Какую частоту выдержит оперативная память 1333. Современные типы памяти DDR, DDR2, DDR3 для настольных компьютеров. Будет ли компьютер нормально работать с модулями ОЗУ, у которых разная частота

Для Symbian 06.04.2019
Для Symbian

Роутеры Tenda, наряду с недорогими изделиями других китайских производителей, активно покоряют рынок беспроводных маршрутизаторов. Один из типичных представителей - роутер Tenda F3.

Обзор, параметры роутера Tenda F3

Несмотря на вполне демократичную стоимость (отчасти зависит от расходов на доставку в конкретный населённый пункт), роутер Tenda F3 имеет внушительные для современных пользователей параметры.

По сравнению с предыдущим его собратом - N301, роутер Tenda F3 тонок, более изящен и стилен.

Роутер Tenda F3 притягивает взгляд

Три антенны лучше, чем две - зона действия Wi-Fi становится более обширной и скоростной, легче преодолевая препятствия.

Небольшие отличия от N-150/300/301 всё же есть

Как и у всё той же модели N301, у роутера F3 есть такой же 3-портовый LAN-маршрутизатор, не считая рядом расположенного гнезда Ethernet для кабеля провайдера. Кнопка сброса также объединена с функцией WPS (доступ для гаджетов и ПК без обязательного ввода пароля).

Панель индикации F3 достаточно информативна

Индикация режимов работы Tenda F3 в балансе между строго необходимым для работы и лишним. Огранка антенн ближе к концу - фирменная «фишка» роутеров Tenda.

Вентиляция, как и у многих китайских роутеров, которые «любят» сильно перегреваться, не даёт F3 часто «зависать» именно от перегрева - на многочисленные продолговатые отверстия фирма не скупилась. Идеальным решением было бы держать роутер возле форточки, вентиляционной шахты или входной двери.

В комплект поставки, помимо самого роутера, входит адаптер питания, LAN-кабель, диск с программами и инструкция по эксплуатации.

Таблица: характеристики роутера Tenda F3

Параметр Значение параметра или его допуск
Процессор серии Broadcom с частотой 500 МГц
Оперативная память 16 МБ
Флеш-диск 2 МБ
Параметры маршрутизатора LAN 3 порта LAN и порт WAN, скорость ЛВС до 100 Мбит/с
Физические параметры сети Wi-Fi 802.11bgn Mixed MIMO, 2,4 ГГц, до 300 Мбит/с
Количество и характеристики антенн Wi-Fi 3 (усиление на каждой не менее 5 дБ), несъёмные, поворотные
Защита сети Wi-Fi любой уровень, включая надстройки WPA-2
Основные функции DHCP-сервер, динамичные/статичные IP-настройки, DMZ, сетевой экран, NAT, фильтр MAC-адресов, PPTP/L2TP-шифрование VPN, PPPoE-связь
Дополнительные функции режим моста/репитера Wi-Fi, гостевая сеть

При пропускной способности радиоподсистемы Wi-Fi в 300 Мбит/с скорость кабельного интернета, большую, чем 100 Мбит/с, на гаджетах и ноутбуках вы не получите. Причина - роутер не обладает гигабитным LAN-маршрутизатором: даже если «Ростелеком» по GPON-кабелю завтра выдаст 300 Мбит/с, максимальная скорость такого канала всё равно будет «обрезана» до 100 без учёта внутреннего ограничения скорости на шине LAN - Wi-Fi. Для Tenda F3 не рекомендуется брать безлимит, больший, чем 100 Мбит/с - он будет бесполезен.

Первоначальная настройка Tenda N301 и ПК

Прежде чем настраивать интернет и другие, не менее полезные функции, проверьте работу LAN-подключения ПК, с которого производится настройка, и смените пароль администратора F3

Проверка подключения ПК к Tenda F3

Автополучение IP-адресов позволяет не настраивать каждый раз гаджеты и ПК при их подключении к маршрутизатору.


При малейшем изменении значений IP (даже на пустые) перезапустите Windows. Это необходимо, чтобы новая IP-настройка вступила в силу.

Если будете использовать профили ручной IP-настройки повторно - нужно стороннее приложение, переключающее адаптер к определённым значениям IP-адресов, например, NetSetMan.

Смена пароля администратора на роутере Tenda F3

Используйте по умолчанию адрес 192.168.0.1 и слово «admin» в качестве логина и пароля. Введите эти данные в вашем браузере, чтобы попасть в настройки Tenda F3.

Введите пароль от имени Admin

Перейдите в подменю «Инструменты системы - Изменить пароль».

Введите дважды новый пароль администратора

Укажите прежний пароль администратора Tenda N301. Введите и повторите ввод нового пароля, нажмите клавишу «Сохранить».

В русском переводе веб-интерфейса иногда встречаются грубые ошибки - это не редкость для низкобюджетной китайской техники. Эти ошибки исправлены по ходу изложения инструкций по Tenda F3.

Приступите к общим настройкам Tenda N301.

Настройка LAN-сети роутера Tenda F3

Прежде чем настроить интернет и IPTV, открыть порты до нужного сервера вашей ЛВС и оптимизировать управление настройками Tenda F3, наладьте работу локальной сети роутера, включая связь гаджетов с маршрутизатором по Wi-Fi.

Проверка LAN на роутере Tenda F3

LAN-настройка задаёт адрес шлюза - без него маршрутизатор не работал бы. Дайте команду «Основные настройки - Настройка LAN» и введите IP основного шлюза роутера.

Введите IP основного шлюза

DHCP-сервер раздаёт IP-адреса из диапазона нумерации, указанного в дополнительных настройках LAN. Функция DHCP избавляет пользователей от необходимости настраивать каждый свой гаджет отдельно.


Роутер перезапустится с новыми настройками LAN. Остальные IP-адреса, если вы указали малый интервал, не охватывающий 253 адреса в правиле локальной сети, доступны для ручной настройки на самих устройствах.

Например, когда диапазон IP лежит в пределах 192.168.0.100 - 192.168.0.200, то, настраивая вручную очередной гаджет или ПК, можно указать адрес из промежутка 192.168.0.2 – 192.168.0.99 или 192.168.0.201 - 192.168.0.254.

Настройки Wi-Fi на Tenda F3

Настройка Wi-Fi включает в себя конфигурацию режима репитера. Ретранслятор Wi-Fi не только раздаёт интернет, но и потребляет трафик с других роутеров, где уже есть выход в Сеть, а также развёртывает беспроводную локальную сеть (WLAN).

Режим точки доступа на Tenda F3

Необходимо не только настроить параметры сети Wi-Fi, но и создать защищённую сеть, к которой не подключится ни один неучтённый смартфон, планшет, ноутбук или ПК.

