aliasing = Off, Higher Texture Detail, High Snow Detail, Physics = Off. Настройки для разрешения 1920 × 1080: Maximum Image Quality, High Anti-Aliasing, Higher Texture Detail, High Snow Detail, Physics = High.
    • Grand Theft Auto V. Настройки для разрешения 1280 × 800: DirectX Version = DirectX 11, FXAA = Off, MSAA = Off, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = Off, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum. Настройки для разрешения 1920 × 1080: DirectX Version = DirectX 11, FXAA = Off, MSAA = x4, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum.
    • GRID Autosport. Настройки для разрешения 1280 × 800: Ultra Quality, 0xAA, DirectX11. Настройки для разрешения 1920 × 1080: Ultra Quality, 8xAA, DirectX11. Используется трасса Texas и версия игры с поддержкой AVX-инструкций.
    • Hitman: Absolution. Настройки для разрешения 1280 × 800: Ultra Quality, MSAA = Off, High Texture Quality, 16x Texture Aniso, Ultra Shadows, High SSAO, Global Illumination = On, High Reflections, FXAA = On, Ultra Level of Detail, High Depth of Field, Tesselation = On, Normal Bloom. Настройки для разрешения 1920 × 1080: Ultra Quality, 8x MSAA, High Texture Quality, 16x Texture Aniso, Ultra Shadows, High SSAO, Global Illumination = On, High Reflections, FXAA = On, Ultra Level of Detail, High Depth of Field, Tesselation = On, Normal Bloom.
    • Metro: Last Light Redux. Настройки для разрешения 1280 × 800: DirectX 11, High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = Off, Tessellation = High, Advanced PhysX = Off. Настройки для разрешения 1920 × 1080: DirectX 11, Very High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = On, Tessellation = Normal, Advanced PhysX = Off. При тестировании используется сцена Scene 1.
    • Middle-Earth: Shadow of Mordor. Настройки для разрешения 1280 × 800: Lighting Quality = High, Mesh Quality = Ultra, Motion Blur = Camera and Objects, Shadow Quality = High, Texture Filtering = Ultra, Texture Quality = High, Ambient Occlusion = Medium, Vegetation Range = Ultra, Depth of Field = On, Order Independent Transparency = On, Tessellation = On. Настройки для разрешения 1920 × 1080: Lighting Quality = High, Mesh Quality = Ultra, Motion Blur = Camera and Objects, Shadow Quality = Ultra, Texture Filtering = Ultra, Texture Quality = Ultra, Ambient Occlusion = High, Vegetation Range = Ultra, Depth of Field = On, Order Independent Transparency = On, Tessellation = On.
    • Thief. Настройки для разрешения 1280 × 800: Texture Quality = Very High, Shadow Quality = Very High, Depth-of-field Quality = High, Texture Filtering Quality = 8x Anisotropic, SSAA = Off, Screenspace Reflections = On, Parallax Occlusion Mapping = On, FXAA = Off, Contact Hardening Shadows = On, Tessellation = On, Image-based Reflection = On. Настройки для разрешения 1920 × 1080: Texture Quality = Very High, Shadow Quality = Very High, Depth-of-field Quality = High, Texture Filtering Quality = 8x Anisotropic, SSAA = High, Screenspace Reflections = On, Parallax Occlusion Mapping = On, FXAA = On, Contact Hardening Shadows = On, Tessellation = On, Image-based Reflection = On.

⇡ Производительность в комплексных тестах

Популярное тестовое приложение PCMark 8 2.0 измеряет производительность систем при типичной пользовательской нагрузке, создаваемой распространёнными приложениями. И согласно результатам, полученным в этом бенчмарке, процессоры Skylake-S способны предложить более высокое быстродействие по сравнению с их предшественниками. Правда, уровень этого преимущества нельзя назвать впечатляющим: Core i7-6700K почти не обгоняет Core i7-4790K, а разница в производительности Core i5-6600K и Core i5-4690K составляет всего 3-4 процента. Более заметное преимущество представителей поколения Skylake можно наблюдать лишь перед процессорами Broadwell, которые обладают существенно более низкой тактовой частотой из-за ограниченного теплового пакета.

