В чем отличие процессоров Intel Core i3, i5 и i7? Поколения процессоров Intel: описание и характеристики моделей

Новости 31.07.2019
Новости

Первые процессоры под маркой Intel Core i7 появились еще девять лет назад, но платформа LGA1366 на массовое распространение вне серверного сегмента не претендовала. Собственно, все «потребительские» процессоры для нее попадали в диапазон цен от ≈$300 до полновесной «штукибаксов», так что ничего удивительного в этом нет. Впрочем, и современные i7 живут в нем же, так что являются устройствами ограниченного спроса: для самых требовательных покупателей (появление Core i9 в этом году немного изменило диспозицию, но именно что совсем немного). И уже первые модели семейства получили формулу «четыре ядра — восемь потоков — 8 МиБ кэш-памяти третьего уровня».

Позднее она же была унаследована моделями для ориентированной на массовый рынок LGA1156. Позднее без изменений перекочевала в LGA1155. Еще позже «отметилась» в LGA1150 и даже LGA1151, хотя от последней изначально многие пользователи ожидали появления шестиядерных моделей процессоров. Но в первой версии платформы этого не произошло — соответствующие Core i7 и i5 появились лишь в этом году в рамках «восьмого» поколения, с «шестым» и «седьмым» несовместимого. По мнению некоторых наших читателей (которое мы частично разделяем) — немного поздновато: могли бы и раньше. Впрочем, претензия «хорошо, но мало» применима не только к производительности процессоров, а вообще к любым эволюционным изменениям на любом рынке. Причина этого лежит не в технической, а в психологической плоскости, что далеко выходит за сферу интересов нашего сайта. Вот устроить тестирование компьютерных систем разных поколений для определения их производительности и энергопотребления (пусть, хотя бы, на ограниченной выборке задач) мы можем. Чем сегодня и займемся.

Конфигурация тестовых стендов

Процессор Intel Core i7-880 Intel Core i7-2700K Intel Core i7-3770K
Название ядра Lynnfield Sandy Bridge Ivy Bridge
Технология производства 45 нм 32 нм 22 нм
Частота ядра, ГГц 3,06/3,73 3,5/3,9 3,5/3,9
Кол-во ядер/потоков 4/8 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128
Кэш L2, КБ 4×256 4×256 4×256
Кэш L3, МиБ 8 8 8
Оперативная память 2×DDR3-1333 2×DDR3-1333 2×DDR3-1600
TDP, Вт 95 95 77

Открывают наш парад-алле три наиболее старых процессора — один для LGA1156 и два для LGA1155. Заметим, что первые две модели по-своему уникальны. Например, Core i7-880 (появился в 2010 году — во второй волне устройств для данной платформы) был самым дорогим процессором из всех участников сегодняшнего тестирования: его рекомендованная цена составляла $562. В дальнейшем столько не стоил ни один настольный четырехъядерный Core i7. А четырехъядерные процессоры семейства Sandy Bridge (как и в предыдущем случае у нас тут представитель второй волны, а не «стартовый» i7-2600K) — единственные из всех моделей для LGA115х, использующие припой в качестве термоинтерфейса. В принципе, его внедрения тогда никто не заметил, равно как и более ранних переходов с припоя на пасту и обратно тоже: это позднее термоинтерфейс в узких, но шумных кругах начали наделять поистине волшебными свойствами. Где-то начиная с Core i7-3770K как раз (середина 2012 года), после чего шум не утихал.

Процессор Intel Core i7-4790K Intel Core i7-5775C
Название ядра Haswell Broadwell
Технология производства 22 нм 14 нм
Частота ядра std/max, ГГц 4,0/4,4 3,3/3,7
Кол-во ядер/потоков 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128
Кэш L2, КБ 4×256 4×256
Кэш L3 (L4), МиБ 8 6 (128)
Оперативная память 2×DDR3-1600 2×DDR3-1600
TDP, Вт 88 65

