Линейные операторы в евклидовом пространстве. Самосопряженные операторы в евклидовом пространстве

Скачать на Телефон 29.03.2019
Скачать на Телефон

Номография - слово греческое. Номос - закон, графо - пишу, черчу. В буквальном переводе это слово означает ² черчение закона² .

Своей задачей номография ставит построение специальных графиков - номограмм, служащих для решения различных уравнений. Номограммы дают возможность компактно представлять функции многих переменных и таблицы с несколькими входами. На номограммах можно решать некоторые трансцендентные уравнения и системы таких уравнений. Номограммы можно применять не только для вычислительных целей, но и для исследования положенных в их основу функциональных зависимостей.

Наглядность представления различных закономерностей и простота использования номограмм при достаточно высокой точности результата обеспечивают широкое использование номограмм в различных областях техники.

В основе номограмм лежит понятие функциональной шкалы (см. выше). На основе функциональных шкал создаются не только номограммы, но и различные вычислительные средства: универсальные вычислительные номограммы, логарифмические линейки и т.п.

В данной главе излагается один из возможных видов номограмм - номограммы в декартовой системе координат, имеющие достаточно широкое использование в машиностроении.

4.1. Номограммы в декартовой системе координат

В разделах 3.1., 3.2. описана процедура построения графиков для функции одного переменного. При этом на графике получается одна линия (прямая или кривая).

Если же изучаемая функция зависит от двух переменных

то придавая в этом уравнении, например, параметру y ряд частных (постоянных) значений y 1 , y 2 , ..., y n можно, как и для функции одного переменного, построить зависимости

Z = ¦ (х, y 1);

Z = ¦ (х, y 2);

...................

Z = ¦ (х, y n).

Получим систему кривых (в частном случае прямых), называемых номограммой из ² помеченных² линий, т.к. каждая линия помечается соответствующим значением y i .

Пример. При исследовании процесса фрезерования было установлено, что наиболее целесообразно величину радиального биения смежных зубьев фрезы назначать по условию обеспечения участия в процессе резания всех зубьев фрезы. Аналитически это условие выражается уравнением

где S z - расчетная величина подачи на зуб, мм/ зуб;

k = - параметр операции;

D - диаметр фрезы, мм;

t - глубина резания, мм;

D - величина биения смежных зубьев фрезы, мм.

Как видно, S z = ¦ (k, D) является функцией двух параметров. Здесь можно отметить, что, фактически S z = ¦ (D, t, D), т.е. функцией трех параметров, но два параметра (D, t) заменены одним - k = , легко определяемым и уменьшающим количество переменных. Данный прием широко используется в номографии.



Теперь необходимо определиться с осями и помеченным параметром. В качестве оси ординат, в соответствии с функциональной зависимостью, рационально принять S z . В качестве же оси абсцисс можно принять либо k, либо D . Если в качестве оси ординат принять k (а помеченным параметром D i), то зависимость

S z = ¦ (k, D i)

будет получаться криволинейной, в соответствии с закономерностью . Проще строить и использовать прямолинейные графики при равномерных шкалах. Поэтому стараются номограммы строить на основе прямых линий. Поэтому лучше будет строить номограмму из помеченных линий вида

S z = ¦ (D , K i),

где .

Теперь выбираем масштаб построения и диапазоны изменения переменных. С учетом условий процесса фрезерования принимаем D £ 0,08 мм; S z £ 0,20 мм/ зуб. Параметр k изменяем дискретно k = 2; 5; 10; 20; 30; 40; 50. Так как зависимость S z = ¦ (D , K i) является прямой линией, проходящей через начало координат, то для построения графиков достаточно вычислить только одно значение S z при каком - либо значении D . Например, для k = 2, при D = 0,06 мм имеем

(мм/зуб).

Теперь через точки (0; 0) и (0,06; 0,06) можно провести прямую линию и пометить ее параметр k = 2. Аналогично проводятся и другие линии. На номограмме наносится линия, показывающая порядок ее использования.

4.2. Составные номограммы с помеченными линиями

Номограмму в одной четверти можно построить для функции двух переменных. При большем числе переменных это сделать уже нельзя. В этом случае используют составные номограммы. Идею построения рассмотрим сначала в общем виде.

Пусть нам дано уравнение в неявном виде с четырьмя переменными

¦ (х, y, z, h) = 0.

