Задача коммивояжера - метод ветвей и границ. Метод ветвей и границ целочисленного программирования. Основные понятия

Новости 23.07.2019
Новости

Коммивояжер (бродячий торговец) желает посетить ряд городов и вернуться в исходный город, минимизируя суммарную длину (стоимость) переездов. Эта задача в математической форме формулируется как задача нахождения во взвешенном графе гамильтонова цикла минимальной длины и называется задачей коммивояжера.

В качестве её практического приложения можно указать следующее. Пусть имеется станок, способный выполнять несколько операций. Его перенастройка с одной операции на другую требует определенных затрат. Требуется использовать станок в циклическом режиме, минимизируя суммарные затраты на перенастройку.

В данной задаче перенастройка с одной операции на другую и обратная перенастройка могут требовать, вообще говоря, различных затрат. Поэтому и в общем случае в задаче коммивояжера рассматривается взвешенный ориентированный граф, дуги которого в прямом и обратном направлении могут иметь различные веса.

Для решения задачи коммивояжера можно попытаться использовать «жадный алгоритм», успешно примененный в задаче о минимальном остовном дереве. Упорядочим предварительно дуги по весам и будем включать дуги минимального веса, следя за тем, чтобы не возникли вершины, полустепень исхода или захода которых превышает единицу, и не появились негамильтоновы циклы. Однако, как легко убедиться, данный подход не гарантирует получение оптимального решения. В качестве простейшего контрпримера можно рассмотреть следующий граф.

Здесь каждому ребру соответствует две дуги такого же веса.

«Жадный алгоритм» прежде всего включит в цикл ребро
, как имеющее минимальный вес. Включение этого ребра, как непосредственно легко проверить, необходимо ведет к гамильтонову циклу
веса 29. Оптимальный

же гамильтонов цикл
имеет вес 12. Поэтому «жадный алгоритм» не гарантирует получения оптимального решения, хотя он может быть использован на практике в качестве полезной эвристики, во многих случаях приводящей к решениям, близким к оптимальным.

Для задачи коммивояжера не известно какого – либо эффективного алгоритма. Весьма вероятно, что такого алгоритма не существует, хотя это и не удалось до сих пор доказать. Подобные задачи не редки в дискретной математике. В случае небольшой размерности их точные решения удается получать на компьютере с помощью метода «ветвей и границ».

Под методом «ветвей и границ» понимается широкий класс методов сокращенного перебора, суть которых сводится к следующему. Множество допустимых решений А разбивается на два подмножества А 0 и А 1 , затем каждое из подмножеств также разбивается на два подмножества и т.д. Схематически это можно представить в виде дерева, начинающегося с множества всех решений и заканчивающегося его одноэлементными подмножествами, т.е. допустимыми решениями, которыми в нашем случае являются гамильтоновы циклы.

Среди допустимых решений выбирается оптимальное по функционалу качества, которым в нашем случае является длина гамильтонова цикла. Смысл метода «ветвей и границ» состоит, однако, в том, чтобы не просматривать все допустимые решения, а отсекать большинство ветвей на возможно более раннем этапе. Для этого с помощью эвристических соображений стараются сразу пойти по ветви, ведущей к решению, близкому по качеству к оптимальному. После этого большинство других ветвей отсекают с помощью границ для функционала качества, когда удается показать, что в подмножестве решений не содержится решения, лучшего по качеству, чем уже имеющееся.

Рассмотрим метод «ветвей и границ» на примере задачи коммивояжера. Пусть взвешенный орграф задан матрицей расстояний. Если некоторая дуга в графе отсутствует, то соответствующий элемент матрицы будем полагать равным ∞. Заметим, что если длины всех дуг, входящих в некоторую вершину, уменьшить на одно и то же число, то и длина оптимального гамильтонова цикла уменьшится на это же число. То же самое относится и к множеству выходящих дуг. Будем последовательно вычитать из строк и столбцов матрицы расстояний положительные числа так, чтобы элементы матрицы оставались неотрицательными. Так как длина оптимального гамильтонова цикла для графа с неотрицательной матрицей расстояний также неотрицательна, то сумма вычтенных количеств будет нижней границей для длины оптимального цикла исходного графа.