Кого нам сегодня будет несколько не хватать, так это оригинального Haswell в виде i7-4770K. В итоге 2013 год мы пропускаем и переходим сразу в 2014-й: формально 4790K — это уже Haswell Refresh. Некоторые тогда уже ждали Broadwell, но компания выпустила процессоры этого семейства исключительно на рынок планшетов и ноутбуков: где они были наиболее востребованы. А с настольными же планы несколько раз менялись, но в 2015 году пара процессоров (плюс три Xeon) на рынке появились. Очень специфические: подобно Haswell и Haswell Refresh устанавливались в разъем LGA1150, но совместимы были лишь с парой чипсетов 2014 года, а главное — оказались единственными «сокетными» моделями с четырехуровневой кэш-памятью. Формально — для нужд графического ядра, хотя на практике L4 использовать могут все программы. Подобные процессоры были и ранее, и позднее — но только в BGA-исполнении (т. е. припаивались непосредственно к системной плате). Эти же по-своему уникальны. Энтузиастов, естественно, не вдохновили из-за низких тактовых частот и ограниченной «разгоняемости», но мы проверим: как этот «боковой побег» соотносится с основной линейкой в современном ПО.

Процессор Intel Core i7-6700K Intel Core i7-7700K Intel Core i7-8700K
Название ядра Skylake Kaby Lake Coffee Lake
Технология производства 14 нм 14 нм 14 нм
Частота ядра, ГГц 4,0/4,2 4,2/4,5 3,7/4,7
Кол-во ядер/потоков 4/8 4/8 6/12
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 192/192
Кэш L2, КБ 4×256 4×256 6×256
Кэш L3, МиБ 8 8 12
Оперативная память 2×DDR3-1600 / 2×DDR4-2133 2×DDR3-1600 / 2×DDR4-2400 2×DDR4-2666
TDP, Вт 91 91 95

И наиболее «свежая» тройка процессоров, формально использующая один и тот же сокет LGA1151, но в двух его несовместимых друг с другом версиях. Впрочем, о нелегком пути шестиядерных процессоров массовой линейки на рынок мы писали совсем недавно : когда их впервые и тестировали. Так что повторяться не будем. Заметим только, что i7-8700K мы протестировали заново: используя уже не предварительный, а «релизный» экземпляр, да еще и установив его на уже «нормальную» плату с отлаженной прошивкой. Результаты изменились незначительно, но в нескольких программах стали несколько более адекватными.

Процессор Intel Core i3-7350K Intel Core i5-7600K Intel Core i5-8400
Название ядра Kaby Lake Kaby Lake Coffee Lake
Технология производства 14 нм 14 нм 14 нм
Частота ядра, ГГц 4,2 3,8/4,2 2,8/4,0
Кол-во ядер/потоков 2/4 4/4 6/6
Кэш L1 (сумм.), I/D, КБ 64/64 128/128 192/192
Кэш L2, КБ 2×256 4×256 6×256
Кэш L3, МиБ 4 6 9
Оперативная память 2×DDR4-2400 2×DDR4-2400 2×DDR4-2666
TDP, Вт 60 91 65

С кем сравнить результаты? Как нам кажется, нужно в обязательном порядке взять пару самых быстрых современных двух- и четырехъядерных процессора линеек Core i3 и Core i5, благо уже протестированы, да и интересно посмотреть, кого из старичков они догонят и где (и догонят ли). Кроме того, нам удалось достать и совсем новый шестиядерный Core i5-8400, так что воспользовались возможностью протестировать и его.

Процессор AMD FX-8350 AMD Ryzen 5 1400 AMD Ryzen 5 1600
Название ядра Vishera Ryzen Ryzen
Технология производства 32 нм 14 нм 14 нм
Частота ядра, ГГц 4,0/4,2 3,2/3,4 3,2/3,6
Кол-во ядер/потоков 4/8 4/8 6/12
Кэш L1 (сумм.), I/D, КБ 256/128 256/128 384/192
Кэш L2, КБ 4×2048 4×512 6×512
Кэш L3, МиБ 8 8 16
Оперативная память 2×DDR3-1866 2×DDR4-2666 2×DDR4-2666
TDP, Вт 125 65 65

