Выпрямители: разновидности, схемы, формулы и функции расчета. Типы выпрямителей переменного тока Какие бывают выпрямители

Для Андроид 16.09.2019
Для Андроид

Поскольку большинство радиоэлектронных устройств питаются постоянным током, а в нашей сети переменный, то самое время научиться его «выпрямлять». Для преобразования переменного напряжения или тока в постоянный служат выпрямители, о которых мы и поговорим. Самый простой выпрямитель можно выполнить всего на одном диоде:

На графиках, полученных с помощью осциллографа и представленных на рисунке, хорошо видно, что до диода напряжение было переменным, разнополярным. Диод «обрезал» отрицательные полуволны, и остались одни положительные. Таким образом, мы получили однополярное напряжение, но оно сильно пульсирует, и питать им электронику невозможно. Чтобы сгладить пульсации используют конденсаторы большой емкости:

Пока проходит положительная полуволна, конденсатор заряжается, во время провала он отдает запасенную энергию и разряжается. Теперь дело обстоит несколько лучше, но не совсем хорошо — чем мощнее нагрузка, тем глубже будут провалы и тем большую емкость нужно включать, чтобы как-то спасти положение. Поэтому такой вид выпрямителя, который называется однополупериодным , используют достаточно редко и только для выпрямления переменного тока достаточно высокой частоты и малых токов нагрузки. В противном случае размеры сглаживающих конденсаторов будут неоправданно большими.

Для улучшения формы выпрямленного напряжения достаточно добавить в схему еще три диода:

В этом выпрямителе, который называют двухполупериодным, волны перенаправляются диодами и на выходе получается тоже пульсирующее напряжение, но удвоенной частоты, а пауз между импульсами практически нет. Добавим сюда сглаживающий конденсатор и увидим, что постоянное напряжение действительно похоже на постоянное:

Преимущество такого типа выпрямителя не только в лучшей форме выпрямленного напряжения, но и в том, что в качестве диодов можно использовать приборы, рассчитанные на вдвое меньший ток, поскольку в каждый момент времени через каждый диод течет только половина тока нагрузки. Такая схема получила настолько широкое распространение, что диоды собирают в мосты прямо на заводе. Такие сборки мы называем диодными или выпрямительными мостами.

Но двухполупериодная схема может иметь и другой вид, в котором присутствует всего два диода:

Здесь «минусовым» проводом служит отвод от середины вторичной обмотки трансформатора, а положительные полуволны собираются двумя диодами на «плюсе» благодаря двум одинаковым полуобмоткам. В этой схеме диоды тоже работают с половинным током нагрузки, но оправдана она лишь тогда, когда трансформатор имеет две обмотки, каждая из которых выдает номинальное напряжение и обмотки эти можно включить последовательно.

Выпрямление электрических колебаний , это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны , кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

.

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.


При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

- Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

- Коэффициент использования трансформатора в выпрямительной схеме , определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

- Коэффициент полезного действия , это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

-

Частотная пульсация выпрямителя , это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

В осветительной электрической сети, от которой получают питание все бытовые электроприборы, как правило, течёт переменный ток. Редкое исключение составляют небольшие сельские посёлки, где электростанции дают постоянный ток.

Радиоприемники, магнитофоны, электропроигрыватели и другие устройства работают на электронновакуумных лампах или полупроводниковых приборах, на электроды которых необходимо подавать напряжение постоянного тока. Зарядка аккумуляторов может быть произведена только постоянным током. Ряд производственных процессов на заводах, как например, хромирование, невозможно осуществить, если не имеется постоянного напряжения.

Почему же наши электростанции дают переменный ток? Ведь электронагревательные приборы и электромоторы так же хорошо будут работать и на постоянном токе? Объясняется это главным образом тем, что переменный ток можно легко трансформировать (преобразовать) в различные напряжения, что нельзя делать с постоянным током. Передачу энергии переменного тока по линии электропередачи можно осуществить со значительно меньшими потерями, чем при постоянном токе, вследствие того, что напряжение в линии в этом случае может составлять десятки и сотни тысяч вольт. В месте потребления напряжение понижается на трансформаторных подстанциях и в наши квартиры и на заводы подается переменное напряжение 127 или 220 в.

Как же получить постоянное напряжение, необходимое для нормальной работы некоторых приборов?

Для преобразования переменных напряжений в постоянные служит выпрямитель. Понять, как работает выпрямитель, можно, только ясно представляя, что такое переменный ток. Переменным током называется такой ток, направление и величина которого меняются во времени.