Сделайте следующее.


Роутер Tenda F3 перезапустится с новыми параметрами Wi-Fi.

Настройка безопасности Wi-Fi

Чем более прогрессивная защита сети Wi-Fi применяется, тем больше вероятность, что она не будет обойдена посторонними людьми.


Теперь при первом входе с устройства, которое ещё не подключалось к роутеру с момента изменения настроек безопасности, нужно будет либо ввести пароль сети Wi-Fi, либо нажать кнопку WPS на роутере.

Настройка репитера на Tenda F3 и выход в интернет

Прежде чем выходить в Сеть по кабелю WAN, полезно отработать доступ в Сеть, используя другой «раздатчик»: смартфон, планшет или ноутбук в режиме виртуального хотспота Wi-Fi, свой роутер 4G/Wi-Fi либо любой из соседских роутеров. Источником интернет-трафика служит также открытая точка доступа ближайшего кафе, кинотеатра либо РЦ, или хотспот Wi-Fi в ближайшем парке отдыха.

Чтобы настроить соединение типа «беспроводной мост с ретранслятором Wi-Fi» (это и есть репитер), сделайте следующее.


Роутер перезапустится в режиме репитера, подключится к другому роутеру и получит доступ в Сеть через него. Ваши гаджеты и ПК выйдут в интернет, используя ретранслируемый с соседнего роутера трафик.

Настройка интернета на роутере Tenda F3

Интернет по кабелю, будь это ADSL- или (G)PON-доступ (второе есть не что иное, как «оптика в дом/квартиру»), использует последние достижения, включая VPN-шифрование трафика по технологии PPTP/L2TP.

Настройка PPPoE-доступа на Tenda F3

PPPoE - высокоскоростной протокол, использующий проверку пользователя по логину и паролю. Без авторизации по паролю выхода в Сеть попросту не будет.


Роутер подключится к Сети, используя PPPoE-протокол.

Настройка PPTP на Tenda F3

PPTP-протокол - это шифрование VPN, применяемое в любых незащищённых сетях. Шифрование необходимо, когда, например, используются файлообменные и пиринговые сети - в частности, BitTorrent, DirectConnect++, eDonkey и другие сервисы.

В качестве примера - обобщённый веб-интерфейс роутеров Tenda.


Tenda F3 подключится к Сети, используя PPTP-связь.

Настройка L2TP на Tenda F3

Как и протокол PPTP, L2TP - это следующая за PPTP надстройка шифрования VPN. Все российские провайдеры поддерживают PPTP и L2TP-шифрование.


Роутер Tenda F3 перезапустится и выйдет в интернет, используя L2TP-протокол.

Доступ в Сеть на F3 со статичными IP

Статичные IP-адреса - то, без чего не было бы интернета. Каждый сервер имеет свой статичный IP (шлюз). Услуга «Статический IP» также полезна, когда нужно организовать быстрый доступ к вашей локальной сети извне, например, удалённый доступ к объектам из любой точки Земли, на которых имеется видеонаблюдение.


Роутер Tenda F3 выйдет в Сеть, применяя фиксированные IP-адреса.

Настройка IP-телевидения на Tenda F3

Функция IPTV активна по умолчанию, подключите сразу приставку IPTV к любому из LAN-гнёзд Tenda F3. Никаких особых настроек IPTV для Tenda F3 не требуется. Включите монитор - на нём должен отобразиться перечень каналов, загружаемых с сервера провайдера, ведущего потоковое вещание. Услуга IPTV также должна быть у вас активна на тарифе (у чисто оптоволоконных провайдеров она входит в оплату тарифа).

Некоторые распространители заявляют об отсутствии поддержки услуги IPTV частью моделей роутеров Tenda. Выход - попытаться найти готовый программный «кастом» для F3 размером менее 2 МБ. Либо, если вы хорошо разбираетесь в программировании, обработать имеющуюся (или её свежее обновление), сделав на всякий случай «бэкап» (резервное копирование) содержимого флеш-памяти, используя, скорее всего, операционную систему Linux и вспомогательные утилиты под неё. Все операции по перепрограммированию Tenda F3 выполняются через LAN-кабель - на ваш страх и риск.

Проброс портов на Tenda F3

Проброс портов нужен, когда, например, в игровом зале интернет-кафе на ПК администратора работает игровой сервер с доступом в Сеть (многопользовательские игры для людей из разных городов).

Инструментарий программного проброса портов на роутерах Tenda дружественен, и значительно упрощён.


Роутер N301 перезапустится и приступит к работе с портами до нужного сервера в соответствии с указанными шаблонами проброса портов. Войдите с любого ПК или гаджета на сервер, которому открыты порты, и введите в адресной строке браузера IP-адрес и порт, например, 192.168.0.11:301 (если, например, до сервера 192.168.0.11 были открыты порты 300–400).

Управление настройками Tenda F3

Полное управление настройками роутера Tenda F3 включает в себя:

  • сброс настроек роутера к заводским;
  • перезапуск роутера (если программная неполадка, например, «зависание»);
  • обновление или переустановка прошивки.

Tenda N301 также поддерживает резервное копирование настроек, а также их восстановление из заранее созданной копии. Копия настроек может быть сохранена в отдельный файл. Помимо всего вышеперечисленного, поддерживается удалённое веб-управление роутером - для этого нужна услуга «Статичный IP», получаемая у вашего провайдера.

Сброс настроек роутера Tenda F3

Программный сброс роутера Tenda F3 выполняется из подменю «Системные инструменты - Заводские настройки».

Кнопка сброса настроек отменит все изменённые до этого настройки F3

Одноимённая кнопка сброса роутера к исходным настройкам позволит после перезапуска Tenda N301 заново перенастроить интернет, локальную сеть и IPTV, а также проверить параметры Wi-Fi, если что-то пошло не так.

Обновление прошивки роутера Tenda F3

Заранее подпишитесь на свежие обновления для модели F3. Установка прошивки от другой модели роутера Tenda может привести к необходимости полного перепрограммирования роутера, чего не всегда можно добиться в домашних условиях, имея под рукой лишь подключение по LAN-кабелю.

Выберите прошивку и подтвердите её закачку в роутер

По команде «Системные инструменты - Обновление встроенного ПО» открывается средство обновления/переустановки текущей версии прошивки. Кнопка «Обзор» позволяет найти заранее скачанный файл прошивки для F3, используя встроенный «Проводник Windows», после чего следует нажать одноимённую кнопку обновления прошивки. Роутер загрузит и установит прошивку, перезапустится. Возможно, будут удалены все ваши предыдущие настройки.