Без процессоров AMD обойтись никак нельзя, да и незачем. Включая и «исторический» FX-8350, являющийся ровесником Core i7-3770K. Болельщики этой линейки всегда утверждали, что он не только дешевле, но и вообще лучше — просто готовить его мало кто умеет . А вот если воспользоваться «правильными программами», то сразу всех обгонит. Мы с этого года как раз по просьбам трудящихся переработали методику тестирования в сторону «сурового многопотока», так что есть повод проверить эту гипотезу — все равно тестирование историческое. А современных моделей потребуется как минимум две. Нам бы очень подошел Ryzen 5 1500Х, очень похожий на старые Core i7, но его не тестировали. Ryzen 5 1400 формально тоже подходит... но фактически у этой модели (и у современных Ryzen 3) вместе с уполовиниванием кэш-памяти «пострадали» и связки между ССХ. Поэтому пришлось взять еще и Ryzen 5 1600, где этой проблемы нет — в результате чего и обгоняет 1400 зачастую более, чем в полтора раза. Да и пара шестиядерных процессоров Intel в сегодняшнем тестировании тоже присутствует. Прочие явно слишком медленны для сравнения с этим недорогим процессором, ну и ладно — пусть подоминирует .

Методика тестирования

Методика . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования
  • Методика измерения производительности в играх образца 2017 года

Подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97—2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности это относится к тестам приложений, где все нормируется относительно референсной системы (AMD FX-8350 с 16 ГБ памяти, видеокартой GeForce GTX 1070 и SSD Corsair Force LE 960 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2017

В принципе, утверждения поклонников AMD о том, что в «суровом многопотоке» FX были не так уж и плохи, если рассматривать только производительность, основания имеют: как видим, 8350 в принципе мог на равных конкурировать с Core i7 того же года выпуска. Впрочем, здесь он и на фоне младших Ryzen неплохо смотрится, а вот между этими двумя семействами практически ничего компанией для этого сегмента рынка не выпускалось. У Intel же наблюдается равномерная такая линейка, позволившая и в рамках «четырехъядерной» концепции удвоить производительность. Хотя ядра здесь имеют огромное значение — лучший двухъядерник 2017 года все равно не догнал четырехъядерный Core «предыдущего» поколения (напомним, что так оно официально и называется до сих пор в материалах компании, четко отделяясь от пронумерованных начиная от второго). И шестиядерные модели хороши — причем все. Так что упреки Intel в том, что компания слишком задержала их выход на рынок, можно считать в какой-то степени справедливыми.

Все отличие от предыдущей группы — код здесь не столь примитивен, так что, кроме ядер, потоков и гигагерцев, важны и архитектурные особенности выполняющих его процессоров. Хотя общий итог для продукции Intel «навскидку» вполне сопоставимый: по-прежнему двукратная разница между 880 и 7700K, по-прежнему i5-8400 уступает лишь последнему, по-прежнему i3-7350K не догнал никого. И произошло это за те же семь лет. Можно считать, что и восемь — все-таки LGA1156 на рынок вышла осенью 2009 года, а Core i7-880 от появившихся в первой волне 860 и 870 отличался лишь частотами, да и то немного.

Стоит лишь немного «ослабить» утилизацию многопоточности, так сразу улучшается положение более новых процессоров — пусть и более слабых количественно. Однако традиционные «два конца» при прочих (относительно) равных сравнение «предыдущего» и «седьмого» поколений Core нам дает. Хотя несложно заметить, что на «революционные» в максимальной степени тянут «второе» и... «восьмое». Но это более чем объяснимо: последнее увеличило количество ядер, а во «втором» радикально изменилась микроархитектура и техпроцесс, причем одновременно.

Как мы уже знаем, несколько «чудит» Adobe Photoshop (плохая новость — в последней на данный момент версии пакета проблема не исправлена; очень плохая новость — теперь она и для новых Core i3 будет актуальна), так что процессоры без HT не рассматриваем. А вот у наших основных героев поддержка данной технологии есть, так что им всем никто не мешает нормально работать. В итоге в общем и целом положение дел похоже на прочие группы, но есть нюанс: самым быстрым процессором для LGA1150 оказался не имеющий высокую частоту i7-4790K, а i7-5775C. Что ж — кое-где интенсивные методы увеличения производительности очень эффективны. Жаль, что не всегда: частотой «работать» проще. И дешевле: не нужен дополнительный кристалл eDRAM, который еще и надо как-то разместить на одной подложке с «основным».