В осветительной сети, по принятому в нашей стране стандарту, направление тока меняется 50 раз в секунду, или, как говорят, частота промышленного тока равна 50 периодам (герцам). Это означает, что в какой-то период времени ток в сети равен 0, затем ток начинает плавно возрастать, достигает максимального (амплитудного) значения, после чего ток в сети постепенно уменьшается и становится равным нулю. После этого направление тока снова изменяется и ток опять плавно возрастает до максимального значения, а затем вновь уменьшается до нуля. Этот процесс напоминает качели, которые, качаясь около положения равновесия (нулевое значение тока), поднимаются на максимальную высоту (максимальное значение тока), затем опускаются, опять поднимаются и т. д. Такой процесс изменения тока называют периодическим. В нашей электросети такой процесс повторяется пятьдесят раз в секунду, т. е. ток (напряжение) имеет пятьдесят периодов в секунду, изменяя своё значение по синусоидальному закону.

Графически картина изменения тока в сети представлена на рис. 1. Такой график получается, если на вертикальной оси откладывать значения тока или напряжения, а по горизонтальной оси - отрезки времени, отсчитываемые от какого-то момента, принимаемого за начало отсчёта.

Задачей выпрямителя является получение постоянного напряжения из переменного; Постоянное напряжение графически можно изобразить так, как это показано на рис. 2. Постоянный ток не меняет ни своего направления, ни своей величины.

Процесс выпрямления переменного тока (напряжения) заключается в том, что на пути тока в электрической цепи включается элемент - вентиль, который пропускает ток только в одном направлении (одного знака). Схематично электрическая цепь переменного тока с вентилем представлена на рис. 3. Односторонняя проводимость вентиля приводит к тому, что только в положительные полупериоды ток проходит через вентиль, а в отрицательные полупериоды (отмеченные на рис. 1 знаком "-") тока в цепи нет. Графически ток в такой цепи можно изобразить так, как это показа но на рис. 4. При положительной полуволне сопротивление вентиля мало и ток свободно проходит через него. При отрицательной полуволне ток встречает большое сопротивление, так как в обратном направлении сопротивление вентиля в сотни и даже тысячи раз больше и ток через него не проходит. Таким образом, включив в электрическую цепь переменного тока вентиль, мы уже не получаем в этой цепи переменного тока. Ток в этой цепи будет меняться только по величине и не будет изменять своего направления. Такой ток называют пульсирующим. Использовать его можно, например, для зарядки аккумуляторов. Для питания радиоаппаратуры такой ток не годится. Требуется дальнейшее его сглаживание, с тем чтобы ток превратился из пульсирующего в постоянный. Это достигается применением фильтра.

В простейшем случае роль фильтра может выполнять конденсатор достаточно большой ёмкости. На рис. 5 показана схема цепи с вентилем и конденсатором С, являющимся фильтром. Сглаживание пульсаций (фильтрация) выпрямленного тока осуществляется вследствие того, что конденсатор заряжается током, проходящим через вентиль, и запасает электрическую энергию. Как только ток через вентиль начнет уменьшаться и напряжение на нагрузке Rн выпрямителя начнет падать, - а это происходит в конце каждого положительного полупериода, - конденсатор отдаёт накопленную им за положительный полупериод энергию. Графически это изображено на рис 6. Как видно из рисунка, ток ещё не стал совсем постоянным и заметны резкие пульсации. Необходим более совершенный фильтр, который на нагрузке обеспечил бы постоянный ток с очень незначительными пульсациями, которые не будут оказывать существенного влияния на работу устройства, питаемого от выпрямителя.

Существует несколько типов выпрямителей. Наиболее простым из них является однополупериодный, схема которого изображена на рис. 7. В таком выпрямителе используются только положительные полупериоды выпрямленного тока. Частота пульсаций этого тока равна частоте сетевого напряжения и для сглаживания пульсаций выпрямитель, собранный по однополупериодной схеме, требует хорошего фильтра. Такие выпрямители используются для питания аппаратуры, потребляющей незначительный ток, так как при возрастании тока необходимо будет усложнять фильтр выпрямителя.