Никаких принципиальных изменений нет и при разгоне. Core i7-6700K и Core i5-6600K мало отличаются по частотному потенциалу от представителей семейства Devil’s Canyon, и в результате их преимущество не выходит за пределы 5 процентов.

Бенчмарк 3DMark, оценивающий производительность графической подсистемы, выдаёт немного более позитивную для Skylake-S картину. Однако речь об убедительном преимуществе вновь не идёт. Превосходство Core i7-6700K и Core i5-6600K над предшественниками, там, где оно есть, не выходит за пределы 5-процентного уровня.

Иными словами, комплексные тесты говорят о том, что, несмотря на все улучшения в микроархитектуре и переход на новую память стандарта DDR4, процессоры нового поколения не могут обеспечить принципиального улучшения производительности современных систем — ни при их работе в номинальном режиме, ни при разгоне.

Однако существует один нюанс: реальные современные приложения, особенно направленные на работу с мультимедийным контентом высокого разрешения, могут активно использовать векторные инструкции. И это способно создать совершенно иное впечатление о новинках, ведь основные сделанные в них усовершенствования направлены именно на ускорение исполнения команд из наборов AVX2 и FMA. Поэтому давайте не будем спешить с выводами, а посмотрим на то, как ведут себя Core i7-6700K и Core i5-6600K в ресурсоёмких приложениях.

⇡ Производительность в приложениях

Комплексно охарактеризовать ситуацию несложно. В среднем процессоры Skylake-S могут предложить лишь небольшое преимущество перед предшественниками поколений Haswell и Broadwell. Однако существуют далеко не единичные частные случаи, когда уровень превосходства Core i7-6700K над Core i7-4790K и Core i5-6600K над Core i5-4690K может доходить до 10-процентов. Как и прогнозировалось, такая картина наблюдается в задачах, связанных с обработкой видео, в частности в Adobe Premiere Pro и Adobe After Effects, а также при задействовании современного кодера x265. Но в целом новое поколение процессоров, как это обычно и бывает, приносит лишь 5-процентное улучшение быстродействия.

На этом не слишком радостном фоне отдельного упоминания заслуживает производительность при разгоне, вносящая в общую картину отчётливые нотки оптимизма. Например, Core i7-6700K можно разогнать немного сильнее по сравнению с Core i7-4790K или Core i7-5775C как в относительном, так и в абсолютном выражении. И в оверклокерских системах Skylake-S демонстрирует более заметное преимущество перед предшественниками, доходящее в среднем до 12-13 процентов.

⇡ Производительность в играх

Тестирование в реальных играх редко позволяет выявить принципиальные различия между высокопроизводительными процессорами. При современной игровой нагрузке узким местом становятся не вычислительные ресурсы платформы, а её графическая подсистема. Именно поэтому в большинстве случаев совершенно безразлично, какой из процессоров используется в той или иной геймерской платформе. Количество FPS, скорее всего, от этого зависеть будет крайне незначительно. Тем не менее отказываться от тестирования в играх это повода не даёт. Просто для лучшей иллюстративности вместе с измерением игровой производительности в типичном Full HD-разрешении 1920 × 1080 с включённым полноэкранным сглаживанием мы делаем замеры и в разрешении 1280 × 800. Результаты в первом случае показывают тот уровень FPS, который можно получить в реальных условиях прямо сейчас, второй же вариант тестирования позволяет оценить теоретическую игровую производительность процессоров, которая, возможно, будет раскрыта в перспективе, если в нашем распоряжении появятся более быстрые варианты графической подсистемы.

Тесты в Full HD-разрешении

Честно говоря, увидеть какие-то значимые различия в производительности Skylake-S и процессоров предшествующих поколений тут решительно невозможно. И новинки, и десктопные Haswell или Broadwell-DT обладают вполне достаточной мощностью для того, чтобы полностью загрузить флагманскую видеокарту, а большего от них и не требуется. Иными словами, для игровых систем с производительной дискретной графикой Core i7-6700K и Core i5-6600K вполне подходят. Хотя если пристально присмотреться к результатам, то можно заметить микроскопическое отставание носителей микроархитектуры Skylake от процессоров Devil’s Canyon. Впрочем, возникнуть оно могло и не по вине процессоров, а из-за новой материнской платы с набором логики Intel Z170, BIOS которой ещё не отшлифован до безупречного блеска.