Рассмотрим пример. Пусть задан граф G с симметрической матрицей расстояний.

Значки « ∞ » на диагонали соответствуют отсутствию в графе петель – дуг, ведущих из вершины в эту же вершину. Получим, прежде всего, нижнюю границу для длины кратчайшего гамильтонового цикла. Из первой, второй, третьей и четвертой строк можно вычесть по единице, из пятой строки – два, а из пятого столбца можно вычесть ещё единицу. Это дает нижнюю границу 7, а матрица расстояний приобретает вид

Теперь выберем дугу для ветвления, т.е. разобьем множество гамильтоновых циклов на два подмножества: включающих и не включающих эту дугу. Мы рассчитываем, что данная дуга будет входить в оптимальный или близкий к оптимальному цикл. Для этого будем следовать следующему эвристическому правилу: из множества дуг нулевой длины выбирать ту, исключение которой ведет к максимальному росту нижней оценки. В нашем случае такой дугой является дуга (1,2). Запрещение этой дуги приводит к матрице

из первой строки и второго столбца которой можно вычесть по единице, что увеличивает нижнюю границу на 2 и делает её равной 9.

Включение же дуги (1,2) приводит к тому, что исключаются все остальные дуги, ведущие в вершину 2, и все остальные дуги, выходящие из вершины 1. Поэтому первую строку и второй столбец матрицы можно далее не рассматривать, и они вычеркиваются из матрицы. Кроме того, исключается дуга (2,1). Матрица принимает вид

Из её первой строки и первого столбца можно вычесть по единице, что приводит к матрице

Нижняя оценка здесь возрастает на 2 и также становится равной 9.

Нижняя оценка длины оптимального цикла остается неизменной.

Дуга (2,5) должна быть запрещена, как ведущая к появлению негамильтонова цикла, и матрица принимает вид

Нижняя оценка длины гамильтонова цикла остается, по – прежнему, равной 9.

Схематически представим проведенный анализ в виде дерева, где в кружочках стоят нижние оценки длины гамильтонова цикла.

Взглянув на это дерево, непосредственно убеждаемся, что полученный гамильтонов цикл является кратчайшим, т.к. движение по любой другой ветви дерева не может привести к более короткому циклу.

    Существует ли эффективный алгоритм для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.

    Является ли описанный метод « ветвей и границ» эффективным алгоритмом для решения задачи коммивояжера? а) да; б) нет; в) неизвестно.

Рассмотрим задачу дискретного программирования в общем виде:

Найти -вектор неизвестных, D- конечное

множество допустимых значений этого вектора, F(x)- заданная целевая функция.

Идея метода состоит в разбиении D на непересекающиеся подмножества Di (эта процедура называется ветвлением) и вычислении верхней и нижней границ целевой функции на каждом из подмножеств. Нижнюю границу будем обозначать Н, а верхнюю Е. Соответственно Hi Eo, то это подмножество не содержит точку оптимума и может быть исключено из дальнейшего рассмотрения. Если верхняя граница Ei H заменяем Н на min Hi. Если Е=Н, то задача решена, иначе надо продолжить процедуру ветвления и вычисления верхней и нижней границ. При этом разбиению на очередном шаге могут подвергаться все или только некоторые подмножества до достижения равенства верхней и нижней границ, причём не на отдельном подмножестве, а для допустимой области в целом.

Простая идея метода ветвей и границ требует дополнительных вычислений для определения границ. Как правило, это приводит к решению вспомогательной оптимизационной задачи. Если эти дополнительные вычисления требуют большого числа операций, то эффективность метода может быть невелика.

Схему динамического программирования при движении от начальной точке к конечной (рис. 5.1) можно представлять как процедуру ветвления.

Множество всех допустимых траекторий (последовательность по-шаговых переходов) - это исходное множество D, на котором мы должны найти нижнюю и верхнюю границы, а также траекторию, на которой целевая функция достигает верхней границы и объявить рекордом соответствующее ей значение целевой функции. Построение множества состояний, получаемых после первого шага, - это первое ветвление.


Рис. 5.1.

Теперь подмножествами Di являются множества траекторий, каждая из которых проходит через соответствующую i-ую точку.