Количество ядер как «драйвер» увеличения производительности тоже подходит — больше, чем частота даже. Хотя в нашем первом тестировании Core i7-8700K выглядел похуже, но связано это было с результатами все того же Adobe Photoshop: они оказались практически такими же, что и для i7-7700K. Переход на «релизные» процессор и плату проблему в данном случае решил: производительность оказалась аналогичной другим шестиядерным процессорам Intel. С соответствующим же улучшением общего результата в группе. Поведение других программ не изменилось — они и ранее положительно относились к увеличению количества поддерживаемых потоков вычисления при сохранении аналогичного уровня таковой частоты.

Тем более, что иногда «решает» только она, да количество потоков вычисления. В основном, конечно — нюансы и здесь определенные есть, но «против лома нет приема ». Вся революционная архитектура Ryzen, например, позволила 1400 всего лишь демонстрировать производительность на уровне FX-8350 или Core i7-3770K, вышедших на рынок в 2012 году. С учетом того, что у него частота ниже обоих, да и вообще это специальная бюджетная модель, фактически использующая лишь половину полупроводникового кристалла, не так уж и плохо. Но пиетета не вызывает. Особенно на фоне другого (и тоже недорогого) представителя линейки Ryzen 5, который с легкостью и заметно обогнал любые четырехъядерные Core i7 любого года производства:)

Хоть мы и отказались от однопоточного теста распаковки, эту программу по-прежнему не удается считать слишком уж «жадной» до ядер и их частоты. Понятно почему — здесь очень важна производительность системы памяти, так что Core i7-5775C сумел обогнать только i7-8700K, да и то менее, чем на 10%. Жаль, что нет пока продуктов, где L4 сочетается с шестью ядрами и памятью с высокой ПСП: такой процессор «без узких мест» в подобных задачах мог бы явить чудо . Теоретически, по крайней мере — очевидно, что в настольных компьютеров мы ничего подобного в ближайшее время не увидим точно.

Характерно, что это ответвление от «магистральной линии» настольных процессоров демонстрирует (до сих пор!) высокие результаты и в этой группе программ. Впрочем, объединяет их в основном целевое назначение, а не выбранные программистами способы оптимизации. Но и последние не игнорируются — в отличие от некоторых более «примитивных» задач, типа кодирования видео.

К чему приходим в конечном итоге? Эффект «эволюционного развития» несколько уменьшился: Core i7-7700K обгоняет i7-880 менее, чем в два раза, а его превосходство над i7-2700K лишь полуторакратное. В целом — неплохо: это достигнуто интенсивными средствами в сопоставимых «количественных» условиях, т. е. распространимо практически на любое ПО. Однако применительно к интересам наиболее требовательных пользователей — мало. Особенно если сравнивать приросты на каждом ежегодном шаге, добавив еще Core i7-4770K (почему мы и сожалели выше, что этого процессора не нашлось).

При этом возможность резко нарастить производительность хотя бы в многопоточном ПО (а такого среди ресурсоемких программ давно уже немало) у компании была давно. Да и реализовывалась тоже — но в рамках совсем других платформ со своими особенностями. Недаром шестиядерные модели под LGA115x многие ждали еще c 2014 года... А вот от AMD многие в те годы уже никаких прорывов не ждали — тем более внушительными оказались уже первые тесты Ryzen. Неудивительно — как видим, даже недорогой Ryzen 5 1600 может конкурировать по производительности с Core i7-7700K, который всего пару месяцев назад был самым быстрым процессором для LGA1151. Теперь сходный уровень производительности вполне доступен и Core i5, но лучше бы это произошло ранее:) Во всяком случае, поводов для претензий было бы меньше.

