Сопряженность операторов в евклидовом пространстве. Линейные самосопряженные операторы в евклидовом пространстве. Алгебра. Ортогональные операторы в евклидовом пространстве

Возможности 28.03.2019
Возможности

1. Построение номограммы зависимости P z= f (t, S).

Зависимость силы P z от глубины t и подачи S выражается формулой:

P z = 10С pzt x pz S y pz V n K pz ,Н

Значения С pz , X pz , Y pz , K pz выбираем по таблицам общемашиностроительных нормативов или соответствующим таблицам (2) также, как и при аналитическом методе расчета режима резания; С pz = 300 ; X pz = 1; Y pz = 0.75; K pz = 0,8.

Задаваясь различными значениями глубины (при S = 1 мм/об), будем иметь различные значения силы:

, Н;

t,мм 0,5 1,5 2,5 3,5
P z , Н
lgP z 2.079 2.38 2.556 2.681 2.778 2.857 2.924 2.982

На оси ординат откладываем значение силы P z , на оси абсцисс – значения подачи S. P zmax берем из условия прочности станка:

, Q м.п = 6000 Н (по паспорту станка 16К20);

Н;

P zmin рассчитываем, считая, что наименьшая глубина резания будет примерно 0,5 мм, а наименьшая подача (по станку) – 0,07 мм/об.

P zmin =10 300 0,5 0,07 0,075 0,8 = 163 Н.

Принимаемый диапазон сил: 200 – 15000 Н.

Диапазон подач берем по станку: 0,07 – 4,16 мм/об. На линии ординат (при S = 1 мм/об) откладываем значения полученных сил и через соответствующие точки проводим прямые линии под углом α = 37 (tg α = Y pz = 0,075).

При S = 0,195 P z = 190 Н

2. Построение номограммы зависимости v=f(t,s)

Зависимость скоростиV от глубины t и подачи s выражается формулой:

V=C v *K v /(T m *t x v *S y v) , м/мин

Номограмма строится в логарифмических координатах. По оси ординат откладывают скорость резания lgV, а по оси абсцисс – подачу lgS.

При постоянном значении глубины резания (C v K v /T m t x v =C)

V=C/S y v

После логарифмирования получим уравнения прямой линии, наклоненной к оси абсцисс под углом a 1 (tg a 1 =у V)

lg V=lgC-y v lgS

Для различных значений t получаем ряд прямых линий. При построении монограммы удобно принять S=1мм/об.

Задаваясь различными значениями глубины резания, имеем соответствующие им значения скорости резания:

t,мм 0,5 1,5 2,5 3,5
V , м/мин 93,93 84,657 79,66 76,3 73,8 71,8 68,76
lgV 1,973 1,928 1,9 1,883 1,87 1,86 1,85 1,84

Отложив на оси абсцисс S=1мм/об, проводим вертикальную линию и на ней наносим точки, соответствующие V 1 ,V 2 ,...V n . Через них проводим прямые линии под углом a 1 = 17 (tg a 1 =у V).

При S = 0,195 V = 69 м/мин

3. Построение номограммы зависимости v=f(D,n)

Зависимость скоростиV от диаметра заготовки D и числа оборотов n выражается формулой

V=pDn/1000 ,м/мин.

Номограмма строится в логарифмических координатах. По оси ординат откладывают скорость резания lgV, а по оси абсцисс – диаметр детали lgD.

Приняв pn/1000 = С , получим V=CD

После логарифмирования получим уравнение прямой, наклоненной к оси абсцисс под углом a 2 = 45º (tg45º = 1).

lgV = lgC+ 1lgD (46)

Для различных n получаем ряд прямых линий. При построении номограммы удобно принять D=100мм, тогда

V=pn/10 , м/мин. (47)

Подставляя в формулу различные значения чисел оборотов(по станку), получим соответствующие им значения скорости резания:

n,мм
V , м/мин 50,265 78,54 98,96 125,664 157,08 197,92 251,33 392,7
lgV 1,7 1,89 1,995 2,099 2,196 2,296 2,4 2,59

Отложив на оси абсцисс D = 100 мм, проведем вертикальную линию, на ней отметим точки, соответствующие значениям найденных скоростей (V 1 , V 2 , …,V n ). Через эти точки проведем линии под углом 45 0 к оси абсцисс.