Видео: прошивка и настройка роутера Tenda F3

НЕТ

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

НЕТ Позиции временно нет на складе, но со временем она может вновь появиться в продаже. Вы можете , чтобы получить письмо с уведомлением о поступлении товара в продажу.

В данной статье мы рассмотрим 3 вида современной оперативной памяти для настольных компьютеров:

  • DDR - является самым старым видом оперативной памяти, которую можно еще сегодня купить, но ее рассвет уже прошел, и это самый старый вид оперативной памяти, который мы рассмотрим. Вам придется найти далеко не новые материнские платы и процессоры которые используют этот вид оперативной памяти, хотя множество существующих систем используют DDR оперативную память. Рабочее напряжение DDR - 2.5 вольт (обычно увеличивается при разгоне процессора), и является наибольшим потребителем электроэнергии из рассматриваемых нами 3 видов памяти.
  • DDR2 - это наиболее распространенный вид памяти, который используется в современных компьютерах. Это не самый старый, но и не новейший вид оперативной памяти. DDR2 в общем работает быстрее чем DDR, и поэтому DDR2 имеет скорость передачи данных больше чем в предыдущей модели (самая медленная модель DDR2 по своей скорости равна самой быстрой модели DDR). DDR2 потребляет 1.8 вольт и, как в DDR, обычно увеличивается напряжение при разгоне процессора
  • DDR3 - быстрый и новый тип памяти. Опять же, DDR3 развивает скорость больше чем DDR2, и таким образом самая низкая скорость такая же как и самая быстрая скорость DDR2. DDR3 потребляет электроэнергию меньше других видов оперативной памяти. DDR3 потребляет 1.5 вольт, и немного больше при разгоне процессора

Таблица 1: Технические характеристики оперативной памяти по стандартам JEDEC

JEDEC - Joint Electron Device Engineering Council (Объединенный инженерный совет по электронным устройствам)

Важнейшей характеристикой, от которой зависит производительность памяти, является ее пропускная способность, выражающаяся как произведение частоты системной шины на объем данных, передаваемых за один такт. Современная память имеет шину шириной 64 бита (или 8 байт), поэтому пропускная способность памяти типа DDR400, составляет 400 МГц х 8 Байт = 3200 Мбайт в секунду (или 3.2 Гбайт/с). Отсюда, следует и другое обозначение памяти такого типа - PC3200. В последнее время часто используется двухканальное подключение памяти, при котором ее пропускная способность (теоретическая) удваивается. Таким образом, в случае с двумя модулями DDR400 мы получим максимально возможную скорость обмена данных 6.4 Гбайт/с.

Но на максимальную производительность памяти также влияет такие важный параметры как "тайминги памяти".

Известно, что логическая структура банка памяти представляет собой двумерный массив - простейшую матрицу, каждая ячейка которой имеет свой адрес, номер строки и номер столбца. Чтобы считать содержимое произвольной ячейки массива, контроллер памяти должен задать номер строки RAS (Row Adress Strobe) и номер столбца CAS (Column Adress Strobe), из которых и считываются данные. Понятно, что между подачей команды и ее выполнением всегда будет какая-то задержка (латентность памяти), вот ее-то и характеризуют эти самые тайминги. Существует множество различных параметров, которые определяют тайминги, но чаще всего используются четыре из них:

  • CAS Latency (CAS) - задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
  • RAS to CAS Delay (tRCD) - количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
  • Row Precharge (tRP) - время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
  • Activate to Precharge (tRAS) - время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Если вы увидите на модулях обозначения "2-2-2-5" или "3-4-4-7", можете не сомневаться, это упомянутые выше параметры: CAS-tRCD-tRP-tRAS.

Стандартные значения CAS Latency для памяти DDR - 2 и 2.5 такта, где CAS Latency 2 означает, что данные будут получены только через два такта после получения команды Read. В некоторых системах возможны значения 3 или 1.5, а для DDR2-800, к примеру, последняя версия стандарта JEDEC определяет этот параметр в диапазоне от 4 до 6 тактов, при том, что 4 - экстремальный вариант для отборных "оверклокерских" микросхем. Задержка RAS-CAS и RAS Precharge обычно бывает 2, 3, 4 или 5 тактов, а tRAS - чуть больше, от 5 до 15 тактов. Естественно, чем ниже эти тайминги (при одной и той же тактовой частоте), тем выше производительность памяти. Например, модуль с латентностью CAS 2,5 обычно работает лучше, чем с латентностью 3,0. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте.

В таблицах 2-4 предоставлены общие скорости памяти DDR, DDR2, DDR3 и спецификации:

Таблица 2: Общие скорости памяти DDR и спецификации

Таблица 3: Общие скорости памяти DDR2 и спецификации

Тип Частота шины Скорость передачи данных Тайминги Заметки
PC3-8500 533 1066 7-7-7-20 чаще называемые DDR3-1066
PC3-10666 667 1333 7-7-7-20 чаще называемые DDR3-1333
PC3-12800 800 1600 9-9-9-24 чаще называемые DDR3-1600
PC3-14400 900 1800 9-9-9-24 чаще называемые DDR3-1800
PC3-16000 1000 2000 TBD чаще называемые DDR3-2000

Таблица 4: Общие скорости памяти DDR3 и спецификации

DDR3 можно назвать новичком среди моделей памяти. Модули памяти этого вида, доступны только около года. Эффективность этой памяти продолжает расти, только недавно достигла границ JEDEC, и вышла за эти границы. Сегодня DDR3-1600 (высшая скорость JEDEC) широко доступна, и все больше производителей уже предлагают DDR3-1800). Прототипы DDR3-2000 показаны на современном рынке, и в продажу должны поступить в конце этого года - начале следующего года.

Процент поступления на рынок модулей памяти DDR3, согласно с данными производителей, все еще небольшая, в пределах 1%-2%, и это значит, что DDR3 должен пройти длинный путь прежде чем будет соответствовать продажам DDR (все еще находиться в пределах 12%-16%) и это позволит DDR3 приблизиться к продажам DDR2. (25%-35% по показателям производителей).

ВведениеК тестированию зависимости производительности современных платформ верхнего уровня от характеристик подсистемы памяти мы обращаемся не слишком часто. Не такая это животрепещущая и интересующая широкие массы пользователей тема. Все давно привыкли к тому, что частота работы DDR3 SDRAM и её тайминги не оказывают заметного влияния на быстродействие, а потому выбору памяти отводится не слишком большое внимание. Подбор модулей памяти при сборке новых систем в большинстве случаев происходит по остаточному принципу, причём таким подходом грешат даже многие энтузиасты. Фактически, единственная характеристика памяти, о которой задумываются серьёзно – это её объём. Все знают, что нехватка оперативной памяти может приводить к свопу приложений и операционной системы, и это в конечном итоге вызывает ухудшение отзывчивости компьютера. А вот о том, что на скорость работы могут существенно повлиять и скоростные спецификации модулей памяти, думать как-то не принято.