Допустим, что его можно привести к виду

¦ 1 (х, y) = ¦ 2 (z, h),

т.е. можно разделить переменные. Положим

¦ 1 (х, y) = g ;

¦ 2 (z, h) = g .

Мы получим два уравнения, зависящих от двух переменных. Каждое из этих уравнений можно номографировать, как описано выше. Обеспечив отсчет величины g на одинаковой функциональной шкале, можно обойтись и без численных значений g (если они нас не интересуют по условиям решаемой задачи).

Аналогично поступают и с уравнениями с большим числом переменных, которое будет приводить к увеличению числа общих шкал и большему числу четвертей построения номограммы. Нужно только иметь в виду, что не всякое уравнение допускает разложение на несколько уравнений с двумя переменными и, следовательно, не всякое уравнение удается таким образом номографировать.

Рассмотрим реальный пример построения составной номограммы.

При исследовании процесса фрезерования было установлено, что сила резания при фрезеровании узких поверхностей приобретает характер повторяющихся импульсов не гармонической формы. И возмущение технологической системы осуществляется не на одной, а в бесконечном диапазоне частот. Наиболее опасно воздействие первых трех гармоник, несущих значительно больше энергии возмущения, чем все другие. Распределение энергии по этим трем гармоникам осуществляется в зависимости от отношения фронтов нарастания и спада силы в импульсе. Это отношение можно характеризовать отношением углов контакта фрезы (j) и зуба фрезы (y) с заготовкой. Причем всегда j ³ y .

Для наглядного представления и определения характера распределения энергии по трем гармоникам в зависимости от условий операции построим номограмму.

В одной из четвертей первоначально отражается характер распределения энергии по гармоникам возмущения в зависимости отj / y (рис. 15). Эти зависимости построены из результатов исследований, которые здесь не отражаются. Коэффициент Х 2 характеризует² удельный вес² энергии данной гармоники в общем силовом возмущении. Диапазон j / y = 1...9.

Теперь отношение j / y раскрываем в параметрах инструмента и операции

.

Видно, что здесь четыре переменных величины: D, t, B, w .

Введем промежуточную ось С и построим номограмму из помеченных линий для одной из переменных величин, а именно В i

Видно, что это уравнения прямых линий, проходящих через начало координат. Задаваясь одним значением j / y и В i можно провести ее график. Например, при j / y = 5, В i = 5 получим С = 2× 5×5 = 50. Аналогично поступаем для В i = 10; 15; 20.

L = 50× tg 45° =50. Àíàëîãè÷íî ïîñòóïàåì и äëÿ äðóãèõ óãëîâ w i = 15° ; 30° ; 60° ; 75°. Проводим прямые линии через начало системы координат и помечаем значение угла w i каждой линии.

Таким образом осталась одна взаимосвязь параметров

.

Здесь необходимо определиться с параметром, направленном по оси и ² помеченным² параметром. В любом случае зависимость нелинейная. Кроме того, глубина резания является задаваемым параметром и его лучше взять в качестве ² помеченного²параметра. Для построения помеченных линий нужно определить несколько координат каждой линии.

Рассмотрим ² помеченную² линию t = 5 мм. В качестве переменного параметра принимаем диаметр фрезы D. При D = 25; 50; 100; 150; 200 мм соответственно имеем

По найденным точкам строится линия для t = 5 мм. Аналогично поступают и для других значений t.

Указаны промежуточные оси С, L, которые при использовании номограммы не нужны и могут не указываться, указаны и частные зависимости для каждой четверти номограммы.

Полученная номограмма наглядно показывает, что распределение энергии по гармоникам возмущения технологической системы определяется условиями операции, изменяя которые можно воздействовать на возмущение технологической системы.

Для исключения резонансных явлений необходимо знать спектр собственных частот системы и согласовывать условия операции с их значениями, уменьшая количество энергии на ² резонансной² частоте. Эти данные, как правило, отсутствуют. Поэтому используя номограмму можно скорректировать условия операции. Для этого по известным параметрам фрезы, которая показала неудовлетворительные результаты, и элементам режима резания необходимо определить распределение энергии по гармоникам возмущения и выбрать другое распределение. Так как глубину резания и ширину фрезерования изменять, как правило, невозможно, а изменение угла наклона режущей кромки часто нецелесообразно по условиям стойкости инструмента, то новое распределение энергии можно получить изменив диаметр фрезы (в большую или меньшую сторону по сравнению с первоначальным). При этом необходимо сохранить прежним относительное число зубьев (z/D) и скорость резания, так как число оборотов и зубьев фрезы играют самостоятельную роль в определении частотного диапазона возмущения (inz).