Энергопотребление и энергоэффективность

Впрочем, вот эта диаграмма в очередной раз демонстрирует — почему производительность массовых центральных процессоров во втором десятилетии XXI века росла куда меньшими темпами, чем в первом: в данном случае все развитие происходило на фоне «неувеличения» энергопотребления. По возможности — даже уменьшения. Удалось архитектурными или какими-либо еще методами снизить — пользователи мобильных и компактных систем (которых давно уже продается намного больше, чем «типовых настольных») будут довольны. Да и на десктопном рынке небольшой шажок вперед, поскольку можно частоты еще немного подкрутить, что в Core i7-4790K было в свое время сделано, а потом закрепилось и в «обычных» Core i7, и даже в Core i5.

Особенно наглядно это видно по оценке энергопотребления собственно процессоров (к сожалению, для LGA1155 измерить его отдельно от платформы простыми средствами невозможно). Заодно становится понятным — почему у компании нет необходимости как-то менять требования к охлаждению процессоров в рамках линейки LGA115х. Также и почему все большее и большее количество продуктов в (формально) настольном ассортименте начинает укладываться в традиционные для ноутбучных процессоров теплопакеты: это само собой происходит без каких-то усилий. В принципе, можно было бы вообще установить всем четырехъядерным процессорам под LGA1151 TDP=65 Вт и не мучаться:) Просто для т. н. оверклокерских процессоров компания считает нужным ужесточить требования к системе охлаждения, поскольку есть небольшая (но и ненулевая) вероятность того, что покупатель компьютера с таковым будет его разгонять и всякими «тестами стабильности» пользоваться. А массовые продукты таких опасений не вызывают, да и изначально более экономичны. Даже шестиядерные, хотя энергопотребление старшего i7-8700K и подросло — но лишь до уровня процессоров для LGA1150. В штатном режиме, разумеется — при разгоне можно и в 2010 год вернуться ненароком:)

Но, при этом, современные экономичные процессоры вовсе не обязательно медленны — это три-пять лет назад производительность «энергоэффективных» моделей на фоне топовых в линейке зачастую оставляла желать лучшего, поскольку им приходилось слишком снижать частоту, а то и количество ядер уменьшать. Поэтому в общем и целом «энергоэффективность» повышалась куда большими темпами, чем чистая производительность: тут уже при сравнении Core i7-7700K и i7-880 не два раза, а все два с половиной. Впрочем... первый «большой скачок» и сразу в полтора раза пришелся на внедрение LGA1155, так что не удивительно, что претензии к дальнейшей эволюции платформы раздавались и с этого направления.

iXBT Game Benchmark 2017

Наибольший интерес представляют собой, разумеется, результаты самых старых процессоров, типа Core i7-880 и i7-2700K. К сожалению, с первым из них ничего путного не получилось: по-видимому, вопросами совместимости новых видеокарт с платформой конца прошлого десятилетия никто из производителей GPU серьезным образом не занимался. Да и понятно — почему: многие LGA1156 вообще пропустили, либо уже успели с нее мигрировать на другие решения за столько лет. А с Core i7-2700K другая проблема: его производительности (напомним — в штатном режиме) до сих пор зачастую достаточно, чтобы работать на уровне новых Core i7. В общем, такая вот неубиваемая легенда: которую (вместе со старшими Core i5 для LGA1155) сначала хорошим игровым процессором делала высокая однопоточная производительность (в те годы Intel сильно «зажимала» Core i3 и Pentium по частоте), а потом начали более-менее эффективно утилизироваться все восемь поддерживаемых потоков вычисления. Хотя того же уровня производительности в играх нередко достигают уже и более «простые» решения для новых платформ, но возникает иногда ощущение, что связано это не только и не столько с производительностью «в чистом виде». Поэтому тем, кого результаты в играх в какой-то степени интересуют, мы рекомендуем ознакомиться с ними при помощи полной таблицы , а здесь мы приведем лишь пару наиболее интересных и показательных диаграмм.

