Замыкание цепи 2 при размыкании цепи 1. Токи при размыкании и замыкании цепи. При всяком изменении силы тока в про­водящем контуре возникает э.д.с

Вайбер на компьютер 12.05.2019
Вайбер на компьютер

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0 отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф= LI , (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В с/А.

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I/l )S. Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l , площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L =const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

dI/dt>0 и ξ s <0, т. е. ток самоиндукции

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убыва-

ет, то dI/dt<0 и ξ s > 0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

§ 127. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0 отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt , препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR =- LdI/dt . (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =- (R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где =L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt , препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/ ,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u = . Следовательно, интегри­руя по и (от -ξ до IR - ξ ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ=-t/ , или

где I 0 =ξ/R - установившийся ток (при t)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации =L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. E i , сопротивление R и индуктивность L . Под действием внешней э.д.с. в цепи течет постоянный ток I o =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции E s = –L (dI /dt ), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =E s /R , или

IR =–L (dI /dt ). (18.1)

Разделив переменные, получим dI /I = – R dt /L . Интегрируя это уравнение по I (от I o до I ) и t (от 0 до t ), находим ln(I /I o) = – Rt /L , или

I (t ) =I o exp (– t /τ ), (18.2)

где τ =L /R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции E s = –L (dI /dt ), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + E s или

IR = E –L (dI /dt ). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du /u = – dt /τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR –E) и t (от 0 до t ), находим ln[(IR –E)/(–E)] = –t /τ , или

I (t )=I o , (18.3)

где I o = E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I o = E/R . Скорость нарастания тока определяется тем же временем релаксации τ =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.


Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n 1 и n 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E 1 , то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции .

По закону Ома, ток I 1 , первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I 1 R 1 =, где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 , при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E 1 »n 1 dФ/dt .

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

E 2 = –[(dn 2 Ф)/dt ] = – n 2 (dФ/dt ). (19.1)

Сравнивая выражения для E 1 и E 2 , получим, что э.д.с., возникающая во вторичной обмотке,

E 2 = –(n 2 /n 1) E 1 , (19.2)

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n 1 /n 2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации .

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

E 2 I 2 ≈ E 1 I 1 , (19.3)

откуда, учитывая соотношение (19.2), найдем E 2 /E 1 = I 1 /I 2 = n 2 /n 1 , т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках .

Если n 2 /n 1 >1, то имеем дело с повышающим трансформатором , увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n 2 /n 1 <1, то имеем дело с понижающим трансформатором , уменьшающим э.д.с. и повышающим ток (применяется, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформаторы, используемые в радиотехнике, имеют 4–5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором . В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L . Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s /R , или

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = –Rt /L , или

где t =L / R - постоянная, называемая временем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от –до IR – ) и t (от 0 до t ), находим ln [(IR – )]/– = -t /t , или

где - установившийся ток (при t ®¥ ).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R /R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. x, резистор сопротивлением Rи катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I = x S /R, или

(127.1)

Разделив в выражении (127.1) переменные, получим . Интегрируя это уравнение по I (от I 0 до I) и t(от 0 до f), находим In (I/I 0) = -Rt/L, или

(127.2)

где t = L/R- постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. x возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = x + x S или

Введя новую переменную u = IR - x , преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t = 0)сила тока I = 0 и u = -ℰ . Следовательно, интегрируя по u(от - ℰ до IR - ℰ) и t(от 0 до t), находим In [(IR - ℰ)]/ -ℰ = -t/t, или

(127.3)

где I 0 = ℰ/R - установившийся ток (при t ® ¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению I 0 = ℰ / R. Скорость нарастания тока определяется тем же временем релаксации t = L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ℰ S , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I 0 = ℰ/R 0 . При размыкании цепи ток изменяется по формуле (1272). Подставив в нее выражение для I 0 и т, получим



Рекомендуем почитать

Наверх