Структурная схема передающего устройства. Структурные схемы радиопередающих устройств. Назначение и структурная схема радиопередатчика

Возможности 22.03.2019
Возможности

Передающее устройство первичной РЛС в значительной степени определяет ее тактико-технические характеристики и стоимость с учетом затрат на эксплуатацию. В современных импульсных РЛС применяются передатчики, выполненные по одно- или многокаскадной схеме. В однокаскадном передатчике роль оконечного каскада и одновременно возбудителя чаще всего выполняет магнетрон. Такие передатчики обычно имеют:

· небольшие габаритные размеры и массу,

· большой коэффициент полезного действия,

· невысокую стабильность частоты и фазы генерируемых колебаний (параметры колебаний существенно зависят от режима работы магнетрона и параметров его нагрузки).

Необходимость применения в РЛС цифровых систем СДЦ с высоким коэффициентом подавления помех от местных предметов приводит к высоким требованиям к фазовой стабильности колебаний зондирующего сигнала. В связи с этим магнетронные передатчики в настоящее время находят ограниченное применение в РЛС АС УВД.

Основной схемой передающего устройства перспективной РЛС АС УВД является многокаскадная:

· задающий генератор,

· умножители частоты,

· усилители мощности,

· выходной усилитель мощности.

Достоинство:

· высокая стабильность частоты и фазы генерируемых колебаний,

· истинно-когерентный метод селекции движущихся целей.

Недостаток:

· большие габариты и масса,

· невысокий КПД.

В качестве усилителей мощности в этих передатчиках чаще всего используются пролетные клистроны.

Передающая аппаратура двухчастотной импульсной РЛС содержит два передающих устройства - передатчики, которые отличаются друг от друга несущей частотой генерируемых сигналов. Каждый передатчик, выполненный по многокаскадной схеме, предназначен для генерирования последовательности радиоимпульсов высокой частоты, излучаемых антенной РЛС, а также для формирования вспомогательных колебаний:

· сигнала гетеродинной частоты, необходимого для работы преобразователя частоты приемника,

· сигнала опорной промежуточной частоты, необходимого для работы фазового детектора в системе СДЦ.

Если в приемном тракте используется малошумящий параметрический усилитель, то в схеме передатчика формируется еще один вспомогательный сигнал - сигнал накачки для этого усилителя. Структурная схема одного из передающих устройств РЛС показана на рис. 1.5.

Рассмотрим принцип действия передающего устройства. Задающий генератор генерирует три сигнала:

· сигнал гетеродинной частоты в виде непрерывных колебаний с частотой F г,

· сигнал опорной промежуточной частоты в виде непрерывных колебаний с частотой F ПР =35 МГц,

· импульсно-модулированный сигнал промежуточной частоты в виде последовательности радиоимпульсов с несущей частотой F ПР, длительностью 7 мкс и частотой повторения зондирующих импульсов РЛС.



Рис. 1.5. Структурная схема передающего устройства двухчастотной РЛС (один частотный канал)

В усилительных каскадах СУУ и оконечном усилителе мощности ОУ используются многорезонаторные пролетные клистроны, работающие в импульсном режиме. Это достигается за счет подачи на катоды клистронов импульсов отрицательной полярности. Сигналы запуска импульсного модулятора в схеме СУУ формируются в подмодуляторе передатчика. Импульсы модуляции длительностью 3,3 мкс для оконечного усилителя формируются мощным импульсным модулятором М, который питается от источника высокого напряжения ИВН и выполнен на основе тиратронов. Импульсы поджига тиратронов вырабатываются подмодулятором, имеют амплитуду 800 В и длительность 4 мкс.

На выходе оконечного усилителя формируется последовательность радиоимпульсов длительностью 3,3 мкс при средней- мощности сигнала 3,6 кВт, которая передается в антенно-фидерную систему радиолокационной станции.

Электрические соединения высокочастотных узлов передатчика выполнены в виде коаксиального высокочастотного тракта, обеспечивающего распределение мощности генерируемых колебаний и вывод небольшой части мощности для контроля работоспособности и регулировки передатчика. Для обеспечения необходимого теплового режима мощного клистрона ОУ применяется система жидкостного охлаждения.

Основные технические характеристики передатчика

· Рабочая длина волны генерируемых колебаний, см....................................................... 23

· Средняя выходная мощность генерируемых колебаний, кВт, не менее 3,6

· Длительность радиоимпульса, мкс 3,3 ± 0,3

· Частота повторения импульсов, Гц.... ~ 333

· Мощность сигнала частоты гетеродина, мВт, не менее........................................................... 60

· Напряжение сигнала опорной промежуточной частоты (на нагрузке 75 Ом), В, не менее 1

Рассмотрим работу основных устройств передающего тракта РЛС.

Задающий генератор имеет два независимых канала. Первый канал формирует колебания гетеродинной частоты и состоит:

· из кварцевого генератора КГ1,

· трех умножителей частоты Умн с общим коэффициентом умножения 12,

· одного усилителя напряжения,

· трех усилителей мощности.

Усилители напряжения и мощности включаются между КГ1 и каскадами умножения частоты, выполняй при этом функции буферных каскадов.

К выходу последнего умножителя частоты последовательно подключены проходная детекторная головка для контроля сигнала гетеродинной частоты и выходной фильтр для подавления составляющих этого сигнала с комбинационными частотами. Детекторная головка и фильтр конструктивно являются элементами коаксиального ВЧ тракта передатчика.

Структурная схема передающего устройства состоит из следующих блоков: устройства управления (УУ), буферного накопителя (БН), кодирующего устройства, устройства формирования старта (УФС), блока аварийной сигнализации и индикации (БАСИ), устройства формирования информационного блока (УФИБ), блока начальной установки (БНУ), ключевой схемы, счетчика переданных бит и двух генераторов тактовых импульсов (ГТИ).

Если какой-либо из 6 источников готов передавать данные, то он формирует сигнал «готов», который фиксируется устройством управления. Причем, одновременно информация может передаваться от одного источника. По данному сигналу в УФИБ и БАСИ помещается адрес передающего источника, а в БН информация от активного источника. По окончанию заполнения БН, УУ приостанавливает прием информации от источника и формирует сигнал «формировать», по которому адрес источника и информация от него становятся единой информационной посылкой. За формированием информационного блока следует формирование стартовой комбинации. УУ коммутирует ключевую схему для посылки стартовой комбинации в канал связи (КС), а затем для передачи информационной части. Далее информационный блок поступает на кодер и посылается в КС.

БАСИ представляет собой набор индикаторов, отображающих работу схемы. БНУ формирует импульс установки всех остальных блоков в исходное состояние. ГТИ 1 предназначен для переключения состояний УУ, ГТИ 2 включается только на время передачи данных в канал связи, что повышает синхронность работы приемной и передающей частей. Счетчик переданных бит предназначен для формирования сигнала конца передачи информационного блока.

Структурная схема передающего устройства представлена на рисунке 3.1.

Рисунок 3.1 - Структурная схема передающего устройства

Разработка структурной схемы приемного устройства

Структурная схема принимающего устройства состоит из следующих блоков: УУ, буферного накопителя данных, буферного накопителя адреса, декодирующего устройства, устройства выявления старта (УВС), БАСИ, БНУ.

Декодер предназначен для декодирования информации, которая поступает из КС. Буферные накопители принимают данные от декодирующего устройства. Функциональное назначение остальных элементов аналогично назначению одноименных элементов в передающей схеме.