Тесты в уменьшенном разрешении

Тесты в уменьшенном разрешении позволяют лучше выявлять влияние процессоров на игровую производительность, именно поэтому мы их и проводим. Но приведённые на диаграммах результаты вряд ли можно считать позитивными для Core i7-6700K и Core i5-6600K. Дело в том, что они оказались медленнее представителей семейства Broadwell-DT, располагающих 128-мегабайтным дополнительным eDRAM-кешем, положительно влияющим на игровую производительность. В Skylake-S такого кеша нет и эти новинки могут похвастать лишь лучшим быстродействием по сравнению с Haswell, но Core i7-5775C и Core i5-5675C кажутся потенциально более интересными вариантами для геймерских систем. Впрочем, всё это не значит, что нас не удовлетворило игровое быстродействие Skylake-S. Напротив, Core i7-6700K, например, выдаёт даже более высокую частоту кадров, чем Core i7-5820K для платформы LGA2011-v3, а это - весьма впечатляющее достижение.

⇡ Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Devil’s Canyon, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake-S получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell-DT низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake-S получили по каким-то формальным обстоятельствам. Проверим!

На следующих графиках приводится полное потребление систем (без монитора), измеренное на выходе из розетки, в которую подключен блок питания тестовой системы, и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. В суммарный показатель автоматически включается и КПД самого блока питания, однако с учетом того, что используемая нами модель БП, Seasonic Platinum SS-760XP2, имеет сертификат 80 Plus Platinum, его влияние должно быть минимальным. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.

К сожалению, потребление процессоров Skylake-S при отсутствии нагрузки мы адекватно оценить не смогли. Дело в том, что из-за ошибки в текущей версии BIOS используемая нами материнская плата ASUS Z170-Deluxe при включении полного набора энергосберегающих технологий работала крайне нестабильно, а отключение энергосберегающих состояний C-state приводило к излишнему и неоправданному росту потребления при простое CPU. Но вот при вычислительной нагрузке картина получилась следующей.

Выходит, несмотря на то, что расчётное тепловыделение у процессоров Skylake-S чуть выше, чем у Devil’s Canyon, на практике они даже немного экономичнее. Однако до Broadwell-DT им, естественно, очень далеко - предыдущее поколение интеловских процессоров получило 65-ваттный тепловой пакет совсем не напрасно. Основной же вывод таков: реальное тепловыделение и энергопотребление Core i7-6700K и Core i5-6600K не больше, чем у их предшественников поколения Haswell.

И это означает, что все старые системы охлаждения прекрасно подойдут и для новых CPU (благо взаимное расположение крепёжных отверстий на LGA1151 осталось таким же, как и раньше). Подтвердить это мы можем диаграммой, на которой приведены максимальные температуры процессорного ядра, зафиксированные при прохождении теста LinX 0.6.5. Для охлаждения во всех случаях был использован один и тот же кулер Noctua NH-D15.

Самые высокие температуры наблюдаются у процессоров Devil’s Canyon, а Skylake-S прогреваются не столь сильно, даже несмотря на то, что из-за новой производственной технологии с 14-нм нормами размер их полупроводникового кристалла уменьшился, а это неминуемо должно было затруднить отвод тепла.

⇡ Производительность встроенного графического ядра

Хотя сам факт наличия встроенного графического ядра в процессорах, нацеленных на аудиторию энтузиастов, продолжает вызывать жаркие споры, Intel от практики комплектации своих CPU интегрированным GPU отказываться не собирается. Более того, фирменное графическое ядро продолжает развиваться, приобретая новые функции и наращивая мощность. Так, в процессорах поколения Skylake эта графика стала относиться уже к девятому поколению и приобрела совместимость с программными интерфейсами DirectX 12, OpenGL 4.4 и OpenCL 2.0.