Более распространена двухполупериодная схема выпрямления, где (см. рис. 8) используются два вентиля В1 и В2. Ток в нагрузке протекает всё время в одном направлении. Выпрямление напряжения происходит следующим образом. В какой-то момент времени на одном (верхнем, по схеме} выводе вторичной обмотки трансформатора Тр1 будет положительное напряжение по отношению ко второму (нижнему) концу. Ток пойдёт через вентиль В1, и имеющий в прямом направлении маленькое сопротивление, затем через нагрузку на среднюю точку вторичной обмотки трансформатора. На рис. 8 прохождение тока показано сплошной стрелкой. Так будет продолжаться в течение первого положительного полупериода. При изменении направления тока в сети на верхнем конце трансформатора будет уже отрицательное напряжение и ток через вентиль B1 не пойдёт, так как вентиль будет иметь очень большое сопротивление. На нижнем конце вторичной обмотки трансформатора теперь будет положительное напряжение и ток пойдёт уже через вентиль В2, нагрузку и на среднюю точку вторичной обмотки - трансформатор Тр1.

При таком включении вентилей используются уже оба полупериода выпрямляемого напряжения. Частота пульсаций в таком выпрямителе в два раза больше и поэтому значительно облегчается фильтрация выпрямленного напряжения. По двухполупериодной схеме собраны почти все выпрямители для радиоприёмников, телевизоров и магнитофонов.

Существует ещё мостовая схема включения выпрямителя. В этом случае выпрямление происходит по двухполупериодной схеме, но трансформатор имеет более простую конструкцию, вторичная обмотка его содержит в два раза меньше витков и не требуется вывода от средней точки. Однако в выпрямителе, собранном по мостовой схеме, необходимо в два раза больше вентилей, чем при двухполупериодной схеме. Схема мостового выпрямителя изображена на рис. 9. Стрелками указано прохождение тока в оба полупериода.

В качестве вентиля для выпрямления переменного тока могут быть использованы селеновые или купроксные шайбы , кенотроны, газотроны или полупроводниковые диоды.

Для питания массовой радиоаппаратуры наибольшее распространение получили кенотронные и селеновые выпрямители. За последнее время начинают всё шире использоваться германиевые силовые диоды типа ДГ-Ц21-27.

Кенотрон представляет собой вакуумную, обычно стеклянную, радиолампу, имеющую два электрода - анод и катод. Двуханодный кенотрон имеет два анода. Вентильное свойство кенотрона проявляется в том, что ток через кенотрон может идти только в одном направлении - от анода к катоду. В обратном направлении - ток не пойдет, так как электроны вылетают только с поверхности нагретого катода и могут двигаться только на анод, если на нём в данный момент имеется положительное напряжение по отношению к катоду.

Простейшая однополупериодная схема выпрямителя с использованием в качестве вентиля кенотрона изображена на рис. 10. Направление тока I показано стрелкой. Конденсаторы С1 и С2 и дроссель Др1 составляют фильтр для сглаживания пульсаций. Подробно о фильтрах будет рассказано ниже.

Существует много различных типов кенотронов, каждый из которых рассчитан на определенные условия работы: одни позволяют получить большой выпрямленный ток при относительно низком напряжении, другие, наоборот, работают в выпрямителе, дающем высокое напряжение при ничтожно малом токе.

При конструировании выпрямителя прежде всего необходимо правильно выбрать тип кенотрона. Для этого нужно знать, какой ток и напряжение потребляет нагрузка, питающаяся от выпрямителя, и в соответствии с этими данными выбирать по справочнику подходящий тип кенотрона. Пусть требуется выбрать кенотрон, который предполагается установить в выпрямитель для питания приёмника. Приёмник имеет четыре лампы, не считая кенотрона.

Постоянное напряжение, потребное для питания радиоламп приёмника, равно 250 в. Общий ток, потребляемый анодно-экранными цепями всех ламп приемника, составляет около 40 мА.

Наиболее подходящим для нашего выпрямителя будет кенотрон 6Ц4П, который, по справочным данным, может обеспечить ток до 70 мА при двухполупериодной схеме выпрямления. По напряжению этот кенотрон также вполне подходит, так как для двухполупериодной схемы выпрямления обратное напряжение, возникающее в выпрямителе, не превышает тройного напряжения на нагрузке и равно 250х3 = 750 В, а кенотрон 6Ц4П выдерживает до 1000 В обратного напряжения.

В селеновом выпрямителе в качестве вентиля используют селеновые шайбы.

Селеновая шайба представляет собой железный диск или прямоугольную железную пластину, на которой с одной стороны нанесён тонкий слой полупроводника - селена. Сверху слой селена покрыт, для создания контакта, тонким слоем легкоплавкого металла.