Сложилась такая ситуация не на пустом месте. Раньше от таких параметров DDR3 SDRAM, как её частота и задержки, зависело, и правда, не слишком многое. Объяснялось это сразу несколькими причинами. Во-первых, некоторое время тому назад процессоры обзавелись значительными объёмами кэш-памяти, снабжённой эффективными алгоритмами предварительной выборки данных, которые хорошо скрывают от программ реальную скорость обмена информацией с памятью. Во-вторых, скорости и латентности доступных на рынке до недавнего времени вариантов DDR3 SDRAM на самом деле различались не слишком сильно. И, в-третьих, ворочающие действительно большими объёмами информации приложения в обиходе у обычных пользователей встречались нечасто. Вследствие всего этого и возникло суждение, что быстрая DDR3 SDRAM – это своего рода статусный товар для перфекционистов, а обычным людям она не нужна.

Однако это мнение, которое ещё пару лет тому назад можно было считать вполне обоснованным, на сегодняшний день несколько устарело, и его нетрудно подвергнуть критике. Главное: сегодняшние приложения сильно изменились по своей структуре, теперь они оперируют гораздо большими, чем ранее, объёмами информации. Популярна стала обработка цифровых фотографий размером в несколько десятков мегапикселей, многие пользователи занялись творческой работой с видеофайлами, снятыми в FullHD или даже 4K-разрешении, а современные 3D-игры дошли до взаимодействия с воистину колоссальными объёмами текстурной информации. Такие массивы данных уже не могут уместиться в процессорном кэше, вместимость которого, кстати, в течение нескольких последних лет практически прекратила свой рост.

Доступная же на рынке память, напротив, существенно расширила своё видовое разнообразие. Частоты представленной на прилавках компьютерных магазинов DDR3 SDRAM отличаются сегодня более чем в два раза, так что за счёт одного только выбора тех или иных модулей можно варьировать пропускную способность двухканальной подсистемы памяти в очень широких пределах: от 21 до 47 Гбайт/с и даже больше. Не следует забывать и о том, что новейшие процессоры Haswell стали заметно производительнее своих предшественников, а, следовательно, их потребность в быстром получении данных для обработки возросла. Поэтому, вполне можно ожидать, что тот критический рубеж, до которого скорости небыстрой памяти вроде DDR3-1333 или DDR3-1600 вполне хватало для подавляющего большинства нужд, наконец-то пройден. Иными словами, аргументов в пользу исследования зависимости реальной производительности современных систем от параметров подсистемы памяти набирается предостаточно.

Но есть и ещё одна причина, по которой сегодня мы решили обратиться к тестам DDR3 SDRAM с различными частотами и таймингами. Дело в том, что возможность исследования тонкостей работы такой памяти на актуальном материале сейчас предоставляется нам практически в последний раз. Начиная со второй половины этого года на рынок настольных систем постепенно начнёт внедряться более быстрая, экономичная и прогрессивная DDR4 SDRAM. Впервые её поддержка появится в процессорах Haswell-E, а затем, в 2015-2016 годах, приход DDR4 SDRAM состоится и в перспективной платформе LGA 1151 и процессорах Skylake. Иными словами, тесты DDR3 SDRAM не просто давно назрели, но и нет никакой возможности тянуть с ними дальше. Поэтому о том, что может предложить разная DDR3 SDRAM для платформ на базе наиболее востребованных на данный момент процессоров Haswell, мы поговорим именно сейчас.

Особенности контроллера памяти Haswell

На первый взгляд, контроллер памяти современных процессоров для платформы LGA 1150, известных под кодовым именем Haswell, не особенно отличается от контроллеров памяти предшественников – Sandy Bridge и Ivy Bridge. Эволюция алгоритмов работы с памятью в интеловских процессорах, была долгой и многоступенчатой. Но в последних поколениях CPU идейное развитие, похоже, подошло к финалу – современные технологии взаимодействия с DDR3-памятью не просто хорошо оптимизированы, а отточены до совершенства. Основным шагом, поставившим современные контроллеры Intel на голову выше прочих решений, стало введение для соединения всех структурных единиц в процессорном дизайне кольцевой шины Ring Bus, и сделано это было ещё в Sandy Bridge. Благодаря кольцевой шине все вычислительные и графические ресурсы процессора получили быстрый и равноправный доступ как к кэшу третьего уровня, так и к контроллеру памяти. В результате, практическая пропускная способность подсистемы памяти существенно возросла, а её латентности уменьшились.

Однако заложенный ранее в виде кольцевой шины фундамент контроллера памяти в Haswell всё-таки претерпел некоторые важные изменения. Дело в том, что в более ранних процессорных дизайнах кольцевая шина вместе с кэш-памятью третьего уровня работала синхронно с вычислительными ядрами CPU. И это создавало некоторые неудобства при переходе процессора в энергосберегающие состояния: L3-кэш и кольцевая шина могли снизить своё быстродействие вместе с вычислительными ядрами несмотря на то, что эти ресурсы оставались востребованными графическим ядром. Чтобы такие неприятные коллизии больше не возникали, в Haswell шина Ring Bus и L3-кэш были выделены в отдельный домен и получили собственную независимую частоту.



Введение возможности асинхронного тактования кольцевой внутрипроцессорной шины, естественно, внесло неминуемые задержки в операции с L3-кэшем и контроллером памяти, однако интеловские разработчики попытались противопоставить замедлению работы подсистемы памяти различные микроархитектурные усовершенствования. Так, кэш третьего уровня получил две параллельных очереди для обработки запросов разного назначения, а в контроллере памяти были увеличены очереди и улучшен планировщик.

К тому же, асинхронность кольцевой шины, L3-кэша и контроллера памяти проявляется далеко не всегда. В реальности, если не брать во внимание энергосберегающие состояния, их частота почти всегда совпадает с частотой вычислительных ядер. Расхождения возникают лишь в двух ситуациях: при переходе процессора в турбированные режимы, либо при разгоне. Но даже в этих случаях частота L3-кэша и внутрипроцессорной шины остаётся близка к частоте вычислительных ядер, и разница между ними обычно не превышает 300-500 МГц, что, как показывает практика, почти не влияет на итоговую производительность.