На последующих шагах после отбраковки всех путей, приводящих в любое (i-oe) состояние, кроме одного, соответствующим подмножеством является этот оставшийся путь со всеми его допустимыми продолжениями (рис. 5.1). Для каждого из таких подмножеств надо как-то найти верхнюю и нижнюю границы. Если нижняя граница превышает текущее значение рекорда, соответствующее состояние и все его продолжения отбраковываются. Если верхняя граница достигается на некоторой траектории и она меньше текущего значения рекорда, то получаем новый рекорд.

Эффективность такого подхода зависит от точности получаемых оценок, т.е. от Ei - Hi, и от затрат времени на их вычисление.

Фактически в упрощённом виде мы уже использовали этот метод при решении задачи о защите поверхности (разд. 4.6), когда отбраковывали состояния, для которых текущие затраты превышали суммарные затраты для начального приближения. В этом случае текущие затраты являются нижней границей, если считать нулевыми затраты на весь оставшийся путь, а суммарные затраты, соответствующие начальному приближению, являются рекордом. При таком подходе рекорд не обновлялся, хотя это можно было сделать построением начального приближения (верхней границы) для оставшегося пути подобно тому как это делалось для всей траектории при построении начального приближения. Получаемая без вычислений нижняя граница соответствует нулевым затратам на весь оставшийся путь и является крайне грубой оценкой, но получаемой «бесплатно», т.е. без вычислений.

Покажем как получать и использовать более точные оценки при решении рассмотренных выше и целого ряда других задач. При этом будем стремиться получать авозможно более точные границы при минимуме вычислений.

Одна из самых известных и важных задач транспортной логистики (и класса задач оптимизации в целом) – задача коммивояжера (англ. «Travelling salesman problem», TSP ). Также встречается название «задача о бродячем торговце ». Суть задачи сводится к поиску оптимального, то есть кратчайшего пути проходящего через некие пункты по одному разу. Например, задача коммивояжера может применяться для нахождения самого выгодного маршрута, позволяющего объехать определенные города со своим товаром по одному разу и вернуться в исходную точку. Мерой выгодности маршрута будет минимальное время, проведенное в пути, минимальные расходы на дорогу или, в простейшем случае, минимальная длина пути.

Кто и когда впервые начал исследовать задачу коммивояжера неизвестно, но одним из первых предложил решение подобной проблемы выдающийся математик XIX в. – Уильям Гамильтон. Здесь мы рассмотрим замкнутый вариант задачи (т.е. такой, когда в итоге мы возвращаемся в исходную точку) и ее решение методом ветвей и границ .

Общий план решения задачи коммивояжера

Для решения задачи коммивояжера методом ветвей и границ необходимо выполнить следующий алгоритм (последовательность действий):

  1. Построение матрицы с исходными данными.
  2. Нахождение минимума по строкам.
  3. Редукция строк.
  4. Нахождение минимума по столбцам.
  5. Редукция столбцов.
  6. Вычисление оценок нулевых клеток.
  7. Редукция матрицы.
  8. Если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9.
  9. Вычисление итоговой длины пути и построение маршрута.

Более подробно эти этапы решения задачи о бродячем торговце раскрыты ниже.

Подробная методика решения задачи коммивояжера

В целях лучшего понимания задачи будем оперировать не понятиями графа, его вершин и т.д., а понятиями простыми и максимально приближенными к реальности: вершины графа будут называться «города», ребра их соединяющие – «дороги».

Итак, методика решения задачи коммивояжера:

1. Построение матрицы с исходными данными

Сначала необходимо длины дорог соединяющих города представить в виде следующей таблицы:

В нашем примере у нас 4 города и в таблице указано расстояние от каждого города к 3-м другим, в зависимости от направления движения (т.к. некоторые ж/д пути могут быть с односторонним движением и т.д.).

Расстояние от города к этому же городу обозначено буквой M. Также используется знак бесконечности. Это сделано для того, чтобы данный отрезок путь был условно принят за бесконечно длинный. Тогда не будет смысла выбрать движение от 1-ого города к 1-му, от 2-ого ко 2-му, и т.п. в качестве отрезка маршрута.

2. Нахождение минимума по строкам

Находим минимальное значение в каждой строке (di ) и выписываем его в отдельный столбец.