Надо сказать, что быстродействие интеловского встроенного графического ядра в последние годы растёт значительно быстрее процессорной производительности. Например, сама Intel обещает ускорение графики Skylake на достаточно впечатляющие 20-40 процентов. И в это несложно поверить - новое графическое ядро Intel HD 530, попавшее в Core i7-6700K и Core i5-6600K, обладает массивом из 24 исполнительных устройств, в то время как видеоядро Intel HD Graphics 4600, использовавшееся в настольных вариантах Haswell, располагало лишь 20 устройствами. Впрочем, не стоит забывать, что в последние поколения десктопных процессоров Intel встраивает видеоядро уровня GT2. Исключение из этого правила лишь одно - Broadwell-DT, получившие в своё распоряжение максимально производительную графику GT3e. Поэтому с точки зрения 3D-производительности Core i7-6700K и Core i5-6600K должны опережать своих предшественников поколения Haswell, но с Core i7-5775C и Core i5-5675C, где GPU обладает массивом из 48 исполнительных устройств, им тягаться не под силу.

Проиллюстрируем всё сказанное практическими примерами. На следующих далее диаграммах приводятся данные об игровой производительности встроенных GPU процессоров, принявших участие в сегодняшнем тесте. Кроме того, компанию интеловских CPU мы разбавили старшим гибридным процессором AMD A10-7870K .

Графическое ядро Intel HD Graphics 530, встроенное в процессоры Skylake-S, действительно позволяет добиться более высокой игровой производительности, чем в случае Intel HD Graphics 4600 из процессоров Haswell. Уровень преимущества составляет порядка 20-25 процентов, и в ряде случаев интеловские новинки по частоте кадров даже приближаются к показателям AMD A10-7870K. Однако безусловными лидерами в тестах интегрированной графики остаются представители семейства Broadwell-DT, как минимум в полтора раза превосходящие и Core i7-6700K, и Core i5-6600K.

Попутно с увеличением 3D-производительности графического ядра компания Intel работает и над совершенствованием его фиксированных функций, важнейшей из которых является технология QuickSync. Она обеспечивает аппаратное кодирование и декодирование видео в распространённых форматах, к списку которых в Skylake добавились VP9, VP8 и HEVC. Для наглядного тестирования скорости работы QuickSync мы воспользовались бесплатной утилитой HandBrake 0.10.2.7286, при помощи которой осуществили перекодирование тестового AVC 1080p-ролика (24 кадра в секунду, битрейт - около 10 Мбит/с) с использованием профиля iPad с сохранением высокого качества изображения.

Любопытно, что по скорости кодирования H.264-видео процессоры Skylake-S тоже проигрывают Broadwell-DT. Иными словами, встроенное в Core i7-5775C и Core i5-5675C графическое ядро Iris Pro 6200 - самый производительный интеловский GPU при нагрузке любого характера. Что же касается работы QuickSync у Core i7-6700K и Core i5-6600K, то результаты тестирования показывают, что скорость этой технологии при работе с H.264-контентом почти не изменилась по сравнению с процессорами Haswell. Так что все улучшения QuickSync в Skylake связаны с добавлением поддержки новых форматов и совершенствованием качества перекодирования, оценить которые в полной мере мы пока не можем из-за отсутствия совместимого программного обеспечения.

⇡ Выводы

Да, выпуском нового поколения десктопных процессоров Skylake-S компания Intel снова сделала это! Внедрив более прогрессивную микроархитектуру, переведя производство на более совершенный техпроцесс с 14-нм нормами, добавив поддержку скоростной DDR4-памяти и существенно перетряхнув всю платформу, она смогла добиться аж пятипроцентного улучшения производительности в реальных задачах по сравнению с Haswell - позапрошлым поколением CPU.