Структурная схема принимающего устройства представлена на рисунке 3.2


Рисунок 3.2 - Структурная схема принимающего устройства

Алгоритм работы передатчика изображен на рисунке 3.3.

При включении питания передающего устройства сигнал поступает на БНУ, который устанавливает все остальные блоки в начальное состояние. Затем УУ подаст сигнал на БАСИ о наличии питания. После этого схема перейдет в режим ожидания готовности одного из источников передавать информацию. При получении сигнала от источника в БАСИ индицируется определенный сигнал, в соответствии с адресом активного источника.

Если посылка не сформирована, то передаются все биты адреса и информационной части в УФИБ, после чего формируется информационная посылка.

Если посылка сформирована, то на время ее передачи в КС происходит остановка чтения информации от активного источника.

Так как в метод передачи данных старт-стопный, то перед тем, как посылать информацию, предварительно отправляется в КС стартовая комбинация. После чего, информационная посылка кодируется и отправляется в КС.

Рисунок 3.3 - Алгоритм работы передатчика

УВС выявляет стартовую комбинацию из КС, после чего УУ запустит ГТИ, установит БНА и БНД в режим записи. Декодер декодирует информацию поступающую из канала связи. Декодированная информация поступает на БНА и БНД. По завершению nб тактов УУ остановит ГТИ, переведет БНА и БНД в режим чтения, подаст сигнал «готов» для ООД и перейдет в состояние ожидания старта.

Алгоритм работы приемника изображен на рисунке 3.4.

Рисунок 3.4 - Алгоритм работы приемника

Вывод к главе 3

В результат выполнения заданий данной главы получены структурные схемы передающего и принимающего устройств ССПИ, а так же алгоритмы их работы, что дает возможность выполнения более детального построения ССПИ - функциональных схем.

Структурная схема передающего устройства определяется на­значением РЭС, видом излучаемых сигналов, диапазоном рабочих частот.

По принципу построения передатчики (ПРД) подразделяются на ПРД с одним генератором высокой частоты и ПРД с двумя и более генераторами. Выходным устройством ПРД с одним генератором может быть сам ГВЧ или усилитель мощности. Нагрузкой выходного устройства ПРД является антенна.

В простейшем передатчике - с одним мощным генератором высокой частоты (рис. 1) генерирование колебаний несущей частоты f 0 , их модуляция и усиление получен­ных сигналов осуществляется в одном каскаде - генераторе коле­баний высокой частоты (ГВЧ).

Рис. 1. Структурная схема передатчика с мощным генератором

самовозбуждения

Достоинством ПРД с выходным ГВЧ является его простота, возможность осуществления АМ и ЧМ. К недостаткам можно отнести: необходимость существенного усложнения ГВЧ для генерирования ФМ-колебаний; существенное воздействие на работу ГВЧ со стороны модулятора и антенны и их влияние на режим работы автогенератора.

Вследствие этого стабильность частоты генерируемого сигнала оказывается сравнительно низкой (относительная нестабильность =) Низкая стабильность частоты генерируемого сигнала не позволяет использовать такие ПРД тогда, когда необходимо выделять информацию, заключенную в значениях частоты и фазы радиосигналов (с ЧМ и ФМ). Кроме того, низкая стабильность частоты сигнала, излучаемого антенной ПРД, затрудняет его прием и обработку на других объектах.

Поэтому такого типа ПРД нашли широкое применение для генерирования некогерентной последовательности радиосигналов, у которых частота и фаза изменяются случайно от импульса к импульсу.

Меньшую нестабильность несущей частоты (=) имеют передатчики, выполненные по схеме, изображенной на рисунке 2.

Рис. 2. Структурная схема передатчика с задающим генератором

Здесь управление параметрами несущего колебания, генерируемого задающим генератором (ЗГ ), и усиление полученных сигналов осуществляется в выходном каскаде усилителя мощности (УМ ). Однако такой подход используется только при АМ, так как ЧМ в усилителе в принципе не возможна (усилитель является линейным устройством, которое не изменяет частоту входного сигнала). К тому же УМ обычно является многокаскадным, состоящим из предварительного УВЧ и выходного УМ. И, как правило, модулирующий сигнал подается только на предварительный УВЧ и очень редко на выходной УМ.

Для уменьшения d f используются промежуточные (буферные) каскады, устанавливаемые между ЗГ и УМ .

Повышенные требования к d f приводят к необходимости построения передатчиков с использованием сложных многокаскадных схем. При этом ЗГ работает на частотах, отличных от f 0 . Если эти частоты ниже f 0 , то между ЗГ и УМ включают каскады умножителей частоты (рис. 3).



Для стабилизации частоты ЗГ часто применяют кварцевые резонаторы, позволяющие снизить d f до . При термостатировании кварцевых резонаторов может быть обеспечена нестабильность d f = .

Рис. 3. Структурная схема передатчика с умножителем частоты

Генерирование гармонических колебаний осуществляется в ЗГ (автогенераторах), работающих в режиме самовозбуждения. Прин­цип действия автогенераторов основан на преобразовании энергии постоянного тока в энергию переменного (синусоидального) тока радиочастоты. Автогенератор представляет собой усилитель с це­пью положительной обратной связи. Для существования в авто­генераторе незатухающих колебаний необходимо выполнить баланс фаз и баланс амплитуд. В частном случае это означает, что напря­жение обратной связи на входе усилителя должно быть противо­фазным по отношению к напряжению выходного сигнала и доста­точным, чтобы компенсировать затухание энергии в колебательной системе. При соблюдении этих условий колебания обычно возни­кают самопроизвольно из-за шумового напряжения, причем часто­та генерируемых колебаний определяется параметрами колеба­тельной системы и приближенно равна резонансной частоте контура.

В усилителях мощности нагрузкой является колебательный кон­тур, настроенный на частоту усиливаемых колебаний. Для получе­ния большой выходной мощности выходной каскад работает в не­линейном режиме.

Умножители частоты также работают в нелинейном режиме. Нагрузкой этих каскадов является колебательный контур, настро­енный на частоту выбранной гармонической составляющей тока. При этом другие гармоники тока, включая и первую, подавля­ются.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В цифровых системах сигналы передаются в виде различных комбинаций импульсов постоянной амплитуды, отображающих числовое значение сигнала в каждый данный момент времени (кодовыми группами).

Чтобы каждое значение сигнала можно было преобразовать в соответствующую кодовую группу, количество таких значений должно быть ограничено. Поэтому в кодовые группы можно преобразовывать только дискретные во времени сигналы. Для возможности передачи непрерывных по времени сигналов в цифровой форме, т.е. в виде кодовых групп, их необходимо предварительно преобразовать в дискретные.

Передавать дискретизированный сигнал по линии нецелесообразно, т.к. он очень чувствителен к влиянию помех. Поэтому в цифровых системах передачи его преобразуют в цифровую форму. С этой целью сигнал подвергают процессам квантования и кодирования. Далее происходит преобразование цифровых символов в сигналы - модуляция.

В данной курсовой работе необходимо разработать структурную схему системы и функциональную схему приемного или передающего устройства. Определить скорость передачи информации, вид модуляции, тип избыточного кода с использованием заданного варианта и разработать схемные решения устройств, реализующие выбранные параметры.

1. Анализ существующих методов передачи информации в ИТС

1.1 Анализ сообщений различной физической природы

Информационная наука находит применение в самых разнообразных областях. В связи с этим нет всеобщего для всех наук классического определения понятия “информация”. Под информацией понимают не все получаемые сведения, а только те, которые еще не известны и являются новыми для получателя. В этом случае информация является мерой устранения неопределенности. Передача информации на расстояние осуществляется при помощи сообщения.