Как видно из изложенного, номограмма может существенно помогать в управлении процессом резания, на основе заложенных в нее функциональных зависимостей.

Контрольные вопросы

1. Сущность и назначение номографии;

2. Функцию какого числа переменных можно отразить в одной четверти декартовой системы координат?

3. Понятие номограммы из ² помеченных² линий;

4. Сущность составной номограммы и промежуточной функциональной шкалы.

ЛЕКЦИЯ 9

Операторы в евклидовых пространствах

Линейные операторы, действующие в евклидовых пространствах, обладают рядом специальных свойств, которые весьма важны для приложений линейной алгебры в различных предметных областях. Мы остановимся только на основных вопросах этой теории, в частности, будем изучать теорию линейных операторов исключительно в вещественных пространствах с ортонормированными базисами, а именно в пространстве . Причём операторы будем считать преобразованиями, то есть будем изучать операторы
.

Сопряжённый оператор . Рассмотрим понятие оператора, сопряжённого к оператору , действующему в евклидовом пространстве
.

Определение 9.1. Пусть
– некоторый линейный оператор. Оператор
называется
сопряжённым к оператору , если
выполняется условие

. (9.1)

Теорема 9.1. Для любого линейного оператора
существует единственный сопряжённый оператор
, который также является линейным.

Д о к а з а т е л ь с т в о. 1) Пусть оператор существует, докажем его единственность. Для этого предположим, что этот оператор не единственный, то есть существуют, например, два оператораи, удовлетворяющих определению 9.1. Тогда по формуле (9.1) имеем:

,
, (9.2)

откуда получаем

В силу того, что в определении 9.1 (в формуле (9.1)) вектор
произволен, положим в равенстве (9.3)

,

.

Так как скалярное произведение удовлетворяет аксиоме невырожденности, из последнего равенства имеем

откуда в силу произвольности вектора следует, что
и единственность сопряжённого оператора доказана.

2) Докажем линейность сопряжённого оператора. Используя определение (9.1) и свойства скалярного произведения, получаем:

,
и

а)
;

Из сравнения формул а) и б) следует линейность сопряжённого оператора , а именно:

.

3) Докажем теперь существование сопряжённого оператора. Зафиксируем в пространстве
канонический базис
, и запишем векторы
и
в виде их разложений по каноническому базису:

;
. (9.4)

Рассмотрим вычисление левой и правой частей (9.1):

;

.

Сравнивая два последних равенства с учётом (9.1), получаем:

. (9.5)

Итак, если матрица оператора имеет вид

,

то матрица сопряжённого оператора имеет вид

. (9.6)

Из (9.6) следует, что матрица сопряжённого оператора в любом ортонормированном базисе
находится путем транспонирования матрицы оператора, что и доказывает существование сопряжённого оператора.

Докажем теорему о свойствах оператора, сопряжённого линейному оператору.

Теорема 9.2. Справедливы следующие свойства сопряжённого оператора :
и

1)
; 2)
;

3)
; 4)
; (9.7)

5)
.

Д о к а з а т е л ь с т в о. Докажем первое соотношение. Пусть – произвольный линейный оператор. Для сопряжённого операторасопряжённым будет оператор. Тогда:

Последнее равенство выполняется при любом векторе , то есть,


,

откуда следует доказательство первого свойства.

Докажем второе соотношение. Для этого рассмотрим следующую цепочку преобразований:

Из сравнения левой и правой частей равенства (9.8) следует доказательство второго свойства.

Остальные свойства доказываются аналогично.

Самосопряжённые операторы . В приложениях большое значение имеют самосопряжённые операторы .

Определение 9.2. Линейный оператор
называется
самосопряжённым , если
.

Из определения следует, что для самосопряжённого оператора справедливо соотношение

. (9.9)

Так как матрица сопряжённого оператора равна транспонированной матрице оператора, то у самосопряжённого оператора элементы матрицы удовлетворяют равенству
, то естьэлементы матрицы самосопряжённого оператора, симметричные относительно главной диагонали, равны . Такая матрица называется симметрической . По этой причине самосопряжённые операторы
часто называютсясимметрическими .

Самосопряжённые операторы обладают рядом свойств, которые нетрудно доказать, используя определение и свойства сопряжённого оператора.