При D = 100мм V = 79 м/мин

4.Посроение номограммы зависимости P z = f(M кр, D)

Зависимость P z (сила, допускаемая крутящим моментом станка - M кр) от M кр и D выражается уравнением

Номограмма строится в логарифмических координатах. По оси ординат откладывается сила резания lgP z , по оси абсцисс – диаметр детали lgD.

Логарифмируя приведенную выше зависимость, получим

lgP z = lg(2·M кр) - 1·lgD

Это уравнение прямой линии, проведенное под углом 45 0 к оси абсцисс. Для различных значений крутящих моментов получим ряд прямых линий. При построении номограммы удобно принять

D = 100 мм, тогда

Подставляя в формулу различные значения крутящих моментов (для разных ступеней чисел оборотов станка), определяются соответствующие им значения P z:

М,Н*м
P z , Н 10,24 7,02 5,58 4,4 3,52 2,78 2,38 2,2
lgP z 1,01 0,846 0,747 0,643 0,547 0,444 0,377 0,342

Отложив на оси абсцисс D = 100 мм, проведем вертикальную линию, на которой отметим точки, соответствующие найденным значениям P z (P z 1, P z 2 , … , P zn).

Через эти точки проведем линии под углом 45 0 к оси абсцисс.

При D =100 Pz= 7 Н

5. Построение номограммы зависимости t 0 = f(n,S).

Зависимость основного времени t 0 от n и S выражается

где L – длина рабочего хода резца, мм.

Целесообразно строить номограмму для L = 100 мм (или другого постоянного значения, например, L = 10 мм). Номограмму строят в логарифмических координатах. По оси ординат откладывают основное время lgt 0 , по оси абсцисс - подачу lgS.

220400 Алгебра и геометрия Толстиков А.В.

Лекции 15. Линейные операторы в евклидовых пространствах

План

1. Сопряженные операторы евклидовых пространствах и их свойства.

2. Самосопряженные операторы.

3. Ортогональные матрицы и их свойства.

4. Ортогональные операторы и их свойства.

1. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1984.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997.

3. Воеводин В.В. Линейная алгебра.. М.: Наука 1980.

4. Сборник задач по для втузов. Линейная алгебра и основы математического анализа. Под ред. Ефимова А.В., Демидовича Б.П.. М.: Наука, 1981.

5. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит, 2001.

6. Воеводин В.В. Линейная алгебра. М.: Наука, 1980.

1. Сопряженные операторы евклидовых пространствах и их свойства. Пусть E - евклидово пространство над полем действительных чисел R , на котором определено скалярное произведение векторов (a ,b ), a , b ÎE.

Определение 1. Линейный оператор A * евклидова пространства E называется сопряженным линейному оператору A * пространства E , если для любых векторов a , b ÎE выполняется условие:

(Aa ,b ) = (a , A * b ). (1)

Лемма 1. Если произведение данной строки U на любой столбец Y равно нулю, то строка U нулевая. Если произведение любой строки X t на данную столбец U равно нулю, то столбец нулевой.

Доказательство. Пусть U = (u 1 , u 2 ,…, u n ), Y = (y 1 , y 2 ,…, y n ) t . По условию теоремы для любых чисел y 1 , y 2 ,…, y n U Y = (u 1 , u 2 ,…, u n )(y 1 , y 2 ,…, y n ) t = u 1 y 1 + u 2 y 2 +…+ u n y n =0. Если все числа y 1 , y 2 ,…, y n равны 0, кроме y j , которое =1, то отсюда получаем, что u j (i = 1,2,…,n ). Поэтому U =0. Аналогично доказывается второе утверждение теоремы. 