Сообщение - информация, выраженная в определенной форме и предназначенная для передачи ее от источника к получателю с помощью сигналов различной физической природы. Сообщением могут быть телеграмма, фототелеграмма, речь, телевизионное изображение, данные на выходе ЭВМ и т.д., передаваемые по различным каналам связи, а также сигналы различной физической природы, исходящие от объектов.

Сигнал передаёт сообщение во времени. Следовательно, он всегда является функцией времени, даже если сообщение (например, неподвижное изображение) таковым не является. Если сигнал представляет собой функцию х(t), принимающую только определенные дискретные значения х, то его называют дискретным или дискретным по уровню (амплитуде). Точно так же и сообщение, принимающее только некоторые определенные уровни, называют дискретным. Если же сигнал (или сообщение) может принимать любые уровни в некотором интервале, то они называются непрерывными или аналоговыми.

В настоящее время происходит непрерывное расширение областей применения систем передачи цифровой информации и все большее число различных видов аналоговой информации стремятся передавать в цифровой форме. Это относится к передаче телефонных сообщений, фотоизображений, данных телеметрии и т. п. Таким образом, дискретные сообщения могут быть как первичными, так и вторичными, полученными из непрерывных.

1.2 Передача непрерывных сообщений и виды модуляции

Для передачи информации на расстояние необходимо передать содержащее эту информацию сообщение. Системы передачи информации состоит из следующих основных элементов: источник, кодер, модулятор, канал, демодулятор, декодер и приемник.

Кодер осуществляет отображение генерируемого сообщения в дискретную последовательность. Модулятор и демодулятор в совокупности реализуют операции по преобразованию кодированного сообщения в сигнал и обратные преобразования.

Декодер отображает дискретную последовательность в копию исходного сообщения.

При радиопередаче низкочастотный информационный сигнал передается на несущей радиочастоте и должен ее изменять (модулировать). При модуляции могут изменяться амплитуда, частота или фаза несущей. Модуляцию применяют для того, чтобы:

передать информацию с минимумом искажений;

провести передачу и прием с минимальными потерями;

эффективно использовать частотный спектр.

Существует три основных вида аналоговой модуляции:

1. Амплитудная модуляция (АМ) - модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими его колебаниями более низкой частоты. AM является наиболее простым и распространенным способом изменения параметров носителя информации, частота и начальная фаза колебания поддерживаются неизменными. Вид амплитудной модуляции представлен на рисунке 1.

Рис. 1. Амплитудная модуляция

2. Частотная модуляция (ЧМ) - модуляция, при которой несущая частота сигнала изменяется в соответствии с модулирующим колебанием. Основными достоинствами частотной модуляции являются: высокая помехоустойчивость, возможность использования статистических свойств многоканального сообщения для повышения помехоустойчивости, возможность простыми средствами обеспечить постоянство остаточного затухания каналов связи. Частотная модуляция показана на рисунке 2.

Рис. 2. Частотная модуляция

3. Фазовая модуляция (ФМ) - изменение фазы несущей пропорционально мгновенным значениям модулирующего сигнала. При ФМ по закону модулирующего колебания uЩ(t) изменяется фаза колебаний:

Ф(t)= щ0t+kфм uЩ(t),

где kфм - коэффициент пропорциональности, численно равный крутизне характеристики фазового модулятора.

При ЧМ и ФМ в процессе модуляции осуществляется воздействие на фазу (фазовый угол) несущего колебания, т.е. эти два вида модуляции являются разновидностями, так называемой угловой модуляции.

1.3 Передача дискретных сообщений и виды манипуляции

Дискретное сообщение, формируемое источником, представляет собой последовательность знаков, выбираемых из определенного набора. Для преобразования последовательности знаков дискретного сообщения в первичный сигнал сначала производится их кодирование, т.е. каждый знак сообщения заменяется комбинацией из небольшого числа стандартных символов, а далее эти стандартные символы преобразуются в стандартные электрические сигналы ui (рис.3).

Знаки Т П С

Кодовые комбинации 00001 01101 10100

Рис. 3. Преобразование сообщений при кодировании

В результате кодирования каждый знак сообщения представляется в виде последовательности символов вторичного алфавита - кодовых комбинаций. Кодирование может производиться вручную или автоматически. Устройство, осуществляющее операцию кодирования автоматически, называется кодером.

Обратная операция, т.е. восстановление знаков сообщения из кодовых комбинаций, называется декодированием, а устройство, выполняющее эту операцию - декодером. Обычно кодер и декодер выполняют также операции преобразования символов в первичный сигнал и первичного сигнала в символы, их часто объединяют в единое устройство - кодек. Процесс преобразования дискретного сообщения в сигнал и обратного преобразования сигнала в сообщение показан на рисунке 4.

Дискретная модуляция является частным случаем модуляции гармонической несущей, когда модулирующий сигнал u(t) дискретный. Таким дискретным модулирующим сигналом обычно является первичный сигнал, отображающий символы кодовых комбинаций дискретных сообщений. Дискретную модуляцию называют еще манипуляцией.

Управляя с помощью первичного сигнала параметрами гармонической несущей, можно получить амплитудную, частотную и фазовую манипуляцию.

На рис. 5 приведены формы сигнала при двоичном коде для различных видов дискретной модуляции. При АМ символу 1 соответствует передача несущего колебания в течение времени T (посылка), символу 0 - отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой f1 соответствует символу 1, а передача колебания с частотой f0 соответствует 0. При двоичной ФМ меняется фаза несущей на р при каждом переходе от 1 к 0 и от 0 к 1.

Рис. 5. Формы сигналов при двоичном коде для различных видов дискретной модуляции

В системах передачи дискретных сообщений решающая схема состоит их двух частей: демодулятора и декодера.

1.4 Системы передачи информации цифровыми методами

Для преобразования непрерывного сообщения в цифровую форму используются операции дискретизации и квантования. Полученная таким образом последовательность квантованных отчетов кодируется и передается по дискретному каналу как всякое дискретное сообщение. На приемной стороне непрерывное сообщение после декодирования восстанавливается (с той или иной точностью).

Основное техническое преимущество цифровых систем передачи перед непрерывными системами состоит в их высокой помехоустойчивости. Это преимущество наиболее сильно проявляется в системах передачи с многократной ретрансляцией сигналов.

При цифровой системе непрерывных сообщений можно повысить верность применением помехоустойчивого кодирования. Высокая помехоустойчивость цифровых систем передачи позволяет осуществлять практически неограниченную по дальности связь при использовании каналов сравнительно невысокого качества.

Рассмотрим структурную схему цифрового канала передачи непрерывных сообщений (рис. 6).

Рис. 6. Структурная схема системы цифровой передачи

В составе цифрового канала передачи предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму - аналогово-цифровой преобразователь (АЦП) на передающей стороне и устройства преобразования цифрового сигнала в непрерывную форму - цифро-аналоговый преобразователь (ЦАП) на приемной стороне. Полученный на выходе АЦП цифровой сигнал передаётся по дискретному каналу. Дискретный канал содержит кодер, модулятор, линию связи, демодулятор, декодер. На приёмной стороне из принятого цифрового сигнала ЦАП восстанавливает с той или иной точностью непрерывный сигнал.

В устройстве преобразования сообщения в сигнал непрерывное сообщение, поступающее с выхода источника, преобразуется в цифровой сигнал.