А вы ожидали чего-то другого? Напрасно, ведь ежегодный прирост быстродействия новых решений, лежащий примерно в таких пределах, - давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических настольных систем при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Но в случае со Skylake-S всё на самом деле не так печально. Intel пока не поделилась техническими данными об этой микроархитектуре, но в процессе тестирования нам удалось установить, что определённые аспекты производительности улучшились заметнее остальных. Очевидно, что в части быстродействия основной упор в Skylake сделан на увеличение эффективности работы с векторными инструкциями. Выполнение AVX2- и FMA-команд в этих процессорах ускорилось весьма значительно, и благодаря этому в приложениях, их использующих, а это в первую очередь программы для создания и обработки видеоконтента, прирост производительности может доходить и до 10-15 процентов.

Впрочем, помня о заявлениях Intel, что Skylake представляет собой самую значительную новинку за последнее десятилетие, мы, естественно, ожидали совсем не этого. И по факту с позиции пользователей десктопов никакой особенной значимости в Skylake-S не заметно. Более того, представленные пару месяцев тому назад процессоры Broadwell-DT для настольных систем иногда кажутся даже интереснее сегодняшних новинок. По крайней мере, в них действительно есть пусть и не слишком важные для широких масс энтузиастов, но всё же революционные нововведения, как, например, производительное графическое ядро Iris Pro 6200 и eDRAM-кеш четвёртого уровня. У Skylake-S же нет даже этого, из-за чего, в частности, Core i7-6700K и Core i5-6600K уступают Core i7-5775C и Core i5-5675C в игровой производительности как при использовании встроенного видеоядра, так и с дискретной видеокартой.

Однако, несмотря на всё вышесказанное, переход на Skylake-S не лишён смысла. Пусть эти процессоры и не оправдывают возложенных на них ожиданий в плане прироста производительности, но зато немало плюсов несёт в себе новая платформа LGA1151. И дело даже не в появившейся поддержке DDR4-памяти, действительно заслуживающие внимания варианты которой пока имеют явно запредельную стоимость, а в том, что сопровождающие выход новых CPU наборы логики наконец-то получили более скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, LGA1151-системы могут похвастать наличием многочисленных скоростных интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

К тому же есть у Skylake-S и ещё одна сильная сторона - разгонный потенциал. Пока мы не располагаем обширной статистикой разгона, но, судя по всему, оказавшиеся в руках оверклокеров Core i7-6700K и Core i5-6600K будут способны работать на более высоких частотах, нежели старшие десктопные процессоры поколений Haswell или Broadwell. Для многих данный фактор может стать одним из самых весомых аргументов в пользу новинок. И поэтому, не будь модернизация системы с переходом на Skylake-S связана с необходимостью серьёзных финансовых затрат из-за смены не только процессора, но и материнской платы с памятью, Core i7-6700K и Core i5-6600K наверняка могли бы стать достаточно популярным вариантом.

В остальном наш обзор будет такой же подробный, как и предыдущие тесты CPU на Hardwareluxx. Из-за того, что мы не можем раскрыть всю информацию об архитектуре, в обзоре будет несколько "белых пятен", но читатели наверняка догадаются о содержимом. В любом случае, пелена тайны скоро спадёт, когда Intel представит другие процессоры. Тогда мы опубликуем детальный обзор архитектуры. Пока что мы можем ссылаться на слухи, появившиеся за прошедшие месяцы.

В нашем тесте участвуют два флагманских процессора семейства Skylake, а именно Core i7-6700K и Core i5-6600K:


Как обычно, Intel представила две версии процессоров K с разблокированным множителем.

Новая платформа Intel Skylake опирается на следующие "столпы":

  • Новый сокет 1151, так что обратная совместимость теряется, а стабилизатор напряжения вновь переходит на материнскую плату .
  • Память DDR4 в качестве альтернативы DDR3 на материнской плате
  • Новый существенно улучшенный чипсет (Z170)
  • Несколько архитектурных изменений в CPU. Перед нами "так" в модели Intel тик-так, что указывает на архитектурные улучшения.