Теорема 1. Пусть v = (v 1 , v 2 ,…, v n ) - базис евклидова пространства E , A - матрица линейного оператора A относительно базиса v , G = (g ij ) - матрица Грама базиса v . Если для линейного оператора A существует сопряженный оператор A * , то выполняется равенство

A t G = G A * . (2)

Доказательство. Пусть X и Y координатные столбцы векторов a , b ÎE относительно базиса v , A и A * матрицы линейных операторов A и A * относительно базиса v . Тогда

(Aa , b ) =(v (AX ), vY ) = (AX ) t GY , (a , A * b ) = X t G A * Y. (3)

Отсюда по формуле (1) получим равенство (AX ) t GY = X t G A * Y, справедливое для любых вектор столбцов X и Y. Так как векторы a , b произвольные, то по лемме 1 получаем A t G = G A * .

Теорема 2. Если базис v = (v 1 , v 2 ,…, v n ) евклидова пространства E ортонормированный, то матрица A * сопряженного линейного оператора A * является транспонированной к матрице Aоператора A ;

A t = A * . (4)

Доказательство. Так как матрица Грамма ортонормированного базиса единичная, G = E , то (4) следует из (2). 

Следствие 1 . Для любого оператора A справедливо равенство (A * ) * = A .

Доказательство. По формуле (4) для матриц линейных операторов (A * ) * и A в ортонормированном базисе имеем (A * ) * = (A t ) t = A . Поэтому (A * ) * = A .

Следствие 2 . Для любых оператора A , B справедливо равенство (AB ) * = B * A * .

Доказательство. По формуле (4) для матриц линейных операторов A , B и A * , B * в ортонормированном базисе имеем (AB ) * = (AB ) t = B t A t = B * A * . Поэтому (AB ) * = B * A * .

Следствие 3 . Собственные значения линейных операторов A и A * совпадают .

Доказательство. Так как характеристические многочлены матриц и совпадают, то собственные значения линейных операторов, которые являются корнями характеристического уравнения совпадают. 

Теорема 3. Для любого линейного оператора A евклидова пространства E существует единственный сопряженный линейный оператор A * .

Доказательство. Пусть v = (v 1 , v 2 ,…, v n) ортонормированный базис евклидова пространства E , A - линейный оператор с матрицей A относительно базиса v . Рассмотрим в E линейный оператор B с матрицей A t относительно данного базиса. Оператор B существует и единственный. Правые части равенств (3) равны: (AX ) t GY = X t G A * Y. Поэтому равны и левые (Aa , b ) = (a , Bb ). Поэтому оператор B - сопряженный для оператора A . 

2. Самосопряженные операторы.

Определение 1. Линейный оператор A евклидова пространства E называется самосопряженным или симметричным , если A = A * , т.е. для любых векторов двух a , b ÎE выполняется условие:

(Aa , b ) = (a , Ab ). (1)

Теорема 1 . Линейный оператор A евклидова пространства E самосопряжен тогда и только, когда матрица A линейного оператора A в ортогональном базисе симметрическая матрица, т. е . A = A * .

Занятие 13 (Фдз 14).

Ортогональные операторы в евклидовом пространстве.

Сопряженные и симметричные линейные операторы в евклидовом пространстве.

13.1. Ортогональный оператор и его свойства.

13.2. Сопряженный линейный оператор

13.3. Симметричный (самосопряженный) линейный оператор. Существование и нахождение ортонормированного собственного базиса симметричного линейного оператора.

13.1. Линейный оператор , заданный в евклидовом пространстве со скалярным произведением , называется ортогональным оператором , если , где .

Ортогональный оператор не изменяет длин векторов и углов между ними, т.е.

.