Преобразование аналог - цифра состоит из трех операций: сначала непрерывное сообщение подвергается дискретизации по времени через интервалы; полученные отсчеты мгновенных значений квантуются; наконец полученная последовательность квантованных значений передаваемого сообщения представляется посредством кодирования в виде последовательности двоичных символов «0» и «1».

Такое преобразование называется импульсно-кодовой модуляцией (ИКМ). Чаще всего кодирование здесь сводится к записи номера уровня в двоичной форме счисления.

Полученный с выхода АЦП сигнал ИКМ поступает или непосредственно в линию связи, или на вход передатчика. На приемной стороне линии связи последовательность импульсов после демодуляции и регенерации в приемнике поступает на цифро-аналоговый преобразователь ЦАП, назначение которого состоит в обратном преобразовании (восстановлении) непрерывного сообщения по принятой последовательности кодовых комбинаций.

В состав ЦАП входят декодирующее устройство, предназначенное для преобразования кодовых комбинаций в квантовую последовательность отсчетов, и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантовым значениям.

Преобразование непрерывных сообщений в цифровую форму в системах ИКМ сопровождается округлением мгновенных значений до ближайших разрешенных уровней квантования. Возникающая при этом погрешность представления является неустранимой, но контролируемой (так как не превышает половины шага квантования). Выбрав малых шаг квантования, можно обеспечить эквивалентность по заданному критерию исходного и квантованного сообщений. Погрешность (ошибку) квантования, представляющую собой разность между исходным сообщением и сообщением, восстановленным по квантованным отсчетам, называют шумом квантования.

2. Анализ методов повышения помехоустойчивости систем передачи информации

2.1 Помехоустойчивое кодирование

Любое мешающее внешнее или внутреннее воздействие на сигнал, вызывающее случайные отклонения принятого сигнала от передаваемого, называется помехой. Классифицируют помехи по следующим признакам: по происхождению, по физическим свойствам, по характеру воздействия на сигнал.

По происхождению надо отметить внутренние шумы аппаратуры, входящей в канал связи, - так называемые тепловые шумы.

По физическим свойствам различают флуктуационные и сосредоточенные помехи. Флуктуационные помехи - случайные отклонения физических величин. К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высоких частот различного назначения, переходные помехи от соседних каналов многоканальных систем.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Аддитивные помехи воздействуют на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

В реальных каналах связи обычно имеет место не одна помеха, а их совокупность.

Применение кодов, исправляющих ошибки, или помехоустойчивое кодирование является эффективным средством повышения достоверности передачи информации при сохранении неизменными скорости передачи и энергетических параметров канала связи и снижения отношения сигнал/шум, требуемого для обеспечения заданной достоверности приема информации. Кодирование с обнаружением и исправлением ошибок, как правило, связано с понятием избыточности кода, что приводит в конечном итоге к снижению скорости передачи информационного потока по тракту связи. Избыточность заключается в том, что цифровые сообщения содержат дополнительные символы, обеспечивающие индивидуальность каждого кодового слова.

Вторым свойством, связанным с помехоустойчивым кодированием является усреднение шума. Этот эффект заключается в том, что избыточные символы зависят от нескольких информационных символов. При увеличении количества избыточных символов доля ошибочных символов в блоке стремится к средней частоте ошибок в канале. Обрабатывая символы блоками, а не одного за другим можно добиться снижения общей частоты ошибок и при фиксированной вероятности ошибки блока долю ошибок, которые нужно исправлять. Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

2.2 Системы с обратной связью

Системами передачи дискретной информации с обратной связью (ОС) называют системы, в которых повторение ранее переданной происходит лишь после приема сигнала ОС. Системы с обратной связью делятся на системы с решающей ОС и информационной ОС.

2.2.1 Системы с решающей обратной связью

В приемнике системы правильно принятые комбинации накапливаются в накопителе и, если после приема блока хотя бы одна из комбинаций не будет принята, то формируется сигнал переспроса, единый на весь блок. Повторяется снова весь блок, а в приемнике системы из блока отбираются комбинации, не принятые при первой передаче. Переспросы производятся до тех пор, пока не будет приняты все комбинации блока. После приема всех комбинаций посылается сигнал подтверждения. Получив его, передатчик передает следующий блок комбинаций (системы с адресным переспросом - РОС-АП). Эти системы во многом аналогичны системам с накоплением, но в отличие от последних приемник их формирует и передает сложный сигнал переспроса, в котором указываются условные номера (адреса) не принятых приемником комбинаций блока. В соответствии с этим сигналом, передатчик повторяет не весь блок, как в системе с накоплением, а лишь не принятые комбинации (системы с последовательной передачей кодовых комбинаций - РОС-ПП).

Известны различные варианты построения систем РОС-ПП, основными из которых являются:

Системы с изменением порядка следования комбинаций (РОС-ПП). В этих системах приемник стирает лишь комбинации, по которым решающим устройством принято решение на стирание, и только по этим комбинациям посылает на передатчик сигналы переспроса. Остальные комбинации выдаются в ПИ по мере их поступления.

Системы с восстановлением порядка следования комбинаций (РОС-ПП). От систем РОС-ПП данные системы отличаются лишь тем, что приемник их содержит устройство, восстанавливающее порядок следования комбинаций.

Системы с переменным уплотнением (РОС-ПП). Здесь передатчик поочередно передает комбинации из последовательностей, причем число последних выбирается так, чтобы ко времени передачи комбинаций на передатчике уже был принят сигнал ОС по ранее переданной комбинации этой последовательности.

Системы с блокировкой приемника на время приема комбинаций после обнаружения ошибки и повторением или переносом блока из комбинаций (РОС-ПП).

Системы с контролем заблокированных комбинаций (РОС-ПП). В этих системах после обнаружения ошибки в кодовой комбинации и передачи сигнала переспроса производится контроль на наличие обнаруженных ошибок h -1 комбинаций, следующих за комбинацией с обнаруженной ошибкой.

2.2.2 Системы с информационной обратной связью

Различие в логике работы систем с РОС и ИОС проявляется в скорости передачи. В большинстве случаев передача служебных знаков требуют меньших затрат энергии и времени, чем передача по прямому каналу опознавателей в системе с РОС. Поэтому скорость передачи сообщений в прямом направлении в системе с ИОС больше. Если помехоустойчивость обратного канала выше помехоустойчивости прямого, то достоверность передачи сообщений в системах с ИОС также выше. В случае полной бесшумной информационной обратной связи можно обеспечить безошибочную передачу сообщений по прямому каналу независимо от уровня помех в нем. Для этого надо дополнительно организовать корректировку искажаемых в прямом канале служебных знаков. Такой результат, в принципе, недостижим в системах с РОС распределенного типа. В случае группирующихся ошибок существенную роль играют условия, в которых передаются информационная и контрольная части кодовых комбинаций в обеих системах связи. При использовании ИОС часто имеет место единственная декорреляция ошибок в прямом и обратном каналах.