Intel сохранила 14-нм технологию предыдущего "тика" для настольного сегмента, причём процессоры Intel Broadwell-H появились совсем недавно, в начале июня 2015. И Intel не стала привлекать к ним внимание. Конечно, процессоры Broadwell-H переводят настольные компьютеры на новую 14-нм технологию Intel, но из-за различных задержек процессорный гигант не захотел представлять широкий ассортимент CPU Broadwell-H, ограничившись двумя настольными процессорами. Они тоже участвуют в наших тестах. Так что наша статья "убивает двух зайцев": мы тестируем первые 14-нм процессоры Broadwell-H и новую платформу Skylake, но подробностей о ней мы разгласить пока не можем.

Intel позиционирует новые процессоры K на геймеров, поэтому они представлены во время выставки Gamescom в Кельне. Не забыт и разгон процессоров K, Intel подчеркивает несколько "новых" функций разгона. Их мы тоже рассмотрим. А через несколько недель планируем представить детальную статью, посвящённую разгону новых процессоров.

Мы начнём с рассмотрения функций новых процессоров:

Сравнение новых процессоров Intel Skylake с предыдущими
Core i7-6700K Core i5-6600K Core i7-5775C Core i5-5675C Core i7-4790K Core i7-4770K
Кодовое название Skylake Skylake Broadwell-H Broadwell-H Haswell
(Devils Canyon)
Haswell
Техпроцесс 14 нм 14 нм 14 nm 14 нм 22 нм 22 нм
Сокет 1151 1151 1150 1150 1150 1150
Память 2 канала DDR4/DDR3L 2 канала
DDR4/DDR3L
2 канала
DDR3
2 канала
DDR3
2 канала
DDR3
2 канала
DDR3
Ядра / потоки 4 / 8 4 / 4 4 / 8 4 / 4 4 / 8 4 / 8
Кэш L3 8 MB 6 MB 6 MB 4 MB 8 MB 8 MB
Графическое ядро HD Graphics 530 HD Graphics 530 Iris Pro Graphics 6200 Iris Pro Graphics 6200 HD Graphics 4600 HD Graphics 4600
Частота GPU 1,15 ГГц 1,15 ГГц 1,15 ГГц 1,10 ГГц 1,25 ГГц 1,25 ГГц
Базовая частота 4,0 ГГц 3,5 ГГц 3,3 ГГц 3,1 ГГц 4,0 ГГц 3,5 ГГц
Макс. частота Turbo (1 ядро) 4,2 ГГц 3,9 ГГц 3,7 ГГц 3,6 ГГц 4,4 ГГц 3,9 ГГц
Макс. частота Turbo (4 ядра) 4,1 ГГц 3,6 ГГц 3,6 ГГц 3,5 ГГц 4,2 ГГц 3,6 ГГц
TDP 91 Вт 91 Вт 65 Вт 65 Вт 88 Вт 84 Вт
Линии PCIe 16x PCIe 3.0 16x PCIe 3.0 16x PCIe 3.0 16x PCIe 3.0 16x PCIe 3.0 16x PCIe 3.0
Цена $350 $243 от 26,5 тыс. рублей
401 Euro
от 19,6 тыс. рублей
285 Euro
от 22,2 тыс. рублей
349 Euro
от 20,1 тыс. рублей
299 Euro

Интересно, что при нагрузке только на одно ядро CPU частота процессора составляет на 200 МГц меньше, чем у флагмана "Devil"s Canyon". Технология Intel Turbo Boost Technology 2.0 разгоняет процессор только до 4,2 ГГц, а не до 4,4 ГГц, как у Core i7-4790K. Несмотря на новую 14-нм технологию, TDP новых процессоров даже выше. Intel внесла путаницу с названием графического ядра, в котором теперь только три цифры. Но Intel HD Graphics 530 должно работать быстрее предыдущего HD Graphics 4600. Об архитектуре GPU мы пока ничего не можем сказать, соответствующие тесты мы опубликуем в отдельной статье.

Отличия между Core i7-6700K и Core i5-6600K вполне стандартны: у "старшей" модели поддерживается технология Hyper-Threading, то есть процессор даёт на четыре виртуальных ядра больше. Отметим больший объём кэша (8 Мбайт вместо 6 Мбайт) и чуть более высокую частоту. Из-за существенно более привлекательной цены Core i5-6600K наверняка станет фаворитом наших читателей, сменив Core i5-4670K или Core i5-4570K.