В произвольном базисе пространства

, (1)

где - матрица ортогонального оператора, - матрица Грама, - координаты векторов в базисе . В случае ортонормированного базиса , и равенство (1) заменяется равенством

Следовательно, в любом ортонормированном базисе пространства ортогональный оператор имеет ортогональную матрицу .

Пример 1 . Рассмотрим двумерное евклидово пространство , содержащее все векторы на декартовой плоскости со стандартным скалярным произведением . Пусть - линейный оператор поворота векторов вокруг начала координат на заданный угол . Доказать, что - ортогональный оператор.

С геометрической точки зрения ортогональность заданного оператора очевидна.

Проведем строгое доказательство.

- единичные векторы осей . Эти векторы образуют стандартный ортонормированный базис пространства , с которым связано стандартное скалярное произведение.

Рассмотрим два произвольных вектора .

Т.к. , делаем вывод: - ортогональный оператор.

В дополнение к проведенному доказательству проверим ортогональность матрицы оператора в ортонормированном базисе . Из формул (3), (2) находим

, - ортогональная матрица.

Пример 2 . Требуется выяснить, является ли оператор ортогональным оператором.

Проверим выполнение равенства .

- матрица Грама в базисе .

Не является ортогональным оператором.

13.2. Пусть даны два линейных оператора и в евклидовом пространстве со скалярным произведением . Оператор называется сопряженным оператором оператору , если , где .

Если и матрицы оператора и сопряженного ему оператора в базисе

Указанная связь между матрицами и позволяет найти матрицу , если известна матрица , и наоборот, найти матрицу , если известна матрица .

В ортонормированном базисе, где , равенство (4) заменится равенством .

Следует отметить, что сопряженный оператор оператору совпадает с оператором . Поэтому, операторы и называются взаимно сопряженными .

Пример 3 . Рассмотрим двумерное евклидово пространство со скалярным произведением в базисе . Пусть - линейный оператор, имеющий в базисе матрицу . Потребуем найти матрицу сопряженного оператора в данном базисе. Проверить также, что матрица оператора , сопряженного оператору , совпадает с матрицей оператора .

- матрица Грама в базисе .

Из матричного равенства (5) выводим: .

Займемся теперь поиском матрицы оператора . Согласно формуле (5) выводим:

13.3. Пусть - линейный оператор, действующий в евклидовом пространстве со скалярным произведением . Оператор называется самосопряженным или симметричным , если , где .

Если - матрица оператора в базисе пространства , и - матрица Грама скалярного произведения в этом базисе, то

В ортонормированном базисе (в котором ) это равенство заменится равенством

Следовательно, в ортонормированном базисе симметричный оператор имеет симметрическую матрицу.

Важные свойства симметричного оператора фиксирует следующая теорема .

Все собственные значения симметричного оператора действительны, и собственные векторы, отвечающие различным собственным значениям ортогональны .

Из собственных векторов симметричного оператора можно не только образовать собственный базис, но и даже ортонормированный собственный базис. Поэтому, любой симметричный оператор является оператором простого типа (см. занятие 7).

Пример 4 . Найти собственный ортонормированный базис симметричного оператора , действующего в двумерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

1. Из характеристического уравнения найдем собственные значения оператора .

2. Теперь найдем собственные векторы.

Собственный вектор с собственным значением .

В ортонормированном базисе скалярное произведение задается формулой

, где - координаты векторов в этом базисе.

Ортогональные векторы (что согласуется с выводами теоремы, приведенной выше) - линейно независимая система. Т.к. евклидово пространство двумерно, приходим к выводу: - ортогональный собственный базис.

Чтобы получить ортонормированный собственный базис нужно пронормировать векторы .

Итак, - собственный базис симметричного оператора .

Пример 5 . Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу

.

Найдем собственные значения и собственные матрицы оператора .

Собственный вектор с собственным значением .

Собственный вектор с собственным значением .

Собственный вектор с собственным значением .