Вентильные свойства селена проявляются в том, что он обладает односторонней проводимостью. Когда на железную пластину подан положительный полюс источника тока, селеновая шайба обладает ничтожно малым сопротивлением, и, наоборот, при смене полярности сопротивление шайбы возрастает в сотни раз.

Выбор селенового вентиля для выпрямителя производится также по току и напряжению, потребному для нагрузки. Необходимо помнить, что одна селеновая шайба выдерживает напряжение до 20 В, следовательно, если на нагрузке развивается напряжение больше этой величины, то селеновые шайбы нужно соединять последовательно.

Для нашего примера достаточно в каждое плечо двухполупериодного выпрямителя поставить по 13 шайб, так как напряжение на нагрузке равно 250 В и число шайб получится, если 250 В разделить на 20 В. Получившееся дробное число необходимо округлить до ближайшего целого. Чтобы определить, какого диаметра нужно поставить шайбы, необходимо помнить, что на один квадратный сантиметр поверхности селеновой шайбы допускается ток, равный 30 мА. Следовательно, чтобы определить площадь селеновых шайб для нашего выпрямителя, нужно разделить величину тока, потребляемого приемником, на допустимую плотность тока (величину тока, допустимую на 1 см 2). Площадь шайбы равна 40/30 = 1,33 см. Диаметр шайбы легко определить по известной формуле площади окружности

Sплощ = 0,25*π*D 2 ,

откуда диаметр шайбы равен

D = (4*S/π) 0,5 = (4*1,33/3,14) 0,5 ≈ 1,3 см.

Можно такого расчёта не производить и диаметр шайбы брать непосредственно из справочника. В случае, если у радиолюбителя имеются шайбы какого-то другого диаметра, то их можно использовать в этом выпрямителе. Если шайбы имеют больший диаметр, чем получился по расчету, их можно установить в качестве вентиля без всяких изменений в схеме выпрямителя, помня только, что допустимое напряжение на каждую шайбу не должно превышать 20 В.

В случае если диаметр имеющихся шайб меньше, чем получился по расчету, то шайбы можно соединить параллельно с таким расчетом, чтобы общая площадь двух параллельно соединённых шайб была равна или больше получившейся по расчету. При параллельном соединении шайб число их удваивается, так как необходимо соблюдать условие допустимого напряжения на каждую шайбу.

Расчёт вентиля, в качестве которого используется германиевый диод (рис. 11), производится аналогично. Зная ток нагрузки и напряжение на ней, выбирают по справочнику подходящий тип диода. Может случиться, что имеющиеся германиевые диоды типа ДГ-Ц не подходят по допустимому току или напряжению. Если диоды не подходят по току (ток нагрузки больше допустимого), то необходимо поставить несколько диодов, соединенных параллельно. Если диоды не подходят по напряжению, их соединяют последовательно. Расчёт числа последовательно соединенных диодов сводится к тому, чтобы выбрать такое количество диодов, при котором падение напряжения на каждом из них не превысило допустимого.

При последовательном соединении диодов типа ДГ-Ц каждый из них следует зашунтировать сопротивлением не менее 100 кОм мощностью до 1 Вт. Шунтировать диоды необходимо для выравнивания падения напряжения на каждом из них. Выпускаемые диоды имеют значительный разброс параметров, и может быть такой случай, когда на одном из них падение напряжения будет в несколько раз больше, чем на другом, что выводит диоды из строя. Этого не произойдет, если каждый диод будет зашунтирован сопротивлением и падение напряжения распределится равномерно между каждым диодом.

При параллельном соединении полупроводниковых диодов типа ДГ-Ц количество их рассчитывается по несложным формулам. Так, для диодов типа ДГ-Ц21 - 24 число параллельно соединённых диодов будет равно

Для диодов типа ДГ-Ц25 - 27 число параллельно соединённых диодов

n = 15,4I0 - 0,54.

В этих формулах I0 означает выпрямленный ток в амперах. Может случиться так, что число диодов n, рассчитанное по этим формулам, получается дробным. Тогда следует округлить это число до ближайшего большего целого числа. Иногда в расчете получается 0 или отрицательное число. Это означает, что необходимо поставить только один диод и никаких параллельных соединений делать не нужно, так как выбранный диод обеспечит требуемую величину выпрямленного тока.