Skylake – шестое поколение микроархитектуры процессоров Intel Core. Но станет ли оно настолько же удачным, каким в свое время было Sandy Bridge? Напомним, что его представители выпускались на 32 нм технологическом процессе, а архитектура отличалась наличием множества основных блоков на кристалле CPU, в числе которых – видеоускоритель, северный мост, контроллер PCI-e и прочее. Эти ЦП до сих пор не теряют актуальности, благо их частота доходила до 3.8 ГГц, а в руках умелого оверклокера «Сандики» легко разгонялись до 4.8-5.0 ГГц.

Вслед за ними последовали модели Ivy Bridge (22 нм). В то время многие потенциальные пользователи буквально молились в ожидании чуда на новый техпроцесс. В основном надежды были на очередное достижение по максимальным частотам. Об этом сами за себя говорили и процессоры, достигая максимальной частоты в номинальном режиме почти 4 ГГц (точнее 3.9 ГГц). Но в реальности «Ивики» были не столь щедрыми на мегагерцы и в среднем повторили результаты Sandy Bridge, но с поправкой 200-400 МГц. А основная масса CPU останавливалась в районе 4.5-4.6 ГГц.

В целом переход от i7-2600K к i7-3770К мало что менял в играх и повседневных задачах. Нельзя было заметно сэкономить и на энергопотреблении (95 Вт против 77 Вт). Правда, в плане графических возможностей встроенное видеоядро немного прибавило в скорости. Проблема была лишь в том, что даже на минимальных настройках HD Graphics не представлял собой чего-то выдающегося. В итоге формально ЦП были наделены интегрированной графикой, совместимой с пасьянсом «Косынка».

Поколение Haswell , как и последующее его обновление Haswell refresh , стало очередной надеждой оверклокеров. Согласно пословице, что снаряд дважды в одну и ту же лунку не падает, мы ждали улучшения разгонного потенциала. Новые модели все еще выпускались по нормам 22 нм, а со слов разработчиков Intel процессоры Haswell должны были получить заметные улучшения в области автоматического и ручного разгона.

Для этого они внедрили высокие коэффициенты для шины, вплоть до 44х, расширили максимальные лимиты на питание и напряжение. Кроме того, добавилась возможность разгона по частоте системной шины. Но все усилия вылились в очередные 4.5-4.7 ГГц на «воздухе». Тем не менее, надо признать, что по уровню разгона Haswell являются лидерами в пересчете на удельную производительность. Иными словами, они действительно отрабатывают каждый мегагерц своей цены.

Broadwell – пришествие из мира ноутбуков. Согласно официальным данным, CPU Broadwell это не что иное, как перенос ядра Haswell на 14 нм техпроцесс. На самом деле именно десктопные Broadwell стали венцом развития встроенной графики Intel. И все благодаря кэш-памяти L4. Оба процессора, i7-5775C и i5-5675C, уже держатся наравне с APU AMD в том сегменте, где раньше Intel всегда оставалась в роли догоняющего.

Intel Skylake и его особенности

Что же интересного хранит в себе архитектура Skylake? Начнем с очевидных вещей. Самым радикальным решением для Intel стал переход от стандарта памяти DDR3 к DDR4. Это влечет за собой замену не только материнской платы, но и модулей оперативной памяти. Благо сейчас стоимость обоих типов памяти сравнялась.

Вторым новшеством является графическое ядро с 48 исполнительными устройствами. Оно перекочевало с процессоров Broadwell, но в CPU Skylake не нашлось места для кэш-памяти L4. Точнее, такие версии будут выпускаться только для ноутбуков и встраиваемых решений, и это печально. В идеале Intel стоило бы выпустить несколько версий энергоэффективных моделей ЦП с подобной графикой и кэш-памятью. Без нее Skylake растеряет все то преимущество, которого удалось достичь Broadwell.