3. Редукция строк

Производим редукцию строк – из каждого элемента в строке вычитаем соответствующее значение найденного минимума (di).

В итоге в каждой строке будет хотя бы одна нулевая клетка .

4. Нахождение минимума по столбцам

5. Редукция столбцов

Вычитаем из каждого элемента матрицы соответствующее ему dj.

В итоге в каждом столбце будет хотя бы одна нулевая клетка .

6. Вычисление оценок нулевых клеток

Для каждой нулевой клетки получившейся преобразованной матрицы находим «оценку ». Ею будет сумма минимального элемента по строке и минимального элемента по столбцу, в которых размещена данная нулевая клетка. Сама она при этом не учитывается. Найденные ранее di и dj не учитываются. Полученную оценку записываем рядом с нулем, в скобках.

И так по всем нулевым клеткам:

7. Редукция матрицы

Выбираем нулевую клетку с наибольшей оценкой. Заменяем ее на «М ». Мы нашли один из отрезков пути. Выписываем его (от какого города к какому движемся, в нашем примере от 4-ого к 2-му).

Ту строку и тот столбец, где образовалось две «М» полностью вычеркиваем. В клетку, соответствующую обратному пути , ставим еще одну букву «М» (т.к. мы уже не будем возвращаться обратно).

8. Если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9

Если мы еще не нашли все отрезки пути, то возвращаемся ко 2 -му пункту и вновь ищем минимумы по строкам и столбцам, проводим их редукцию, считаем оценки нулевых клеток и т.д.

Если все отрезки пути найдены (или найдены еще не все отрезки, но оставшаяся часть пути очевидна) – переходим к пункту 9 .

9. Вычисление итоговой длины пути и построение маршрута

Найдя все отрезки пути, остается только соединить их между собой и рассчитать общую длину пути (стоимость поездки по этому маршруту, затраченное время и т.д.). Длины дорог соединяющих города берем из самой первой таблицы с исходными данными.

В нашем примере маршрут получился следующий: 4 2 3 1 4 .

Общая длина пути: L = 30 .

Практическое применение задачи коммивояжера

Применение задачи коммивояжера на практике довольно обширно. В частности ее можно использовать для поиска кратчайшего маршрута при гастролях эстрадной группы по городам, нахождения последовательности технологических операций обеспечивающей наименьшее время выполнения всего производственного цикла и пр.

Решение задачи коммивояжера онлайн

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на

5x 1 + 2x 2 ≤ 14
2x 1 + 5x 2 ≤ 16
x 1 , x 2 – целые числа
Z = 3x 1 + 5x 2 → max
Решение находим с помощью калькулятора .:
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Границы области допустимых решений
Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 3x 1 +5x 2 → max.
Построим прямую, отвечающую значению функции F = 0: F = 3x 1 +5x 2 = 0. Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.


Прямая F(x) = const (1) и (2)
5x 1 +2x 2 ≤14
2x 1 +5x 2 ≤16

Решив систему уравнений, получим: x 1 = 1.8095, x 2 = 2.4762
F(X) = 3*1.8095 + 5*2.4762 = 17.8095
Оптимальное значение переменной x 1 =1.81 оказалось нецелочисленным.
В первой из них к условиям задачи 11 добавляется условие х 1 ≥ 2, а к задаче 12 - условие х 1 ≤ 1.
Эта процедура называется ветвлением по переменной х 1 .


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≥2

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)


Прямая F(x) = const пересекает область в точке B. Так как точка B получена в результате пересечения прямых (1) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
5x 1 +2x 2 ≤14
x 1 ≥2


Откуда найдем максимальное значение целевой функции:
F(X) = 3*2 + 5*2 = 16

Решение задачи получилось целочисленным.
Новое значение текущего рекорда будет равно F(X) = 16.
Так как найденная точка является первым целочисленным решением, то ее и соответствующее ей значение ЦФ следует запомнить. Сама точка называется текущим целочисленным рекордом или просто рекордом, а оптимальное значение целочисленной задачи - текущим значением рекорда . Это значение является нижней границей оптимального значения исходной задачи Z*.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const (2) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 ≤1