Сглаживающий фильтр

Как указывалось выше, для сглаживания пульсаций после выпрямителя на его выходе включается фильтр. Обычно фильтр состоит из дросселя фильтра Др1 (рис. 12), обмотка которого, выполненная из нескольких тысяч витков тонкой проволоки, располагается на стальном сердечнике. В фильтр входит также два и более конденсаторов фильтра. На месте этих конденсаторов в подавляющем большинстве случаев применяются электролитические конденсаторы, имеющие сравнительно небольшие габариты и большую ёмкость (10...50 мкф}.

Фильтр значительно ослабляет переменную составляющую выпрямленного напряжения и мало влияет на постоянную составляющую, идущую на питание анодно-экранных цепей приёмника.

Качество фильтра определяется его коэффициентом фильтрации, который показывает, во сколько раз переменная составляющая на выходе фильтра ослабляется относительно переменной составляющей на его входе.

Допустимая величина переменной составляющей на выходе фильтра зависит от аппаратуры, которая питается от данного выпрямителя. Для усилителей низкой частоты амплитуда пульсаций анодного напряжения не должна превышать 0,5-1% от напряжения полезного сигнала, измеренного в анодной цепи данного каскада. Для каскадов усиления высокой и промежуточной частоты эта амплитуда не должна превышать 0,05-0,1% (0,1-0,2 В).

Работа фильтра зависит от произведения индуктивности дросселя на ёмкость конденсатора фильтра на выходе. Ёмкость этого конденсатора обычно берут в пределах 10-40 мкф. Индуктивность дросселя для маломощного выпрямителя обычно не превышает 20-30 Гн.

При прикидке данных фильтра можно пользоваться следующим правилом: произведение индуктивности катушки дросселя фильтра, выраженное в генри, на ёмкость конденсатора на выходе фильтра, выраженное в микофарадах, должно равняться 200.

Для улучшения фильтрации можно составлять сглаживающий фильтр из нескольких звеньев. Улучшения фильтрации можно также добиться путём применения настроенного дросселя, для этого параллельно дросселю фильтра подсоединяется конденсатор постоянной ёмкости (на рис. 12 это подключение показано пунктиром).

Ёмкость конденсатора берётся в пределах 0,05-0,1 мкф и в каждом отдельном случае находится опытным путём.

Дроссель фильтра можно включить как в «+», так и в «-» выпрямителя, это не скажется на качестве работы фильтра. В некоторых случаях, когда желательно воспользоваться падением напряжения на обмотке дросселя фильтра для подачи отрицательного смещения на управляющие сетки ламп усилителя приёмника, дроссель включают в минусовую цепь выпрямителя.

При питании малоламповых приемников вместо дросселя фильтра можно включить обмотки (или обмотку) трансформатора низкой частоты.

Конструктивно дроссель для сглаживающих фильтров аналогичен маломощному силовому трансформатору. Разница заключается в том, что трансформатор имеет несколько обмоток, дроссель только одну. Сердечник дросселя обязательно должен иметь воздушный зазор, который устраняет возможность магнитного насыщения сердечника постоянным током, протекающим по обмотке дросселя.

Магнитное насыщение уменьшает индуктивность дросселя, что ухудшает работу фильтра.

Конструктивно дроссель фильтра и силовой трансформатор выпрямителя можно рассчитать, руководствуясь статьей, напечатанной в приложении № 1 для начинающих, «Расчет и изготовление силового трансформатора» (разослано с журналом «Радио» № 5 за 1957 год). Следует только учитывать, что, задаваясь напряжением на выходе выпрямителя, нужно принять во внимание падение напряжения на дросселе фильтра и что в случае применения двухполупериодного кенотронного выпрямителя с конденсаторным фильтром эффективное напряжение и ток повышающей обмотки связаны с напряжением и током на выходе выпрямителя следующими соотношениями: напряжение на вторичной обмотке берётся в 2..2,2 раза больше напряжения на выходе выпрямителя, а ток в обмотке 1..1,2 I0. Токи и напряжения обмоток для накала ламп и кенотрона определяются данными накала кенотрона и ламп, для питания которых предназначен рассчитываемый выпрямитель.

Вместо дросселя фильтра иногда применяют активное сопротивление, которое для получения хорошей фильтрации должно иметь значительную величину.

Недостатком такого фильтра является большое падение напряжения на сопротивлении фильтра, поэтому применять такой фильтр можно только в маломощных усилителях. При расчёте выпрямителя с таким фильтром задаются допустимым падением выпрямленного напряжения на сопротивлении, включенном в фильтр, Uпад, после чего величину этого сопротивления R находят по формуле

где I0 - ток в мА, снимаемый с выпрямителя.