Собственные векторы отвечают различным собственным значениям. Следовательно, - ортогональная система векторов и одновременно является собственным ортогональным базисом оператора . Чтобы получить собственный ортонормированный базис , пронормируем векторы .

Пример 6 . Найти собственный ортонормированный базис симметричного оператора , действующего в трехмерном евклидовом пространстве, если в ортонормированном базисе оператор имеет матрицу .

Решение. Найдем собственные значения и собственные матрицы оператора .

Т.к. , а тройка векторов в базисе

Пусть S - евклидово пространство и - его комплексификация. Введем скалярное произведение в S по формуле:

Нужно проверить корректность этого определения. Аддитивность по первому аргументу при фиксированном втором очевидна. Для проверки линейности по первому аргументу достаточно убедиться в возможности вынесения комплексного множителя из первого аргумента. Соответствующее вычисление не представляет труда, но довольно громоздко. Именно:

Симметрия с инволюцией очевидна - при перестановке местами вещественная часть скалярного произведения не меняется, а мнимая меняет знак на обратный.

Наконец, если . Таким образом, комплексификация евклидова пространства S становится унитарным пространством.

Заметим еще, что скалярное произведение пары векторов и скалярное произведение пары комплексно сопряженных с ними векторов комплексно сопряженные. Это непосредственно следует из определения скалярного произведения в .

2. Операторы в евклидовом пространстве и их продолжение на комплексификацию.

В евклидовом пространстве для оператора определяется сопряженный оператор той же формулой при любых х и у, что и в унитарном пространстве. Доказательство существования и единственности сопряженного оператора ничем не отличается от аналогичных доказательств для унитарного пространства. Матрица оператора в ортонормальном базисе просто транспонирована с матрицей оператора При продолжении взаимно сопряженных операторов с S на они останутся сопряженными.

Действительно,

3. Нормальные операторы в евклидовом пространстве.

Нормальный оператор в евклидовом пространстве S остается нормальным и при его продолжении на комплексификацию пространства S. Поэтому в S существует ортонормальный базис из собственных векторов, диагонализующий матрицу оператора А.

Для вещественных собственных значений можно взять вещественные собственные векторы, т. е. лежащие в S. Действительно, координаты собственных векторов относительно базиса определяются из линейных однородных уравнений с вещественными коэффициентами в случае вещественности собственного значения.

Комплексные собственные значения появляются парами сопряженных с одинаковой кратностью. Выбрав ортонормальный базис из собственных векторов, принадлежащих некоторому собственному значению при базис из собственных векторов для собственного значения можно взять из векторов, сопряженных с векторами базиса собственных значений для X. Такой базис будет ортонормальный. Теперь натянем на каждую пару и сопряженных векторов двумерное комплексное подпространство.

Все эти подпространства инвариантны, ортогональны друг другу и вещественным собственным векторам, соответствующим вещественным собственным значениям.

Комплексное пространство, натянутое на векторы и очевидно, совпадает с комплексным подпространством, натянутым на Вещественные векторы u и у, и, следовательно, является комплексификацией вещественного подпространства, натянутого на .

ибо в евклидовом пространстве S скалярное произведение симметрично.

Из этого равенства следует, что , т. е. векторы и и v ортогональны, а также . Вспомним теперь, что вектор нормированный, т. е., ввиду ортогональности и и . Поэтому , так что векторы и и v не нормированны, но становятся нормированными после умножения на

Итак, для нормального оператора, действующего в евклидовом пространстве S, существует ортонормальный базис, составленный из собственных векторов, принадлежащих вещественным собственным значениям, и умноженных на вещественных и мнимых частей собственных векторов, принадлежащих комплексным собственным значениям. Одномерные подпространства, натянутые на вещественные собственные векторы, и двумерные, натянутые на компоненты комплексных собственных векторов, инвариантны, так что матрица оператора в построенном базисе квазидиагональна и составлена из диагональных блоков первого и второго порядка. Блоки первого порядка - это вещественные собственные значения. Найдем блоки второго порядка. Пусть и - собственный вектор, принадлежащий собственному значению . Тогда

Ровно те же соотношения сохранятся после умножения векторов на Таким образом, блоки второго порядка имеют вид

Заметим еще, что эти блоки появляются из подпространства, натянутого на сопряженные собственные векторы, принадлежащие сопряженным собственным значениям так что наряду с блоком записанным при помощи собственного значения не нужно включать блок соответствующий собственному значению

4. Самосопряженные операторы в евклидовом пространстве.