При прямом сравнении быстродействия контроллера памяти Haswell и контроллера памяти Ivy Bridge, оказывается, что при одинаковых настройках более новый вариант обеспечивает в целом близкую пропускную способность и латентность. Например, в этом можно убедиться на примере результатов тестов в AIDA64.



Ivy Bridge, 4 ядра, 4.0 ГГц, DDR3-1600 9-9-9-24-1N



Haswell, 4 ядра, 4.0 ГГц, DDR3-1600 9-9-9-24-1N


Впрочем, как видно по приведённым результатам, несмотря на все старания инженеров Intel, память в Haswell всё же работает чуть медленнее, чем в LGA 1155-системах прошлого покления, основанных на процессоре Ivy Bridge. И если отличие в практической пропускной способности почти незаметно, то латентность подсистемы памяти у Haswell оказывается примерно на 9 процентов выше. Это – плата за асинхронность.

Второе существенное изменение, касающееся работы подсистемы памяти в LGA 1150-системах, относится к конструкционному исполнению материнских плат. Разработанный Intel эталонный дизайн разводки для слотов DIMM теперь основывается на T-топологии, которая уравнивает слоты DIMM, подключенные к каждому из каналов, в правах. Это улучшает стабильность контроллера памяти и обеспечивает его совместимость с более широким набором различных модулей памяти и их конфигураций. Особенно приятно здесь то, что контроллер памяти процессоров Haswell получил возможность поддерживать скоростные режимы работы даже при использовании четырёх двухсторонних модулей, установленных во все доступные слоты DIMM. Учитывая же, что максимальный объём имеющихся на рынке планок DDR3-памяти составляет 8 Гбайт, платформа LGA 1150 может обеспечить беспроблемную работу 32-гигабайтных массивов оверклокерской памяти с высокими частотами и низкими задержками.

В остальном же всё осталось, как и раньше. Контроллер памяти у Haswell двухканальный, способный работать как в симметричном двухканальном, так и в одноканальном режимах. Осталась поддержка и технологии Flex Memory, позволяющей использовать двухканальный доступ в ассиметричных конфигурациях, когда объёмы и характеристики установленных в разных каналах памяти модулей не совпадают.

Как и в процессорах Ivy Bridge, частота DDR3 SDRAM у Haswell изменяется с дискретностью 266 или 200 МГц, что даёт определённую гибкость в выборе режимов и серьёзно расширяет множество доступных для контроллера частот работы DDR3 SDRAM. При этом формально контроллером поддерживается лишь DDR3-1333 и DDR3-1600 SDRAM, однако все сделанные в нём усовершенствования позволяют беспрепятственно использовать в платформе LGA 1150 память, работающую на значительно более высоких частотах. Так, имеющийся набор множителей для частоты памяти позволяет активировать режимы вплоть до DDR3-2933, причём столь скоростные режимы действительно достижимы, никаких проблем со стабильностью при их задействовании не наблюдается.

Если же к этому добавить появившуюся возможность разгона базовой частоты Haswell со 100 до 125 МГц, то доступные для задействования частоты памяти вырастут до 3666 МГц. Причём, в сети можно встретить массу свидетельств того, что и в таком состоянии в LGA 1150-системах избранная оверклокерская память может быть вполне работоспособна.



Как известно, важные изменения в Haswell произошли с системой питания. В этом процессоре появился встроенный преобразователь питания, самостоятельно формирующий все необходимые для работы CPU напряжения. От материнской платы теперь зависит только два напряжения: входное для процессора – Vccin и напряжение, подаваемое на модули питания, – Vddq. Все же внутренние процессорные напряжения, в том числе сигнальное напряжение кольцевой шины и напряжение питания L3-кэша и контроллера памяти, формируются процессорной силовой схемой самостоятельно. Такое нововведение освободило напряжение на памяти от каких-либо ограничений, и в процессорах Haswell допускается безопасное его увеличение выше уровня в 1,65 В. Иными словами, в LGA 1150 разгонять память с изменением её напряжения питания можно как угодно, не беспокоясь о возможной деградации процессорного контроллера памяти.



Таким образом, совокупность нововведений сделала новый контроллер DDR3 SDRAM процессоров Haswell не просто высокоэффективным, но и хорошо подходящим для работы с оверклокерскими модулями памяти. А это значит, что у энтузиастов в выборе памяти для LGA 1150 систем есть огромная свобода, которая вполне может повлиять на итоговое быстродействие.

G.Skill F3-2933C12D-8GTXDG

Прежде чем перейти к результатам тестирования, несколько слов необходимо сказать о тех модулях памяти, благодаря которым это исследование стало возможным. Для того чтобы получить максимально полную картину зависимости производительности от параметров подсистемы памяти, нам был нужен комплект модулей DDR3 SDRAM с предельно возможной частотой. Таким комплектам памяти свойственна наибольшая гибкость. Их не обязательно эксплуатировать на заявленных для них космических частотах, просто для своих флагманских оверклокерских планок DDR3 производители отбирают наиболее выигрышные чипы, сохраняющие стабильность на максимально широком поле настроек. Если же принять во внимание тот факт, что контроллер памяти Haswell способен обеспечить режимы вплоть до DDR3-2933, именно такую DDR3 мы и захотели получить на тестирование.

Серийный выпуск оверклокерских комплектов DDR3-2933 SDRAM на данный момент освоило лишь несколько производителей. В их числе: ADATA, Corsair, Geil и G.Skill. И именно последняя компания из этого списка откликнулась на нашу просьбу предоставить нам на тесты свой флагманский продукт, благодаря чему мы и получили в распоряжение набор G.Skill TridentX F3-2933C12D-8GTXDG, состоящий из пары 4-гигабайтных высокоскоростных «планок». Рассчитана такая память на эксплуатацию при частоте 2933 МГц с номинальными таймингами 12-14-14-35-2N, однако, как мы смогли убедиться в процессе тестов, на деле она способна работать и в немного более скоростном режиме при установке Command Rate 1N.



Спецификации этого набора оверклокерской памяти выглядят следующим образом:

Двухканальный комплект состоит из двух модулей по 4 Гбайт каждый;
Номинальная частота: 2933 МГц;
Тайминги: 12-14-14-35-2N;
Рабочее напряжение 1,65 В.

Модули, входящие в рассматриваемый комплект, с двух сторон закрыты фирменными двухцветными красно-чёрными алюминиевыми теплорассеивателями серии TridentX. Особенность этих радиаторов – двухъярусная сочленённая конструкция. В отличие от многих других производителей, G.Skill вняла многочисленным жалобам пользователей на то, что высокие радиаторы плохо совмещаются с массивными процессорными кулерами. Поэтому радиаторы серии TridentX сделаны разборными. Верхняя (красная) их часть легко снимается после откручивания двух крепёжных винтов, и в «облегчённом» варианте высота модулей сокращается с 54 мм до всего лишь 39 мм. В этом случае проблем механической совместимости с массивными кулерами на CPU не возникает, а оставшейся части радиатора вполне хватает для эффективного отвода тепла от чипов памяти.