Важную роль при сравнении передачи сообщений с РОС и ИОС играют также длина используемого кода n и его избыточность s/t. Если избыточность невелика (s/n<0,3), то даже при бесшумном обратном канале ИОС практически не обеспечивает по достоверности преимущества перед РОС. Однако скорость передачи у систем с ИОС по-прежнему выше. Следует указать еще одно преимущество систем с ИОС, обусловленное различием в скорости. Каждому заданному значению эквивалентной вероятности ошибки соответствует оптимальная длина кода, при отклонении от которой скорость передачи в системе с РОС уменьшается. В системах с ИОС при s/n>0,3 передачу сообщений выгоднее вести короткими кодами. При заданной наперед достоверности скорость передачи от этого становится больше. Это выгодно с практической точки зрения, т.к осуществлять кодирование и декодирование при коротких кодах легче. С увеличением избыточности кода преимущество систем с ИОС по достоверности передачи возрастает даже при одинаковых по помехоустойчивости прямом и обратном каналах, особенно если передача сообщений и квитанции в системе с ИОС организована так, что ошибки в них оказываются некорректированными. Энергетический выигрыш в прямом канале системы с ИОС оказывается на порядок выше, чем в системе с РОС. Таким образом, ИОС во всех случаях обеспечивает равную или более высокую помехозащищенность передачи сообщений по прямому каналу, особенно при больших s и бесшумном обратном канале. ИОС наиболее рационально применять в таких системах, где обратный канал по роду своей загрузки может быть без ущерба для других целей использован для эффективной передачи квитирующей информации.

Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяют в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.

3. Расчёт характеристик систем передачи информации

В ходе работы необходимо:

*определить скорость передачи информации;

*выбрать вид модуляции;

*выбрать вариант построения системы передачи информации, обеспечивающий передачу заданного объема информации за сеанс связи при наиболее эффективном использовании каналов связи;

*разработать структурную схему системы;

*разработать функциональную схему приемного или передающего устройства и построить временные характеристики сигналов в различных сечения устройства.

1. Определим необходимую скорость передачи данных по каналу связи при условии, что объем служебной информации за сеанс не превысит 8%. Скорость передачи информации V равна количеству информации, передаваемой по каналу связи за единицу времени [бит/ с]:

где Iп - объем передаваемой информации,

Tсс - время сеанса связи

Полученная скорость передачи информации, равная 2400 бит/с, соответствует ГОСТу 17422-82.

Скорость модуляции B определяется по формуле:

Вычислим количество позиций сигнала. Зная, что, и подставив исходное значение для полосы пропускания, получим:

т.е. имеем четырехпозиционный сигнал. Тогда скорость модуляции равна

2. Рассчитаем полосу пропускания для фильтра

Ширина полосы пропускания фильтра не превышать допустимой полосы 3100 Гц. 1700 Гц? 3100 Гц? можно использовать скорость модуляции B = 1200 Бод.

Для того чтобы моделировать четырехпозиционный сигнал со скоростью передачи информации 2400 бит/с, понадобится использование двойной относительной фазовой манипуляция (ДОФМ).

3. Рассчитаем эффективное значение напряжения помехи при полосе пропускания фильтра?Fпф = 1700 Гц по формуле:

4. Потенциальная помехоустойчивость при использовании метода ДОФМ:

где Ф(q) - Функция Крампа

Вероятность ошибки

q - отношение сигнал/помеха

При скорости модуляции В=1200 Бод вероятность ошибки, получим:

5. Рассчитаем эффективное значение напряжения сигнала по формуле:

Уровни сигнала на входе и выходе канала:

Для того чтобы передающее устройство не вышло из строя, должно выполняться условие:

где: Pсвх - уровень сигнала на входе,

Pmax - максимально допустимый уровень сигнала.

Для каналов тональной частоты Pmax = -13 дБ.

Условие (3.13) выполняется, следовательно, этот тип модуляции может быть использован для построения системы передачи с данными параметрами.

4. Структурная и функциональная схема систем передачи информации

дискретный цифровой помехоустойчивость манипуляция

1. Система передачи сигнала состоит из передающего устройства преобразования сигналов (УПСпер), канала связи и принимающего устройства преобразования сигналов (УПСпр).

Структурная схема системы передачи информации приведена на рисунке 7.

Рис. 7. Структурная схема системы передачи информации

К - кодер,

ФМ - фазовый модулятор сигнала,

Г - генератор,

ПФ - полосовой фильтр,

ОА - ограничитель амплитуды,

ДФ - фазовый демодулятор,

ФНЧ - фильтр нижних частот,

ВУ - выходное устройство,

ДК - декодер.

Сигнал из кодера поступает в модулятор, на выходе которого получается последовательность положительных и отрицательных импульсов, умноженных на синусоидальное несущее колебание, создаваемое генератором импульсов Г.

Преобразователь обеспечивает изменение фазы несущей частоты.

Полосовой фильтр УПСпер служит для ограничения спектра сигнала, передаваемого в канал связи.

Полосовой фильтр УПСпр предназначен для уменьшения помех, приходящих из канала связи. Ограничение амплитуды ОА позволяет, во-первых, почти полностью устранить влияние изменений амплитуды сигнала в канале связи на длительность принимаемых сигналов и, во-вторых, значительно уменьшить искажения элементов сигнала в результате нестационарных процессов. Кроме того, ОА уменьшает действие импульсных помех. Демодулятор превращает сигнал в импульсы постоянного тока. Фильтр нижних частот ФНЧ подавляет в выпрямленном сигнале высшие гармоники и остатки несущей. Выходное устройство ВУ обеспечивает форму и амплитуду сигналов на выходе, необходимую для нормального функционирования приемника информации ПИ.

2. Рассмотрим принцип работы системы передачи при ДОФМ.

На рис. 8. приведена функциональная схема системы передачи информации.

Рис. 8. Функциональная схема системы передачи информации.

Правило кодирования при ДОФМ иллюстрирует таблица 1 (Рекомендация V.26 МККТТ).

Таблица. 1. Правило кодирования при ДОФМ.

Из приведенного следует, что модемы ДОФМ реализуют кодирование при m = 4.

При ДОФМ для передачи информации по первому двоичному каналу используются, например, фазовые сдвиги р/2 и Зр/2, а по второму двоичному каналу 0 и р, что иллюстрируется векторными диаграммами (рисунок 9). Сплошными линиями показаны фазовые положения векторов отдельных каналов, а пунктиром -- фазовые положения векторов при совместной работе двух каналов. Таким образом, любой комбинации единичных элементов в каждом из двоичных каналов соответствует определенный сдвиг по фазе.

Рис. 9. Векторные диаграммы сигналов ДОФМ.

Поступающая на передатчик последовательность импульсов разбивается на пары бит, называемые «дибит». Возможны четыре различных дебита: 00, 01, 10 и 11. Фазовый модулятор использует импульсный принцип, т. е. фаза изменяется путём добавления импульсов в процессе деления частоты. При этом требуемый фазовый скачок получается как сумма трёх меньших скачков.

Демодулятор ДОФМ устроен так, что при сдвиге фаз между предыдущим и последующим единичными элементами на 45° на выходах обоих каналов получаются нули, при? =225° -- единицы, при? =135° на выходе первого канала -- ноль, второго -- единица и при? =315° на выходе первого канала -- единица, а второго -- ноль. При ДОФМ на той же скорости модуляции, что и при ОФМ, обеспечивается вдвое большая эффективная скорость передачи, поскольку каждое фазовое состояние соответствует не одному биту информации (как при ОФМ), а двум битам (по одному в каждом канале).

Заключение

В ходе выполнения курсового проекта мной были изучены виды модуляции, выявлены достоинства и недостатки каждого из них.

В результате выполнения данного курсового проекта было спроектировано устройство преобразования сигналов, основной задачей которого является передача сигналов данных по каналу связи с требуемой скоростью V и вероятностью ошибки P0.

Для его проектирования были рассчитаны параметры системы связи. При данной скорости модуляции была выбрана ДОФМ, как наиболее оптимальный режим работы, обеспечивающий заданную помехоустойчивость на определенной частоте.

Для выбранного типа системы разработана структурная и функциональная схемы.