Нормальный оператор в евклидовом пространстве самосопряжен в том и только в том случае, если все его собственные значения вещественны. Действительно, самосопряженный оператор в евклидовом пространстве остается самосопряженным и в комплексификации. Поэтому существует ортонормальный базис в самом евклидовом пространстве, в котором его матрица диагональна. В терминах матриц это значит, что для любой вещественной симметричной матрицы А существует ортогональная матрица С такая, что диагональна. Это обстоятельство было выяснено еще в гл. V в связи с ортогональным преобразованием квадратичной формы к каноническому виду. Тесная связь между теорией самосопряженных операторов в евклидовом пространстве с теорией квадратичных форм ясно видна из того, что скалярное произведение выражается через координаты вектора в ортонормальном базисе в виде квадратичной формы с матрицей, равной матрице оператора М в том же базисе, и при ортогональном преобразовании координат матрица оператора и матрица квадратичной формы преобразуются одинаково:

ибо для ортогональной матрицы

Для самосопряженных операторов в евклидовом пространстве имеют место те же свойства, которые отмечались для самосопряженных операторов в унитарном пространстве, и их доказательства ничем не отличаются от доказательств в случае унитарного пространства.

Поэтому ограничимся их перечислением.

Самосопряженный оператор положительно определен в том и только в том случае, когда его собственные значения положительны.

Из самосопряженного положительно определенного оператора можно извлечь положительно определенный квадратный корень.

Любой невырожденный оператор можно представить в виде произведения положительно определенного самосопряженного оператора на ортогональный, как в одном, так? и в другом порядке.

Оператор ортогонального проектирования есть самосопряженный идемпотентный оператор и обратно, самосопряженный идемпотентный оператор есть оператор ортогонального проектирования.

5. Ортогональные операторы.

Ортогональный оператор имеет ортогональную матрицу в любом ортонормальном базисе. Так как ортогональный оператор нормален, существует ортонормальный базис, в котором матрица оператора блочно-диагональна и состоит из вещественных чисел на диагонали и блоков вида ортогональности такой матрицы следует, что и в каждом блоке второго порядка (Это можно увидеть также из того, что ортогональный оператор становится унитарным при продолжении на комплексификацию, и, следовательно, все его собственные значения равны 1 по модулю.)

Можно положить . Оператор на плоскости с матрицей есть оператор вращения плоскости на угол .

Ортогональный оператор называется собственно ортогональным, если определитель его матрицы равен 1; если же определитель равен -1, то оператор называется несобственно ортогональным. Порядок базисных векторов можно выбрать так, чтобы по диагонали следовали сначала 1, потом -1 и за ними блоки второго порядка. В случае, если оператор собственно ортогонален, число диагональных элементов, равных -1, четно. Матрицу второго порядка рассматривать как блок второго порядка геометрически означающий поворот плоскости на .

Таким образом, действие собственно ортогонального оператора геометрически означает следующее. Пространство разбивается в ортогональную сумму подпространств, одно из которых натянуто на собственные векторы, принадлежащие собственному значению 1, - это подпространство неподвижных векторов, и нескольких двумерных подпространств, каждое из которых вращается на некоторый угол (вообще говоря, разные плоскости на разные углы).

В случае несобственно ортогонального оператора имеется еще один базисный вектор, переходящий в противоположный под действием оператора.



Рекомендуем почитать

Наверх