1. Единичный оператор является самосопряжённым.

Д о к а з а т е л ь с т в о. Очевидно,

.

2. Сумма самосопряжённых операторов является самосопряжённым оператором.

Д о к а з а т е л ь с т в о. Если
и
, то

.

3. Композиция самосопряжённых операторов является самосопряжённым оператором в том и только в том случае, если эти операторы коммутативны.

Д о к а з а т е л ь с т во. Напомним, что операторы называются коммутативными, если

,

,

где – нулевой оператор. Если
,
, то

,

что равно в том и только в том случае, если операторы коммутативны.

4. Оператор , обратный к невырожденному самосопряжённому оператору
также самосопряжённый оператор.

Д о к а з а т е л ь с т во. Действительно, если
, то

.

5. Если – самосопряжённый оператор, то произведение этого оператора на некоторое вещественное число
является самосопряжённым оператором.

Д о к а з а т е л ь с т во. Из третьего свойства (9.7), имеем:

.

Теорема 9.3. Собственные векторы самосопряжённого оператора , действующего в пространстве
, соответствующие попарно различным собственным значениям, взаимно ортогональны.


:
и
, причём
. Так как оператор самосопряжённый, то
. Поэтому в левой и правой частях, соответственно, имеем:

;

.

Откуда в силу
получаем:
.

Для самосопряжённых операторов справедлива следующая важная теорема.

Теорема 9.4. Все корни характеристического многочлена самосопряжённого оператора
вещественные и различные.

Д о к а з а т е л ь с т в о. В общем случае доказательство теоремы достаточно громоздкое. По этой причине приведём доказательство для случая оператора
. Итак, пусть дан некоторый линейный оператор
с матрицей. Тогда характеристическое уравнение этого оператора имеет вид:



.

Раскрывая определитель, получаем характеристическое уравнение:

Решение этого уравнения находим по известной формуле:

.

Дискриминант имеет вид:

Первое слагаемое, очевидно, всегда положительно, а второе положительно, так как
. Поэтому корни характеристического уравнения вещественные и различные.

Теорема 9.5. Пусть
– самосопряжённый оператор. Тогда в пространстве
можно выбрать ортонормированный базис

так, чтобы матрица оператора в этом базисе была диагональной .

Д о к а з а т е л ь с т в о. По теореме 9.4 все корни характеристического многочлена самосопряжённого оператора вещественные и различные, а следовательно, по теореме 9.3 собственные векторы самосопряжённого оператора взаимно ортогональны. Систему собственных векторов, очевидно, можно нормировать. Но тогда эти векторы образуют базис пространства
, в котором оператор является оператором простой структуры, то есть имеет диагональную матрицу.

Ортогональные операторы и их свойства, геометрическая интерпретация . Рассмотрим определение и свойства важного класса операторов, действующих в пространстве
.

Определение 9.3. Оператор , действующий в пространстве
, называется ортогональным , если он сохраняет скалярное произведение, то есть


.(9.10)

Из определения следует, что ортогональный оператор сохраняет нормы (длины) векторов и углы между ними .

Лемма 9.1. Оператор

.

Д о к а з а т е л ь с т в о. Пусть


,

откуда имеем:
. Полагая
, получаем:






.

Пусть
. Тогда имеем:

.

Очевидно, что ортогональный оператор невырожден , то есть, его матрица имеет обратную матрицу.

Теорема 9.6 (о свойствах ортогональных операторов). Ортогональные операторы
обладают следующими свойствами:

1) единичный оператор является ортогональным;

2) композиция ортогональных операторов также является ортогональным оператором;

3) оператор, обратный ортогональному оператору, также является ортогональным;

4) если
– ортогональный оператор, то оператор
является ортогональным в том и только в том случае, если
.

Д о к а з а т е л ь с т в о. 1. Доказательство этого свойства почти очевидно:



.

2. Пусть
и
– ортогональные операторы. Тогда:

3. Пусть ортогональный оператор. Рассмотрим
:

.

4. Пусть – ортогональный оператор. Тогда



.

Теорема 9.7 (критерий ортогональности оператора). Оператор , действующий в пространстве
, является ортогональным в том и только в том случае, если он переводит хотя бы один ортонормированный базис в ортонормированный базис
.

Д о к а з а т е л ь с т в о. Пусть
– ортогональный оператор. Тогда он, сохраняя скалярное произведение, переводит ортонормированный базис в ортонормированный базис.