Список литературы

1.Белов С.П. Методические рекомендации по выполнению курсовых проектов (работ) по дисциплине "Теория электрической связи" для студентов специальности 210406 "Сети связи и системы коммутации"/С.П. Белов, Е.И. Прохоренко. - Белгород:, 2005. - 32с.

2.Гаранин М.В., Журавлев В.И., Кунегин С.В. Системы и сети передачи информации. - М.: "Радио и связь", 2001. - 366с.

3.Дж. Дэвис, Дж. Карр. Карманный справочник радиоинженера/ Пер. с англ. - М.: «Додэка-XXI», 2002. - 544 с.

4.Кловский Д.Д. Теория электрической связи. - М.: «Радио и связь»,1999. - 433с.

5.С.И. Баскаков. Радиотехнические цепи и сигналы, 2-е издание. - М.: Высшая школа, 2005. - 462с.

Размещено на Allbest.ru

Подобные документы

    Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.

    курсовая работа , добавлен 03.05.2015

    Статистический анализ искажений. Выбор способа повышения верности передачи заданного сообщения. Составление структуры пакета передаваемых данных для заданного протокола. Составление функциональных схемы передающего и приемного оконечных устройств.

    курсовая работа , добавлен 09.07.2012

    Разработка структурных схем передающего и приемного устройств многоканальной системы передачи информации с ИКМ; расчет основных временных и частотных параметров. Проект амплитудно-импульсного модулятора для преобразования аналогового сигнала в АИМ-сигнал.

    курсовая работа , добавлен 20.07.2014

    Функции основных блоков структурной схемы системы передачи дискретных сообщений. Определение скорости передачи информации по разным каналам. Принципы действия устройств синхронизации, особенности кодирования. Классификация систем с обратной связью.

    курсовая работа , добавлен 13.02.2012

    Формы представления информации, ее количественная оценка. Сущность и первичное кодирование дискретных сообщений. Совокупность технических средств, предназначенных для передачи информации. Система преобразования сообщения в сигнал на передаче и приеме.

    реферат , добавлен 28.10.2011

    Способы передачи дискретных сигналов и телеграфирования в соответствии с исходными данными. Преобразование исходной кодовой комбинации с целью повышения достоверности передачи. Устройство защиты от ошибок, асинхронная передача и дискретный сигнал.

    контрольная работа , добавлен 26.02.2012

    Проектирование радиоэлектронной системы передачи непрерывных сообщений по цифровым каналам. Расчет и выбор параметров преобразования сообщения в цифровую форму, радиолинии передачи информации с объекта. Описание структурной схемы центральной станции.

    курсовая работа , добавлен 07.07.2009

    Методы цифровой обработки сигналов в радиотехнике. Информационные характеристики системы передачи дискретных сообщений. Выбор длительности и количества элементарных сигналов для формирования выходного сигнала. Разработка структурной схемы приемника.

    курсовая работа , добавлен 10.08.2009

    Проектирование радиоэлектронной системы передачи непрерывных сообщений с подвижного объекта по радиоканалу на пункт сбора информации. Расчет параметров преобразования сообщений и функциональных устройств. Частотный план системы и протоколы ее работы.

    курсовая работа , добавлен 07.07.2009

    Исследование сущности и функций системы передачи дискретных сообщений. Расчет необходимой скорости и оценка достоверности их передачи. Выбор помехоустойчивого кода. Определение порождающего полинома. Оптимизация структуры резерва дискретных сообщений.

Упрощенная структурная схема радиопередатчика состоит из преобразователя частоты, полосового фильтра и выходного усилителя (рисунок 3.3).

Рисунок 3.3 Упрощенная структурная схема радиопередатчика

На вход радиопередающего устройства поступает модулированный сигнал. В современных системах связи модуляция проводится на стандартной промежуточной частоте. К примеру, в системах связи, работающих в диапазонах СВЧ, промежуточная частота может быть 70, 140 или 820 МГц (существуют и другие стандарты). Задачей радиопередающего устройства, в таких случаях, является преобразование сигнала промежуточной частоты в рабочий диапазон частот и доведение мощности сигнала до необходимого уровня.

Преобразователь частоты состоит из смесителя и задающего генератора. Смеситель представляет собой нелинейный элемент, который смешивает частоты сигналов, поступающих на него и выдает на выходе две полосы частот - суммарные и разностные (в данном случае сумму и разность промежуточной частоты и частоты задающего генератора).

Полосовой фильтр выделяет одну из полос частот.

Для работы преобразователя частоты необходимы высокостабильные генераторы. Любой генератор состоит из усилителя и цепей обратной связи (рисунок 3.4).

При достаточном усилении сигнала (балансе амплитуд) и при правильной фазе сигнала, поступающего через цепь обратной связи (балансе фаз), в схеме возникают незатухающие колебания, форма которых определяется частотными характеристиками составляющих схемы. Если характеристики усилителя и цепи обратной связи формируются узкополосными элементами (контурами или резонаторами), то форма колебаний будет близка к синусоидальной. В случае применения широкополосных элементов - генерируются импульсные колебания.

Рисунок 3.4 Структурная схема генератора

В задающих генераторах передатчиков применяются синусоидальные генераторы, стабильность которых определяется стабильностью контуров или резонаторов. В генераторах передатчиков 5-9 диапазонов нашли широкое применение кварцевые резонаторы. На более высоких частотах используются кварцевые генераторы с умножением частоты, синтезаторы частоты и, в последние годы, - генераторы на диэлектрических резонаторах.

Усилители передатчиков (УВЧ) обеспечивают необходимую выходную мощность, которая сильно отличается в разных диапазонах. К примеру, в диапазонах длинных и средних волн мощность радиостанций может составлять сотни киловатт и, даже, мегаватты, в диапазонах СВЧ - единицы и доли ватт, а в оптических диапазонах - единицы милливатт. Соответственно, усилители строятся на мощных лампах, транзисторах, микросхемах. Появились твердотельные, микроскопические усилители для радиосистем, работающих на частотах в десятки ГГц.

Оптические передатчики работают на специальных светодиодах и лазерах.

АВТОГЕНЕРАТОРЫ

Автогенератором, или генератором с самовозбуждением, назы­вается устройство, преобразующее энергию источников питания в радиочастотные колебания без возбуждения извне.

Генератор с самовозбуждением представляет собой усилитель с резонансной нагрузкой, охваченный положительной обратной связью (рисунок 4.1а). В качестве активного элемента могут быть использованы как электронная лампа, так и транзистор. Такая схе­ма автогенератора получила название схемы с трансформаторной обратной связью. Первичные колебания в резонансном контуре LC возникают вследствие любых случайных изменений питающих напряжений (флуктуации), влияний внешних электромагнитных полей и т. п. Эти колебания через катушку L св -поступают на вход усилителя (сопротивление конденсатора С с пренебрежимо мало). Переменное напряжение положительной обратной связи u пос уп­равляет электронным потоком лампы.