Для обеспечения простоты установки и конфигурирования модули G.Skill TridentX F3-2933C12D-8GTXDG обладают поддержкой технологии XMP 1.3. В единственном подготовленном XMP-профиле содержатся задекларированные в спецификации частота и задержки. Если же добавить к этому гибкость и простоту конфигурирования контроллера памяти процессоров Haswell, практический запуск этой памяти на частоте 2933 МГц не составляет никакого труда. Формула «воткнул - и работай» в данном случае превосходно применима. Для обеспечения стабильной работы контроллера памяти не потребуется, скорее всего, даже дополнительного увеличения каких-либо внутрипроцессорных напряжений. Впрочем, на всякий случай для обеспечения максимальной совместимости в SPD рассматриваемых модулей прописана конфигурация для разнообразных вариантов DDR3-1333.



В основе скоростной памяти G.Skill лежат весьма популярные в среде оверклокеров чипы Hynix H5TQ4G83MFR, которые смонтированы на специально разработанной восьмислойной печатной плате. Такой дизайн, отличающийся отменным разгонным потенциалом и низким тепловыделением, отлично себя зарекомендовал, и его применение в памяти, нацеленной на покорение сверхвысоких частот, вполне закономерно. Практическая проверка показала: в LGA 1150-системе комплект G.Skill TridentX F3-2933C12D-8GTXDG может превосходно работать на частоте 2933 МГц с таймингами 12-14-14-35-1N.



Надо сказать, что модули G.Skill TridentX F3-2933C12D-8GTXDG специально ориентированы на системы с процессорами Haswell, которые основываются на материнских платах на базе Intel Z87. Частота памяти DDR3-2933 МГц доступна пока лишь в таких платформах. При этом рассматриваемые модули имеют достаточно обширный список протестированных на совместимость материнских плат. Фактически, можно говорить о том, что использование такой памяти не вводит никаких ограничений на выбор материнской платы. Большинство моделей материнок средней и верхней ценовой категории всех ведущих производителей могут стабильно работать с комплектом G.Skill TridentX F3-2933C12D-8GTXDG, что является его важным преимуществом.



Фактически, единственный минус скоростных комплектов DDR3 SDRAM вроде рассматриваемого, заключается в их значительной цене. Например, набор G.Skill TridentX F3-2933C12D-8GTXDG стоит дороже аналогичного двухканального комплекта DDR3-1866 в несколько раз. Так что обоснованность выбора такого варианта с точки зрения рационального покупателя находится под большим вопросом. Это – эксклюзивное предложение для энтузиастов высокой производительности.

Описание тестовых систем

В подготовке этого материала была задействована платформа LGA 1150, построенная на современной материнской плате с набором логики Intel Z87, в которую мы устанавливали оверклокерский процессор Core i5-4670K с дизайном Haswell. Однако главная роль в исследовании зависимости производительности от настроек подсистемы памяти досталась высокоскоростному комплекту памяти G.Skill F3-2933C12D-8GTXDG стандарта DDR3-2933, предоставленному нам для этого тестирования производителем.

В целом в тестировании были задействованы следующие аппаратные и программные компоненты:

Процессор: Intel Core i5-4670K, разогнан до 4,4 ГГц (Haswell, 4 ядра, 6 Мбайт L3);
Процессорный кулер: NZXT Havik 140;
Материнская плата: Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
Память: 2x4 Гбайт, DDR3-2933 SDRAM, 12-14-14-35 (G.Skill TridentX F3-2933C12D-8GTXDG).
Графическая карта: NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
Дисковая подсистема: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Enterprise x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 9.4.0.1027;
Intel Management Engine Driver 9.0.2.1345;
Intel Rapid Storage Technology 12.9.0.1001;
NVIDIA GeForce Driver 334.89.

Заметьте, в настоящем тестировании мы использовали разогнанный до 4,4 ГГц процессор Haswell. Дело в том, что внештатное повышение тактовой частоты дополнительно увеличивает производительность и позволяет получить более ярко выраженную картину зависимости быстродействия от параметров подсистемы памяти.

Частота против таймингов

Каждый раз, когда речь заходит об оптимальном выборе памяти, рано или поздно встаёт вопрос о том, к чему стоит стремиться в первую очередь: к повышению частоты работы подсистемы памяти или же к снижению её задержек. Однако на этот раз мы избежим подробных тестов модулей DDR3 SDRAM, отличающихся одними лишь таймингами. Дело в том, что с выходом каждой новой платформы влияние задержек на общую производительность уменьшалось, и к настоящему времени оно, пожалуй, уже прошло критическую точку. Конечно, зависимость производительности от таймингов всё ещё возможно заметить, но по сравнению с тем эффектом, который оказывает на быстродействие системы изменение частоты DDR3 SDRAM, она стала незначительной.

Тому есть две основные причины. Во-первых, с ростом частоты работы памяти её минимальная латентность в любом случае увеличивается, и на этом фоне относительная величина прибавки варьируемых задержек становится всё менее и менее заметной. Одно дело - увеличение тайминга на пару циклов с трёх-четырёх (как было в случае DDR2 SDRAM), а другое - с девяти-десяти (в случае скоростной DDR3 SDRAM). В первом случае латентность возрастает на 50-70 процентов, а во втором - лишь на 20-22 процента. Соответственно, разница между различными вариантами таймингов у современной памяти с практической точки зрения уже далеко не так существенна, как ранее. Кроме того, на потерю схемой таймингов своего первоначального значения повлияло и общее совершенствование схемы работы процессоров с памятью. Применяемое в современных процессорах многоуровневое кэширование, а также алгоритмы предварительной выборки серьёзно маскирует реальную латентность оперативной памяти, сдвигая акценты на её пропускную способность.

Собственно, отсутствие нужды в гонке за низкими таймингами у высокочастотной DDR3 SDRAM давно уже осознали производители оверклокерских комплектов памяти. Предложения с латентностью 7-8 циклов давно исчезли из продажи, и сейчас на прилавках магазинов достаточно трудно найти модули DDR3 SDRAM с параметром CAS Latency менее 9-10 циклов. Число же предложений со сверхвысокими частотами и большими задержками при этом неуклонно растёт.

Впрочем, мы бы не хотели оставлять голословными утверждения о незначительности влияния таймингов на производительность подсистемы памяти в современных платформах, построенных на процессорах Haswell. Поэтому мы провели и практическое тестирование, в рамках которого сравнили реальное быстродействие идентичных систем, укомплектованных DDR3-1600 и DDR3-1867 SDRAM с различными задержками.