Пусть теперь оператор
переводит ортонормированный базис

в новый ортонормированный базис

.

Тогда

.

.

Рассмотрим свойства матрицы ортогонального оператора.

Теорема 9.8. Система векторов-столбцов (строк) матрицы ортогонального оператора
в любом ортонормированном базисе

является ортонормированной .

Д о к а з а т е л ь с т в о. Пусть
– некоторый ортогональный оператор и
– некоторый ортонормированный базис. По теореме 9.9 система образов базисных векторов сама является ортонормированной, то есть
. Поэтому для столбцов матрицы оператора

,

(как векторов арифметического пространства
) имеем:

. (9.11)

Аналогичное свойство справедливо и для строк матрицы :

.
(9.12)

Теорема 9.9. Матрица ортогонального оператора
в любом ортонормированном базисе удовлетворяет условию


. (9.13)

Д о к а з а т е л ь с т в о. Пусть
– ортогональный оператор. Так как матрицы операторовисвязаны соотношениями

,

откуда для матрицы оператора получаем (9.11).

Обратно, пусть выполнено соотношение (9.11). Тогда
, откуда и следует, что операторявляется ортогональным.

Определение 9.4. Матрица , для которой выполняется свойство (9.13), называется ортогональной .

Приведём некоторые теоремы о свойствах ортогонального оператора.

Теорема 9.10. Собственные значения ортогонального оператора действующий в пространстве
, равны
.

Д о к а з а т е л ь с т в о. Пусть
. Тогда

Так как по определению
, то
.

Теорема 9.11. Определитель ортогональной матрицы равен

.

Д о к а з а т е л ь с т в о. Для ортогональной матрицы выполняется равенство
. Поэтому
. Тогда

.

Рассмотрим -мерное евклидово пространство . Пусть дан произвольный линейный оператор в .

Определение 10. Линейный оператор называется транспонированным оператором для оператора , если для любых векторов и из :

. (106)

Существование и единственность транспонированного оператора устанавливаются совершенно аналогично тому, как это делалось в § 8 для сопряженного оператора в унитарном пространстве.

Транспонированный оператор обладает следующими свойствами:

2. ,

3. ( – вещественное число),

Введем ряд определений.

Определение 11. Линейный оператор называется нормальным, если

Определение 12. Линейный оператор называется симметрическим, если

Определение 13. Симметрический оператор называется неотрицательным, если для любого вектора из

Определение 14. Симметрический оператор называется положительно определенным, если для любого вектора из

Определение 15. Линейный оператор называется кососимметрическим, если

Произвольный линейный оператор всегда представим, и притом однозначно, в виде

где – симметрический, а – кососимметрический оператор.

Действительно, из (107) следует

Из (107) и (108) вытекает

. (109)

Обратно, формулы (109) всегда определяют симметрический оператор и кососимметрический , для которых имеет место равенство (107).

И носят название симметрической и кососимметрической компонент оператора .

Определение 16. Оператор называется ортогональным, если он сохраняет метрику пространства, т. е. если для любых векторов из

. (110)

Равенство (110) в силу (106) можно переписать так: . Отсюда следует:

Обратно, из (111) вытекает (110) (при произвольных векторах ). Из (111) следует: , т. е.

Мы будем ортогональный оператор называть оператором первого рода, если , и второго рода, если .

Симметрический, кососимметрический, ортогональный операторы суть частные виды нормального оператора.

Рассмотрим произвольный ортонормированный базис в данном евклидовом пространстве. Пусть линейному оператору в этом базисе соответствует матрица (здесь все – вещественные числа). Читатель без труда покажет, что транспонированному оператору отвечает в этом же базисе транспонированная матрица , где . Отсюда вытекает, что в ортонормированном базисе нормальному оператору отвечает нормальная матрица , симметрическому оператору отвечает симметрическая матрица , кососимметрическому оператору – кососимметрическая матрица и, наконец, ортогональному оператору – ортогональная матрица .

Аналогично тому, как это делалось в § 8 для сопряженного оператора, здесь устанавливается следующее предложение:

Если некоторое подпространство в инвариантно относительно линейного оператора , то ортогональное дополнение к в инвариантно относительно оператора .

Для исследования линейных операторов в евклидовом пространстве мы расширим евклидово пространство до некоторого унитарного пространства . Это расширение проведем следующим образом:

1. Векторы из будем называть вещественными векторами.