Рисунок 4.1 Принципиальные схемы автогенераторов с трансформаторной обратной связью (а, б) и влияние начального смещения на самовозбуждение транзисторного автогенератора (б)

Первая гармоника анодно­го тока создает падение напряжения на контуре LC. Амплитуда свободных колебаний увеличивается. Они вновь трансформируются во входную цепь, вновь усиливаются и т. д. Нарастание ампли­туды колебаний продолжается до определенного предела, обусловленного параметрами автогенератора. В системе устанавли­вается динамическое равновесие между потерями радиочастотной, энергии в контуре и восполнением ее за счет источника питания Е а. Это так называемый установившийся (стационарный) режим автогенератора. Параметры цепочки сеточного автосмещения под­бираются таким образом, чтобы в момент включения напряжение смещения было бы минимальным. Тогда лампа работает в клас­се А и возможно усиление колебаний сколь угодно малой ампли­туды. По мере нарастания напряжения u пос увеличиваются сеточ­ный ток и отрицательный потенциал на сетке. В стационарном ре­жиме активный элемент работает в классах Вили С, что облег­чает тепловой режим автогенератора вследствие уменьшения по­терь на аноде (коллекторе). Это обстоятельство способствует повышению стабильности частоты генерируемых колебаний. По­следние через разделительный конденсатор С р поступают на сле­дующий каскад радиочастотного тракта - буферный усилитель. Аналогичным образом происходит самовозбуждение транзи­сторного варианта автогенератора (рисунок 4.1 6). Характеристики ба­зового и коллекторного токов полупроводникового триода имеют некоторый сдвиг вправо относительно начала координат (рисунок 4.1). Если ограничиться применением только автосмещения, то в на­чальный момент времени напряжение на базе будет равно нулю (u б =0) и первичные автоколебания не будут вызывать появление коллекторного тока. Самовозбуждение не наступит.

Поэтому в транзисторных автогенераторах используется комбинированное смещение, представляющее собою алгебраическую сумму двух на­пряжений; постоянного Е нач и автоматического, возникающего на резисторе R э , за счет протекания по нему постоянной составляю­щей тока эмиттера I э0:

Е см = –Е нач + I э0 R э

Тогда в момент включения питающих напряжений будет действо­вать Е нач , открывающее транзистор. По мере увеличения ампли­туды колебаний будет возрастать падение напряжения на R э.

Ре­зультирующий отрицательный потенциал на базе уменьшится, и активный элемент будет работать в классе С. Одновременно це­почка R э C э будет стабилизировать режим транзистора при изме­нении температуры окружающей среды.

Самовозбуждение в автогенераторах с обратной связью воз­можно только при выполнении следующих двух условий:

1) как и в любом усилителе на лампе или транзисторе переменные напря­жения на сетке (базе) и аноде (коллекторе) должны быть всегда противофазны; в рассматриваемой схеме с трансформаторной об­ратной связью это достигается правильным включением концов катушки L св ;

2) амплитуда напряжения обратной связи U пос дол­жна быть не менее некоторой минимальной величины.

Первое условие называется балансом фаз, а второе - балансом амплитуд.

Автогенератор, выполненный по схеме с трансформаторной связью, не нашел широкого распространения в радиопередающих устройствах из-за некоторой сложности его конструкции и гене­рации колебаний на относительно низких частотах. Предпочтительнее в этом отношении генераторы с самовозбуждением, пост­роенные на основе так называемых трехточечных схем.

На рисунке 4.2 а и б показаны два варианта таких автогенераторов на транзисторах - с индуктивной и емкостной обратной связью. В обоих случаях активный элемент тремя основными электродами (к, б и э) подключен к трем точкам колебательного контура. Отсюда и та­кое наименование - трехточечная схема.

В первой из них напря­жение положительной обратной связи u пос снимается с одной из катушек индуктивности контура (L бэ), а во второй - с конден­сатора С бэ . В остальном обе схемы полностью совпадают. Процесс самовозбуждения и работа в стационарном режиме аналогичны тем же явлениям в только что рассмотренном варианте с транс­форматорной связью.

Начальное смещение на базу (E нач) пода­ется не от отдельного источника, а снимается с резистора R 1 , через который протекает ток I 14. Питание коллекторной цепи осуществляется по параллельной схеме. Назначение остальных элемен­тов такое же, как и в схемах генераторов с внешним возбужде­нием и усилителей звуковых сигналов.

Для упрощения анализа работы этих двух автогенераторов целесообразно рассмотреть их эквивалентные схемы (рисунок 4.2 в и г ), в которых сохранены только цепи токов радиочастоты, причем принимаем во внимание, что сопротивления конденсаторов С р, С б и С э имеют пренебрежимо малую величину.

Несмотря на кажу­щиеся отличия между данными эквивалентными трехточечными схемами, молено выявить для них общие условия самовозбуждения и доказать, что работоспособными являются только эти два ва­рианта сочетаний реактивных элементов Х бк, Х эб и Х эк.

Рисунок 4.2 Принципиальные и эквивалентные схемы транзисторных автогенераторов с индуктивной обратной связью (а, в) и емкостной обратной связью (б, г)

Во-первых, обязательное условие наличия положительной об­ратной связи в автогенераторе требует, чтобы коэффициент обрат­ной связи β по с был бы также положительной величиной.

Следовательно, реактивные сопротивления Х эб и Х эк должны одновременно носить либо индуктивный, либо емкостный характер. Во-вторых, резонанс в колебательном контуре автогенератора возможен только при условии

Х бк + Х эб + Х эк = 0.

Таким образом, если Х эб и Х эк являются индуктивными сопротивлениями, то Х бк должно быть емкостным рисунок 4.2 в ) и наобо­рот (рисунок 4.2 г ). Любое другое сочетание реактивных сопротивле­ний приведет к нарушению вышеуказанных условий самовозбуж­дения.

Практика показывает, что такой подход является весьма плодотворным при анализе сколь угодно сложных принципиаль­ных схем автогенераторов с обратной связью.

Все вышесказанное относится также и к ламповым автогене­раторам при условии соответствующего замещения коллектора, базы и эмиттера транзистора анодом, сеткой и катодом электро­вакуумного триода.

Автогенераторы, схемы которых изображены на рисунке 4.2, явля­ются одноконтурными. Они относительно просты в изготовлении и настройке.

К их существенному недостатку следует отнести невы­сокую стабильность частоты генерируемых колебаний, поскольку единственный резонансный контур, параметрами которого опреде­ляется эта частота, подвержен влиянию последующих каскадов радиочастотного тракта - изменяются вносимые сопротивления, добротность контура и т. д.

Указанный недостаток удалось значи­тельно ослабить в так называемых двухконтурных автогенерато­рах. Один из контуров, защищенный от внешних воздействий, практически целиком определяет частоту генерации, а второй, слабо связанный с первым, выполняет роль внешней нагрузки.

Рассмотренные выше схемы автогенераторов используются в диапазонах километровых и декаметровых волн. На более высо­ких частотах их применение оказывается невозможным с конст­руктивной точки зрения, так как междуэлектродные емкости элек­тронной лампы и распределенные индуктивности ее вводов стано­вятся неотъемлемыми составными частями резонансных систем генераторов с самовозбуждением.

Поэтому здесь используются ав­тогенераторы, построенные на основе так называемых сложных трехточечных схем. Они также относятся к классу двухконтурных автогенераторов, но связь между резонансными системами осуще­ствляется не через общий электронный поток, а через одну из междуэлектродных емкостей триода.

Каждый из двух контуров оказывается расстроенным по отношению к частоте генерации и его сопротивление носит реактивный характер, что позволяет про­водить анализ работы таких автогенераторов на основе уже хо­рошо известных трехточечных схем.

Рассмотрим вопросы, связанные со стабильностью частоты автогенератора. Жесткие требования, предъявляемые к радиопере­дающим устройствам в отношении постоянства частоты излучае­мых колебаний, требуют детального анализа даже незначитель­ных, на первый взгляд, причин, влияющих на этот параметр.