Приведённые графики выступают яркой иллюстрацией всего вышесказанного. Увеличение частоты работы памяти на 266 МГц оказывается заметно более эффективным, нежели снижение всех задержек на 3-4 цикла. И даже с точки зрения реальной латентности, которая реагирует на изменение задержек наиболее чутко, DDR3-1867 с достаточно слабыми таймингами 10-10-10-29 оказывается лучше, чем отсутствующая в продаже DDR3-1600 с агрессивными задержками 7-7-7-21. Если же судить о быстродействии подсистемы памяти, опираясь на показатели реальной пропускной способности, то DDR3-1600 не может сравниться со слегка более высокочастотным вариантом вообще ни при каких обстоятельствах.

Иными словами, задержки памяти в современных системах действительно стали совсем малозначительным фактором. Поэтому при выборе DDR3 SDRAM для процессоров Haswell в первую очередь надо обращать внимание на частоту её работы, а низкая CAS Latency и прочие подобные величины практически не сказываются на реальном быстродействии. Аналогичным образом следует поступать и при настройке и разгоне системы - сначала следует бороться за повышение частоты работы DDR3 SDRAM, а уж потом, при особом желании, заниматься минимизацией задержек.

Зависимость производительности от частоты памяти

Переходим к основной части исследования, ради которой всё и затевалось: попробуем определить, насколько сильно параметры подсистемы памяти в платформе LGA 1150 влияют на быстродействие в обычных общеупотребительных приложениях. Как было показано выше, тайминги DDR3 SDRAM в современных компьютерных системах оказывают крайне незначительное влияние даже на результаты синтетических тестов. Поэтому в подробном практическом тестировании мы решили отказаться от сравнения подсистем памяти с одинаковой частотой, но разными задержками, сосредоточившись на более ценной с практической точки зрения задаче сравнения DDR3 с различной частотой. Тем более, большинство имеющихся в продаже комплектов оверклокерской памяти отличаются друг от друга одними только задержками крайне редко. Частоты же имеющейся на рынке DDR3 SDRAM в настоящее время чрезвычайно разнообразны и, желая покрыть полный спектр доступных для использования вариантов, мы протестировали систему на базе Haswell с различными типами памяти, начиная с DDR3-1333 и заканчивая DDR3-2933 SDRAM. При этом задержки устанавливались по наиболее популярной для каждой частоты схеме. Конкретнее это означает, что испытания проводились со следующими вариантами двухканальной DDR3-памяти:

DDR3-1333, 9-9-9-24-1N;
DDR3-1600, 9-9-9-24-1N;
DDR3-1866, 9-10-9-28-1N;
DDR3-2133, 11-11-11-31-1N;
DDR3-2400, 11-13-13-31-1N;
DDR3-2666, 11-13-13-35-1N;
DDR3-2933, 12-14-14-35-1N.

Кроме настроек подсистемы памяти в тестовой платформе, основанной на разогнанном до частоты 4,4 ГГц четырёхъядерном процессоре поколения Haswell, ровным счётом ничего не менялось.

Синтетические тесты

Начать мы решили с измерения практической пропускной способности и латентности. Для этого использовался бенчмарк Cache and Memory из утилиты AIDA64 4.20.2820.









Как видно из результатов, варьируя частоту работы DDR3-памяти, можно добиться почти двукратного изменения практической пропускной способности. Что, в общем-то, вполне закономерно: частота и теоретическая полоса пропускания DDR3-1333 и DDR3-2933 различается более чем в два раза. Что же вызывает некоторое удивление, это то, что зависимость результатов от частоты оказывается далеко не линейной. Наиболее быстрые режимы памяти по каким-то причинам не обеспечивают максимальную пропускную способность. Лучший результат демонстрирует DDR3-2400 и DDR3-2666. Дальнейшее же увеличение частоты влечёт за собой некоторое падение в скорости обмена данными с памятью.

Впрочем, практическая латентность изменяется немного по другому закону.



Задержки при увеличении частоты DDR3 SDRAM снижаются в любом случае, включая и переход к наиболее скоростным режимам. Таким образом, оверклокерская DDR3-2666 и DDR3-2933 может оказаться далеко не бесполезной с точки зрения быстродействия обычных приложений. Чтобы проверить это, обратимся к тестам в реальных задачах.

Комплексная производительность

Для анализа комплексной средневзвешенной производительности в общеупотребительных применениях мы использовали популярный бенчмарк Futuremark PCMark 8 2.0, а, конкретнее, его три тестовые трассы: Home, моделирующую типичную интернет-активность домашних пользователей в, плюс их работу в текстовых и графических редакторах; Work, моделирующую работу с различными офисными приложениями и в интернет; и Creative, воспроизводящую поведение продвинутых пользователей, увлекающихся серьёзной обработкой фото и видео контента, 3D-играми, а также активно использующих сеть для получения информации и общения.









Результаты получились явно не в пользу быстрых вариантов DDR3 SDRAM. В синтетических тестах памяти всё выглядело очень красиво, но Futuremark PCMark 8 2.0 рисует диаметрально противоположную картинку. Если верить показателям производительности этого теста, то правы оказываются те пользователи, которые считают, что за последние 10-15 лет скоростные параметры подсистемы памяти так и не получили достаточного значения. Отличия в производительности систем с быстрой и медленной двухканальной DDR3 SDRAM не превышают 1-2 процентов.

Однако мы не будем полагаться на один лишь только комплексный тестовый пакет и дополнительно посмотрим на скорость работы в популярных приложениях.

Тесты в приложениях

В Autodesk 3ds max 2014 мы измеряем скорость рендеринга в mental ray специально подготовленной сложной сцены.



На скорость финального рендеринга частота работы памяти оказывает крайне малозаметное влияние. Более чем двукратное увеличение пропускной способности DDR3 SDRAM позволяет получить лишь совсем несерьёзное преимущество на уровне одного процента.

Производительность в новом Adobe Premiere Pro CC тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



А вот тут, при обработке видеоконтента высокого разрешения, ситуация складывается уже совсем иначе. Разница в производительности системы с DDR3-1333 и с DDR3-2933 достигает 8 процентов, и незаметной её назвать никак нельзя. Иными словами, среди современных задач существуют и такие, для которых скорость памяти играет весьма заметное значение.

Кстати, если посмотреть на результаты более подробно, то становится очевидно, что наиболее выгодный для Premiere Pro тип памяти – это DDR3-2400. Дальнейшее повышение частоты уже не влечёт за собой заметного роста быстродействия, а вот цены на комплекты DDR3-2666 и DDR3-2933, напротив, заметно выше, чем у более медленных продуктов.