2. Введем в рассмотрение «комплексные» векторы , где и – вещественные векторы, т. е. .

3. Естественным образом определяются операции сложения комплексных векторов и умножения на комплексное число. Тогда совокупность всех комплексных векторов образует -мерное векторное пространство над полем комплексных чисел, содержащее в себе как часть .

4. В вводится эрмитова метрика так, чтобы в она совпадала с имеющейся там евклидовой метрикой. Читатель легко проверит, что искомая эрмитова метрика задается следующим образом:

Если и , то

Полагая при этом и , будем иметь:

Если выбрать вещественный базис, т. е. базис в , то будет представлять собой совокупность всех векторов с комплексными, а – с вещественными координатами в этом базисе.

Всякий линейный оператор в однозначно расширяется до линейного оператора в :

.

Среди всех линейных операторов в операторы, получившиеся в результате такого расширения из операторов в , характеризуются тем, что переводят в . Такие операторы будем называть вещественными.

В вещественном базисе вещественные операторы определяются вещественными матрицами, т. е. матрицами с вещественными элементами.

Вещественный оператор переводит комплексно сопряженные векторы и снова в комплексно сопряженные

У вещественного оператора вековое уравнение имеет вещественные коэффициенты, поэтому умеете с корнем -й кратности оно имеет и корень -й кратности . Из следует: , т. е. сопряженным характеристическим числам соответствуют сопряженные собственные векторы.

Двумерное подпространство имеет вещественный базис: . Плоскость в с этим базисом будем называть инвариантной плоскостью оператора , отвечающей паре характеристических чисел . Пусть .

Тогда, как легко видеть,

Рассмотрим вещественный оператор простой структуры с характеристическими числами:

где – вещественные числа, причем .

Тогда соответствующие этим характеристическим числам собственные векторы можно выбирать так, чтобы

.

образуют базис в евклидовом пространстве . При этом

(114)

В базисе (113) оператору соответствует вещественная квазидиагональная матрица

. (115)

Таким образом, для каждого оператора простой структуры в евклидовом пространстве существует такой базис, в котором оператору соответствует матрица вида (115). Отсюда следует, что всякая вещественная матрица простой структуры вещественно-подобна канонической матрице вида (115):

Транспонированный оператор для в после расширения становится сопряженным оператором для в . Следовательно, нормальный, симметрический, кососимметрический, ортогональный операторы в после расширения становятся соответственно нормальным, эрмитовым, умноженным на эрмитовым, унитарным вещественным операторами в .

Нетрудно показать, что для нормального оператора в евклидовом пространстве можно выбрать канонический базис – ортонормированный базис (113), для которого имеют место равенства (114). Поэтому вещественная нормальная матрица всегда вещественно- и ортогонально-подобна матрице вида (115):

(117)

У симметрического оператора в евклидовом пространстве все характеристические числа вещественны, так как после расширения этот оператор становится эрмитовым. Для симметрического оператора в формулах (114) следует положить . Тогда получим:

Симметрический оператор в евклидовом пространстве всегда имеет ортонормированную систему собственных векторов с вещественными характеристическими числами. Поэтому вещественная симметрическая матрица всегда вещественно- и ортогонально-подобна диагональной матрице

У кососимметрического оператора в евклидовом пространстве все характеристические числа чисто мнимы (после расширения этот оператор равен произведению на эрмитов оператор). Для кососимметрического оператора в формулах (114) следует положить:

после чего эти формулы принимают вид

(120)

Поскольку является нормальным оператором, базис (113) можно считать ортонормированным. Таким образом, всякая вещественная кососимметрическая матрица вещественно- и ортогонально-подобна канонической кососимметрической матрице:

. (124)): из равенств параллельно вектору . Нами доказана теорема Эйлер – Даламбера:

Произвольное конечное движение в трехмерном евклидовом пространстве представляет собой винтовое перемещение вокруг некоторой неподвижной оси.

Занятие 13 (Фдз 14).

Ортогональные операторы в евклидовом пространстве.

Сопряженные и симметричные линейные операторы в евклидовом пространстве.

13.1. Ортогональный оператор и его свойства.

13.2. Сопряженный линейный оператор

13.3. Симметричный (самосопряженный) линейный оператор. Существование и нахождение ортонормированного собственного базиса симметричного линейного оператора.

13.1. Линейный оператор , заданный в евклидовом пространстве со скалярным произведением , называется ортогональным оператором , если , где .