От­носительная нестабильность частоты всего радиопередающего устройства определяется только автогенератором и, прежде всего, параметрами его резонансной системы. Из теории радиотехниче­ских цепей известно, что точное значение частоты свободных ко­лебаний в резонансном контуре может быть определено при по­мощи следующей формулы:

В подавляющем большинстве случаев при исследовании физиче­ских процессов в колебательном контуре и устройствах, в состав которых он входит, с целью упрощения полагают, что его сопро­тивление потерь r = 0 и пользуются упрощенной формулой

В вопросах, связанных с нестабильностью частоты, такое упрощение неприемлемо, так как влияние потерь соизмеримо с воз­действием на величину ω 0 других дестабилизирующих факторов. Таким образом, в соответствии с формулой (4.1) частота генерируе­мых колебаний зависит не только от величин индуктивности L и емкости С колебательного контура, но и от сопротивления потерь, как собственных, так и вносимых в контур.

Выясним взаимосвязь между этими тремя параметрами и дестабилизирующими факторами. Вследствие механических воздей­ствий (вибраций, рассыхания каркасов и т. п.) меняются геомет­рические размеры катушек и конденсаторов колебательных кон­туров автогенераторов.

В прямой зависимости от этих размеров находятся величины их индуктивностей и емкостей. В итоге про­исходит отклонение частоты генерации от заданного значения. Изменение температуры окружающей среды также отражается на изменении размеров спиралей катушек, пластин конденсаторов и диэлектриков.

Например, в течение нескольких минут после вклю­чения питающих напряжений происходит разогрев внутренних де­талей автогенератора. Увеличиваются диаметр и длина спирали катушки, возрастает площадь пластин конденсатора, изменяются диэлектрические проницаемости изоляционных материалов. Большинство этих факторов вызывает увеличение индуктивности L и емкости С колебательного контура. В итоге по мере разогрева ав­тогенератора происходит постепенное уменьшение частоты коле­баний. Это явление наблюдается в течение 20-30 мин и носит название «выбега частоты».

На нестабильность частоты влияют также изменения питаю­щих напряжений. Они воздействуют в основном на перераспреде­ление объемных зарядов в междуэлектродных промежутках лам­пы. С ними связаны величины междуэлектродных емкостей, входящих в колебательную систему автогенератора.

Влияние последующих каскадов радиочастотного тракта зак­лючается в изменениях активных и реактивных составляющих со­противлений, вносимых в контур автогенератора. В соответствии, с выражением (4.1) это отражается на величине частоты резо­нансной системы.

От влажности и давления окружающего пространства зависят величины проницаемости диэлектриков и их проводимость. Изме­нение атмосферных условий также приводит к уходу частоты.

Многообразие дестабилизирующих факторов и сложный меха­низм воздействия на частоту генерации требуют применения це­лого комплекса мер, направленных на их ослабление. Сюда отно­сятся амортизация блока автогенератора, повышение жесткости его конструкции и т.п.

Воздействие на частоту автогенератора температурных изменений может быть ослаблено за счет исполь­зования термостата - устройства, внутри которого автоматически поддерживается постоянная температура. Герметизация термоста­та позволяет избежать влияния на частоту изменений влажности и давления.

Для борьбы с температурным фактором используются специальные конденсаторы, емкость которых не увеличивается, а уменьшается при нагревании, компенсируя тем самым увеличение индуктивности контура. Каркасы катушек изготовляются из высококачественного радиофарфора. Спирали наносятся либо мето­дом вжигания серебряной проволоки, либо намоткой предвари­тельно разогретого медного провода.

Автогенератор, как прави­ло, имеет отдельный источник питания, напряжение которого в ряде случаев стабилизируется. Ослабление влияния на частоту автогенератора последующих каскадов радиочастотного тракта достигается включением буферного каскада, который работает без сеточных токов и вследствие этого имеет неизменное входное со­противление.

Автогенератор тщательно экранируется от влияния внешних электромагнитных полей. Применение умножителей ча­стоты также способствует ослаблению влияния более мощных каскадов на возбудитель.

Исследования показывают, что стабильность частоты автогене­ратора во многом определяется добротностью его резонансной си­стемы Q. Чем больше ее величина, тем выше стабильность. Обыч­ный колебательный контур с сосредоточенными параметрами имеет в наилучшем случае добротность 250-300 единиц, а с учетом вносимых сопротивлений - и того меньше.

Поэтому автогенератор с таким контуром обладает довольно низкой относительной нестабильностью - порядка 10 -3 -10 -4 . Гораздо большая вели­чина добротности у так называемых кварцевых резонаторов - до нескольких миллионов единиц. Параметры кварца также мало подвержены влиянию внешних факторов. Конструктивно такой резонатор выполняется в виде пластины, вырезаемой из кристал­ла природного или синтетического кварца.

На ее поверхности с двух сторон наносятся тонкие серебряные покрытия, используемые в качестве электродов. Пластина помещается в металлический, пластмассовый или стеклянный баллон, внутри которого обычно создается вакуум. Тем самым достигается изоляция пластины от атмосферных воздействий, механических повреждений и загряз­нения ее поверхности. Кроме того, устраняется трение вибрирую­щей пластины о воздух, что позволяет сохранить высокую доброт­ность резонатора. Посредством специальных кварцедержателей, имеющих наружные выводы, резонатор подключается к радиотехнической схеме.

Как всякое упругое механическое тело, кварцевая пластина способна совершать колебания в каждом из трех измерений (по длине, ширине и толщине). Частоты этих колебаний строго зави­сят от геометрических размеров пластины. На практике в автоге­нераторах чаще всего используются колебания по ее толщине. В этом случае их частота может быть определена при помощи следующей приближенной формулы:

где f 0 - собственная частота колебаний, МГц; d - толщина плас­тины, мм.

Повышение резонансной частоты f 0 связано с необходимостью уменьшения этого размера, что неизбежно влечет за собою снижение механической прочности пластины. Во избежание ее раз­рушения она должна быть не тоньше 0,3 мм, что соответствует резонансной частоте 10 МГц. Этим обстоятельством частично объясняется необходимость применения умножителей в радиоча­стотных трактах передатчиков декаметровых волн.

Использование кварца в радиотехнических устройствах воз­можно благодаря наличию у него пьезоэлектрического эффекта: любая механическая деформация пластины вызывает появления электрических зарядов на ее противоположных гранях и наобо­рот. Резонансные свойства кварцевой пластины и явление обра­тимого пьезоэффекта дают возможность представить ее в виде некоторой эквивалентной электрической схемы, показанной на рисунке 4.3 а.

Рисунок 4.3 Эквивалентная схема (а) и частотная характеристика (б) квар­цевого резонатора

В ней собственно пластина заменена последовательным резонансным контуром с эквивалентными электрическими пара­метрами L кв , С кв и r кв. Параллельно ему подключена емкость кварцедержателя и монтажа С 0 .

На рисунке 4.3 б показан характер изменения реактивного сопро­тивления такого контура в зависимости от частоты вынужденных колебаний ω. При малых значениях ω сопротивлением емкости С 0 можно пренебречь, так как оно велико и подключено параллель­но цепи L кв , С кв и r кв. Сопротивление последней в интервале ча­стот 0-ω пос носит емкостный характер.

На частоте ω пос возник­нет резонанс напряжений в последовательном контуре. При даль­нейшем увеличении ω эквивалентное сопротивление последователь­ной ветви будет иметь индуктивный характер и возрастать по величине.

Кварцевый резонатор используется в автогенераторах двояко: либо как некоторая высокоэталонная эквивалентная индуктив­ность в интервале частот ω пос пар , либо как узкополосный фильтр на частоте ω пос , включаемый в цепь обратной связи.

Генератор с внешним возбуждением (ГВВ)



Рекомендуем почитать

Наверх