Всего для Skylake подготовлено четыре конфигурации видео: GT1 (12 исполнительных блоков), GT2 (24 блока), GT3 (48 блоков) и GT4 (72 блока). Каждая из разновидностей получит дополнительные модификации, различающиеся тактовыми частотами. Да и сами наименования встроенной графики Intel год от года становятся все запутаннее и запутаннее. С ходу определить разницу между Iris Pro 6 поколения и HD Graphics Skylake будет непросто.

Но главный вопрос – сколько блоков у решений для энтузиастов, у i7-6700K и i5-6600K? Ответить на него не так-то просто из-за того, что точных данных компания Intel так и не предоставила. А доверять GPU-Z и CPU-Z пока не надо, они часто ошибаются. Тем не менее, по результатам тестов в играх можно предположить, что оба процессора снабжены графикой GT2 с 24 исполнительными устройствами.

Третье нововведение – это возвращение к истокам разгона. Теперь можно менять частоту шины, конечно, при определенных условиях и в определенных диапазонах. Теоретически это должно помочь с разгоном заблокированных процессоров. Но как это будет на деле, пока понять сложно. Прошивки BIOS материнских плат еще не доведены до ума и не всегда адекватно реагируют на изменение частоты шины.

Но даже в таких условиях ради эксперимента удалось повысить частоту базовой шины до 200 МГц. Другой вопрос, а стоило ли это делать, когда разница в производительности процессоров, работающих с разной частотой системной шины, находится в пределах погрешности измерений? Зато теперь на отлично работают делители памяти. Минимальный шаг сильно уменьшен, самих делителей много – рай для оверклокера.

Стендовый комплект оперативной памяти G.Skill с частотой 3600 МГц так и не раскрыл все свои способности, застыв на частоте 3200 МГц.

И наконец-то Intel избавилась от встроенного регулятора напряжений в процессоре. Все входные данные, как и раньше, задаются системой питания материнской платы. В принципе, мы и до этого могли отключать встроенный преобразователь.

А теперь не самые радостные известия, связанные с термопастой под защитной крышкой. От нее никто не будет избавляться, и модели Skylake так и будут работать с таким штатным термоинтерфейсом.

Сравнительные характеристики

Поколение Intel Skylake: Core i7-6700K и i5-6600K.

Сравнительная таблица процессоров Intel.

Я, было, уже похоронил разгон. Однако в этом плане процессоры Skylake радуют. Модели имеют высокие тактовые частоты, никуда не делся разблокированный множитель, плюс Intel вернулась к истокам оверклокинга. Как же иногда приятно ошибаться!

В заключение

Который год, можно даже сказать по традиции, в конце очередного обзора нового процессора пишутся сакральные слова в стиле: очередное поколение чипов оказалось быстрее предыдущего всего на чуть-чуть . Skylake не стал исключением. Если смотреть на результаты, то изученные в тестовой лаборатории решения опережают своих предшественников в среднем на 5-10%. Логично, что пользователям, уже пользующимся услугами Haswell или Ivy Bridge, смысла сразу же бежать в магазин за новым «камнем» нет. К тому же придется менять платформу целиком. А вот тем, кто собирается собирать системный блок с нуля, есть резон присмотреться именно к Skylake и LGA1151.

Встроенная графика Core i5-6600K и Core i7-6700K стала в среднем на 20-40% быстрее, чем у Core i5-4690K и Core i7-4790K. В этой сфере Intel ежегодно демонстрирует серьезный рост. Однако рассмотренные процессоры даже самим производителем позиционируются как решения для энтузиастов. Поэтому в абсолютном большинстве случаев вместе с чипом Skylake в материнскую плату будет установлена дискретная видеокарта.

Платформу LGA1151 смело можно считать самой прогрессивной среди всех ныне актуальных платформ. Именно платы на базе сотой логики дадут пользователю максимум функциональности. Единственный недостаток - высокая стоимость связки процессор-память-плата.

Процессоры Skylake оказались весьма податливыми к оверклоку. Они меньше греются. Плюс в Intel вернулись к старой схеме разгона через шину BCLK. Все это наверняка сделает такие чипы, как Core i5-6600K и Core i7-6700K, популярными среди оверклокеров.



Рекомендуем почитать

Наверх