Ортогональный оператор не изменяет длин векторов и углов между ними, т.е.

.

В произвольном базисе пространства

, (1)

где - матрица ортогонального оператора, - матрица Грама, - координаты векторов в базисе . В случае ортонормированного базиса , и равенство (1) заменяется равенством

Следовательно, в любом ортонормированном базисе пространства ортогональный оператор имеет ортогональную матрицу .

Пример 1 . Рассмотрим двумерное евклидово пространство , содержащее все векторы на декартовой плоскости со стандартным скалярным произведением . Пусть - линейный оператор поворота векторов вокруг начала координат на заданный угол . Доказать, что - ортогональный оператор.

С геометрической точки зрения ортогональность заданного оператора очевидна.

Проведем строгое доказательство.

- единичные векторы осей . Эти векторы образуют стандартный ортонормированный базис пространства , с которым связано стандартное скалярное произведение.

Рассмотрим два произвольных вектора .

Т.к. , делаем вывод: - ортогональный оператор.

В дополнение к проведенному доказательству проверим ортогональность матрицы оператора в ортонормированном базисе . Из формул (3), (2) находим

, - ортогональная матрица.

Пример 2 . Требуется выяснить, является ли оператор ортогональным оператором.

Проверим выполнение равенства .

- матрица Грама в базисе .

Не является ортогональным оператором.

13.2. Пусть даны два линейных оператора и в евклидовом пространстве со скалярным произведением . Оператор называется сопряженным оператором оператору , если , где .

Если и матрицы оператора и сопряженного ему оператора в базисе

Указанная связь между матрицами и позволяет найти матрицу , если известна матрица , и наоборот, найти матрицу , если известна матрица .

В ортонормированном базисе, где , равенство (4) заменится равенством .

Следует отметить, что сопряженный оператор оператору совпадает с оператором . Поэтому, операторы и называются взаимно сопряженными .

Пример 3 . Рассмотрим двумерное евклидово пространство со скалярным произведением в базисе . Пусть - линейный оператор, имеющий в базисе матрицу . Потребуем найти матрицу сопряженного оператора в данном базисе. Проверить также, что матрица оператора , сопряженного оператору , совпадает с матрицей оператора .

- матрица Грама в базисе .

Из матричного равенства (5) выводим: .

Займемся теперь поиском матрицы оператора . Согласно формуле (5) выводим:

13.3. Пусть - линейный оператор, действующий в евклидовом пространстве со скалярным произведением . Оператор называется самосопряженным или симметричным , если , где .

Если - матрица оператора в базисе пространства , и - матрица Грама скалярного произведения в этом базисе, то

В ортонормированном базисе (в котором ) это равенство заменится равенством

Следовательно, в ортонормированном базисе симметричный оператор имеет симметрическую матрицу.

Важные свойства симметричного оператора фиксирует следующая теорема .

Все собственные значения симметричного оператора действительны, и собственные векторы, отвечающие различным собственным значениям ортогональны .

Из собственных векторов симметричного оператора можно не только образовать собственный базис, но и даже ортонормированный собственный базис. Поэтому, любой симметричный оператор является оператором простого типа (см. занятие 7).

Пример 4 . Найти собственный ортонормированный базис симметричного оператора , действующего в двумерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

1. Из характеристического уравнения найдем собственные значения оператора .

2. Теперь найдем собственные векторы.

Собственный вектор с собственным значением .

В ортонормированном базисе скалярное произведение задается формулой

, где - координаты векторов в этом базисе.

Ортогональные векторы (что согласуется с выводами теоремы, приведенной выше) - линейно независимая система. Т.к. евклидово пространство двумерно, приходим к выводу: - ортогональный собственный базис.

Чтобы получить ортонормированный собственный базис нужно пронормировать векторы .

Итак, - собственный базис симметричного оператора .

Пример 5 . Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу

.

Найдем собственные значения и собственные матрицы оператора .

Собственный вектор с собственным значением .

Собственный вектор с собственным значением .

Собственный вектор с собственным значением .

Собственные векторы отвечают различным собственным значениям. Следовательно, - ортогональная система векторов и одновременно является собственным ортогональным базисом оператора . Чтобы получить собственный ортонормированный базис , пронормируем векторы .

Пример 6 . Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

Решение. Найдем собственные значения и собственные матрицы оператора .

Т.к. , а тройка векторов в базисе



Рекомендуем почитать

Наверх