Решив систему уравнений, получим: x 1 = 1, x 2 = 2.8
Откуда найдем максимальное значение целевой функции:
F(X) = 3*1 + 5*2.8 = 17

Оптимальное значение переменной x 2 =2.8 оказалось нецелочисленным.
Разбиваем задачу 12 на две подзадачи 121 и 122.
В первой из них к условиям задачи 121 добавляется условие х 2 ≥ 3, а к задаче 122 - условие х 2 ≤ 2.
Решим графически задачу 121 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≥3

(4)

x 1 ≥0

(5)

x 2 ≥0

(6)

Область допустимых решений представляет собой треугольник.
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (2) и (4) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 2 ≥3


Откуда найдем максимальное значение целевой функции:
F(X) = 3*0.5 + 5*3 = 16.5

Решим графически задачу 122 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≤2

(4)

x 1 ≥0

(5)

x 2 ≥0

(6)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (3) и (4) , то ее координаты удовлетворяют уравнениям этих прямых:
x 1 ≤1
x 2 ≤2

Решив систему уравнений, получим: x 1 = 1, x 2 = 2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*1 + 5*2 = 13

Текущий рекорд Z=16≥13, поэтому прекращаем ветвление из этой вершины

Разбиваем задачу 121 на две подзадачи 1211 и 1212.
В первой из них к условиям задачи 1211 добавляется условие х 1 ≥ 1, а к задаче 1212 - условие х 1 = 0.
Решим графически задачу 1211 как задачу ЛП.

Задача не имеет допустимых решений. ОДР представляет собой пустое множество.

Задача 1211 не имеет решения, поэтому для нее процесс ветвления прерываем.
Решим графически задачу 1212 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 1 ≤1

(3)

x 2 ≥3

(4)

x 1 =0

(5)

x 1 ≥0

(6)

x 2 ≥0

(7)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (2) и (7) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 =0


Откуда найдем максимальное значение целевой функции:
F(X) = 3*0 + 5*3.2 = 16


Оптимальное значение переменной x 2 =2.48 оказалось нецелочисленным.
Разбиваем задачу 1 на две подзадачи 11 и 12.
В первой из них к условиям задачи 11 добавляется условие х 2 ≥ 3, а к задаче 12 - условие х 2 ≤ 2.
Эта процедура называется ветвлением по переменной х 2 .
Решим графически задачу 11 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 2 ≥3

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой треугольник.
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (2) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 2 ≥3

Решив систему уравнений, получим: x 1 = 0.5, x 2 = 3
Откуда найдем максимальное значение целевой функции:
F(X) = 3*0.5 + 5*3 = 16.5


Решим графически задачу 12 как задачу ЛП.


5x 1 +2x 2 ≤14

(1)

2x 1 +5x 2 ≤16

(2)

x 2 ≤2

(3)

x 1 ≥0

(4)

x 2 ≥0

(5)

Область допустимых решений представляет собой многоугольник
Прямая F(x) = const пересекает область в точке C. Так как точка C получена в результате пересечения прямых (1) и (3) , то ее координаты удовлетворяют уравнениям этих прямых:
5x 1 +2x 2 ≤14
x 2 ≤2

Решив систему уравнений, получим: x 1 = 2, x 2 = 2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*2 + 5*2 = 16


Текущий рекорд Z=16≥16, поэтому прекращаем ветвление из этой вершины
Оптимальное значение переменной x 1 =0.5 оказалось нецелочисленным.
Разбиваем задачу 11 на две подзадачи 111 и 112.
В первой из них к условиям задачи 111 добавляется условие х 1 ≥ 1, а к задаче 112 - условие х 1 = 0.
Решим графически задачу 111 как задачу ЛП. Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (2) и (6) , то ее координаты удовлетворяют уравнениям этих прямых:
2x 1 +5x 2 ≤16
x 1 =0

Решив систему уравнений, получим: x 1 = 0, x 2 = 3.2
Откуда найдем максимальное значение целевой функции:
F(X) = 3*0 + 5*3.2 = 16


Текущий рекорд Z=16≥16, поэтому прекращаем ветвление из этой вершины
F(X) = 16
x 1 = 2
x 2 = 2

Дерево решения задачи

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.



Рекомендуем почитать

Наверх