Измерение производительности в новом Adobe Photoshop CC мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



К числу приложений, чутко реагирующих на параметры подсистемы памяти, можно отнести и Photoshop. Платформа, снабжённая высокоскоростной двухканальной DDR3-2933 SDRAM, превосходит по скорости работы аналогичную платформу с DDR3-1333 на 12 процентов. Преимущество же «оптимального выбора», DDR3-2400 над повсеместно распространённой DDR3-1600 также хорошо заметно: оно достигает 8 процентов.

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.0, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Архивация файлов – такая задача, в которой можно было наблюдать хорошую масштабируемость производительности в зависимости от частоты памяти и ранее, в эпоху популярности процессоров под разъёмы LGA 1155, LGA 1156 и даже LGA 775. Ничего не изменилось и сейчас. Каждый 266-мегагерцовый шаг в частоте DDR3 SDRAM увеличивает скорость работы архиватора WinRAR на 3-4 процента. В целом же, DDR3-2933 позволяет процессору Haswell достичь на 23 процента более высокой производительности, чем в том случае, когда в системе установлена DDR3-1333.

Для оценки скорости перекодирования видео в формат H.264 использовался тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2389, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



А вот при транскодировании видео высокого разрешения масштабируемость производительности в зависимости от параметров подсистемы памяти не столь заметна. Преимущество DDR3-2400 над общеупотребительной DDR3-1600 составляет всего 3 процента, в то время как один 266-мегагерцовый шаг в частоте памяти позволяет добиться ускорения выполнения перекодирования примерно на 1 процент. Причём, после повышения частоты памяти за 2400-мегагерцовую отметку рост производительности становится ещё более неуловимым.

Игровая производительность

Самая интересная часть нашего тестирования – измерение игровой производительности. Дело в том, что современные 3D-игры относятся к числу задач, нуждающихся в быстрой памяти, и мы ожидаем, что при игровом использовании быстрая память сможет раскрыть свои преимущества в полной мере.

В то же время, производительность актуальных высокопроизводительных платформ в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании мы выбирали наиболее процессорозависимые игры, а измерение количества кадров провели дважды. Первым проходом тесты выполнялись без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки дают возможность оценить то, насколько нужна быстрая память игровым системам в принципе. То есть, позволяют строить догадки о том, как будут вести себя платформы с различной DDR3 SDRAM в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй же проход измерения производительности выполнялся с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности можно получить прямо сейчас – в современных условиях.












При измерении частоты кадров в 3D-играх с установкой пониженного разрешения оказывается, что современные шутеры легко можно отнести к числу задач, чрезвычайно отзывчивых к производительности подсистемы памяти. Как видно по результатам, одна лишь частота работы памяти может повысить производительность на треть – именно такая ситуация наблюдается в новом Thief. В других играх влияние памяти менее выражено, но, тем не менее, среднее различие в производительности основанной на Haswell платформы с медленной DDR3-1333 и оверклокерской DDR3-2933 составляет порядка 20 процентов. Иными словами, увеличение частоты DDR3 SDRAM на каждые 266 МГц увеличивает игровую производительность на 2-3 процента.

Впрочем, столь впечатляющая масштабируемость получена во многом благодаря тому, что мы целенаправленно разгрузили графическую подсистему. Если же в играх выставлять максимальные настройки качества, то картина будет такой.












Здесь влияние скорости памяти на производительность выражено гораздо менее явно. Если раньше различие в быстродействии систем с быстрой и медленной памятью доходило до десятков процентов, то выбор высокого качества изображения снижает максимальный прирост примерно на порядок. Впрочем, на примере Thief можно сделать вывод, что такая ситуация свойственна далеко не любым играм. Существуют ситуации, в которых частота DDR3-памяти может заметно повлиять на производительность и в режимах с максимальными настройками качества. Таким образом, бескомпромиссные геймеры, стремящиеся выжать максимум из своих систем, не должны пренебрегать скоростной памятью. Ситуации, когда именно эта составляющая платформы сможет оказать заметное влияние на производительность, отнюдь не невероятны.

Выводы

Производительность современных систем, построенных на процессорах поколения Haswell, продемонстрировала достаточно заметную зависимость от параметров подсистемы памяти, и в первую очередь, от частоты используемых модулей. Со всей определённостью можно сказать о том, что эпоха, когда параметры памяти практически ни на что не влияли, уже прошла. Сегодня одним только подбором характеристик установленных в системе планок DDR3 SDRAM можно увеличить скорость работы на 20-30 процентов.

Правда, столь явное влияние на быстродействие в приложениях скорость подсистемы памяти оказывает далеко не всегда. Среди распространённых задач, решаемых персональными компьютерами, есть как малочувствительные к производительности памяти, так и такие, для которых быстрая DDR3 SDRAM более чем важна. Обобщая результаты тестов можно сказать, что задумываться о выборе скоростных комплектов модулей DDR3 SDRAM стоит в двух случаях: либо при комплектовании игровых систем, либо при сборке домашних рабочих станций, направленных на обработку изображений и видео высокого разрешения.

При этом основное внимание в выборе памяти для LGA 1150-платформ верхнего уровня следует уделить частоте (естественно, после принятия взвешенного решения о необходимом объёме), а не задержкам. Представленные на прилавках магазинов комплекты DDR3 SDRAM мало отличаются по латентностям, зато их частоты различаются более чем вдвое. И это неспроста. Как показывает практика, именно частота DDR3 SDRAM оказывает первоочередное влияние на производительность.

Современные системы, построенные на процессорах Haswell, хорошо подготовлены для работы с высокоскоростной DDR3. Тактование памяти на частоте вплоть до 2933 МГц не вызывает никаких проблем и не требует каких-либо ухищрений в настройке. Поэтому такую память вполне можно было бы рекомендовать всем энтузиастам, если бы не одно но. Высокочастотная память несусветно дорога, поэтому заинтересовать она может разве только тех редких покупателей, которые не имеют никаких ограничений по бюджету. С точки же зрения здравого смысла наиболее интересным вариантом для высокопроизводительных систем имеет все шансы стать DDR3-2400 SDRAM. Оверклокерская наценка на такую память не слишком высока, а прирост быстродействия по сравнению со стандартными вариантами вроде DDR3-1600 она обеспечивает очень достойный. Более того, дальнейший рост частоты памяти, как показывают тесты, даёт заметно меньший эффект, но вот цена после перехода через 2400-мегагерцовую отметку взлетает астрономически.


Рекомендуем почитать

Наверх