Очень часто для питания той или иной аппаратуры применяются различные постоянные напряжения. Для того чтобы использовать для этой цели один и тот же выпрямитель, на его вход включают цепочку из нескольких последовательно соединённых постоянных сопротивлений величиной по нескольку тысяч Ом. Эти сопротивления не должны быть очень большими, так как в противном случае напряжение, снимаемое с делителя, будет сильно зависеть от величины нагрузки. Они также не должны быть очень малыми, чтобы не перегружать выпрямитель.

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVD включен последовательно с нагрузочным резисторомR н и вторичной обмоткой трансформатораT . Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток I н в нагрузке имеет импульсный характер. В течение первого полупериода напряженияU АБ , когда потенциал точкиа положителен по отношению к потенциалу точкиб , диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки а становится отрицательным по отношению к потенциалу точкиб . При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD 1 VD 4 (включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка а имеет положительный по отношению к точкеб потенциал, диодыVD2 иVD 3 открыты, а диодыVD 1 иVD4 закрыты. Ток в этот полупериод имеет направление: зажима вторичной обмотки трансформатора, диодVD2 , нагрузочный резисторR н , диодVD3 и зажимб . В следующий полупериод, когда потенциал точкиа становится отрицательным по отношению к точкеб , открыты диодыVD1 иVD4, а диодыVD2 иVD3 закрыты. Протекающий в схеме ток имеет следующее направление: точкаб , диодVD4 , нагрузочный резисторR н , диодVD1 и точкаа вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореR н имеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки R н средний выпрямленный ток / н ср и напряжениеU н ср в мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения U н и токаI н нагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры . Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора U АБ конденсаторC заряжается и напряжение на нём повышается. Во время положительного полупериода диодVD пропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеU АБ уменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVD запирается, а конденсатор начинает разряжаться на резисторR н . Скорость разряда конденсатора определяется постоянной времени разр =R н С . В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.

Ртутный выпрямитель

Выпрямители классифицируют по следующим признакам:

Применение

Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток. Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении).

Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

Сюда относятся выпрямительные установки для:

  • железнодорожной тяги
  • городского электротранспорта
  • электролиза (производство алюминия, хлора, едкого натра и др.)
  • питания приводов прокатных станов
  • возбуждения генераторов электростанций

В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 - 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

Блоки питания аппаратуры

  • Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электромеханические или полупроводниковые выпрямители.

Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах - вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

Вентильные блоки преобразовательных подстанций систем энергоснабжения

  • Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

  • Для гальванических ванн (электролизёров) для получения цветных металлов и стали , нанесения металлических покрытий и гальванопластики.
  • Установки электростатической очистки промышленных газов (электростатический фильтр)
  • Установки очистки и обессоливания воды
  • Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай , троллейбус , электровоз , метро)

Выпрямители высокочастотных колебаний

  • в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.
  • в перспективных системах беспроводной передачи электроэнергии .

Детектирование высокочастотного сигнала

Допущения: нагрузка чисто активная, вентиль - идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

Эта величина вдвое меньше, чем в полномостовом.

  • Большая величина пульсаций
  • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
  • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущество: экономия на количестве вентилей.

Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура - Делона - Гренашера».

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой».

Полный мост (Гретца)

На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем .

Средняя ЭДС равна то есть вдвое больше, чем в четвертьмостовом.

Эквивалентное внутреннее активое сопротивление равно .

Ток в нагрузке равен

Мощность в нагрузке равна

Наибольшее мгновенное значение напряжения на диодах -

Двухфазные выпрямители со сдвигом фаз 180°

Два четвертьмоста параллельно ("двухполупериодный со средней точкой")

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В. Ф. . В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца , но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшим КПД по сравнению с мостовой схемой. Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции .

Площадь под интегральной кривой равна:

Средняя ЭДС равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где - частота сети.

Два полных моста параллельно

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

Двухфазные выпрямители со сдвигом фаз 90°

Два полных моста параллельно

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом.

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

Два полных моста последовательно

На двух последовательных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

Трёхфазные выпрямители

Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.

Площадь под интегральной кривой равна:

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.

Три полных моста параллельно (12 диодов)

Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н.

По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста».

Вид ЭДС на входе (точками) и на выходе (сплошной).

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными.

Частота пульсаций равна , где - частота сети.

Абсолютная амплитуда пульсаций равна .

Относительная амплитуда пульсаций равна .

Три полных моста последовательно (12 диодов)

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть .

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где - частота сети.



Рекомендуем почитать

Наверх