Вот, к примеру, Far Cry Primal. Сразу отбрасываем результаты Core i7-880: очевидна некорректная работа видеокарты на GTX 1070 с этой платформой. Возможно, кстати, это же распространимо и на LGA1155, хотя в целом частоту кадров тут низкой не назовешь: на практике достаточно. Но явно ниже, чем могло бы быть. И LGA1151 тоже как-то не блещет , а лучшей платформой выглядит LGA1150. Теперь вспоминаем, что модифицированная версия движка Dunia Engine 2 (здесь он как раз и используется) разрабатывалась между 2013 и 2014 годом, так что могли как раз и просто дооптимизироваться . Косвенным подтверждением чего являются и невысокая (относительно ожидаемой) частота кадров на Ryzen 5: вот есть ощущение, что должно быть больше, и все тут.

А вот игры на движке EGO 4.0 начали появляться с 2015 года — и тут мы уже таких артефактов не наблюдаем. За исключением Core i7-880, в очередной раз позабавившего «тормозами», но это неплохо коррелирует и с другими играми. А лучше всего выглядят не просто многоядерные процессоры, но и выпущенные начиная с 2015 года, т. е. платформы LGA1151 и AM4. Полная противоположность предыдущему случаю, хотя в целом обе игры выпущены в 2016 году. И обе в рамках одного семейства процессоров всегда «голосуют» за ту модель, в которой вычислительных ядер больше. Но в рамках одного — разные (тем более, существенно разные архитектурно) с их помощью нужно сравнивать очень осторожно. Если хочется сравнивать, конечно: в целом-то в обе (да и не только в них) на системе с процессором пятилетней давности и «хорошей» видеокартой можно поиграть с куда большим комфортом, чем при любом процессоре, но на бюджетной видеокарте долларов за 200. В общем, растут у игр требования к процессорам или нет, а игровой компьютер нужно собирать «от видеокарты». Впрочем, было бы странно, изменись что-то в этой индустрии — особенно учитывая то, что производительность видеокарт за прошедшие восемь лет совсем не в два раза выросла и даже не в три;)

Итого

Собственно, все, что нам хотелось сделать — сравнить сразу несколько процессоров разных лет при работе с современным программным обеспечением. Тем более, что некоторые характеристики старших моделей Core i7 за это время практически не изменились, особенно если брать интервал с зимы 2011-го до аналогичного периода 2017 года. Но производительность при этом росла — медленно, но чуть более, чем часто обсуждаемые «5% в год». А с учетом того, что каждый год компьютеры нормальный пользователь не покупает, а ориентируется обычно на 3-5 лет — за такой период «набегало» и в производительности, и в экономичности, и в функциональности платформы. Но могло бы быть лучше . При этом хорошо видны некоторые «слабые места»: например, увеличение тактовой частоты в 2014 году не позволило достичь существенно более высокой производительности ни в 2015-м, ни даже в начале 2017-го. От LGA1155 «оторваться» удалось заметно (по мере оптимизации ПО под процессоры начиная с Haswell — на старте-то результаты были более скромными), и все. А потом (внезапно) +30% производительности, чего не было давно. В общем, с исторической точки зрения более плавная реализация данного процесса выглядела бы лучше. Но что было, то уже было.

Однако эти два материала, как нам кажется, все еще недостаточны для полного раскрытия темы. Первым «тонким моментом» являются тактовые частоты - все-таки при выпуске Haswell Refresh компания уже разделила жестко линейку «обычных» Core i7 и «оверклокерских», фабрично разогнав последние (что было не так уж и сложно, поскольку таких процессоров вообще говоря требуется немного, так что отобрать необходимое количество нужных кристаллов несложно). Появление же Skylake положение дел не только сохранило, но и усугубило: Core i7-6700 и i7-6700K это вообще очень разные процессоры, различающиеся и уровнем TDP. Таким образом, даже при одинаковых частотах эти модели могли бы работать по-разному с точки зрения производительности, а ведь и частоты совсем не одинаковые. В общем, делать выводы по старшей модели опасно, но в основном-то как раз везде изучалась она и только она. «Младшая» (и более востребованная) до последнего времени вниманием тестовых лабораторий избалована не была.

А для чего это может быть нужно? Как раз для сравнения с «верхушками» предыдущих семейств, тем более что там обычно такого большого разброса частот не было. Иногда и вообще не было - например, пары 2600/2600K и 4771/4770К в плане процессорной части в штатном режиме идентичны. Понятно, что 6700 в большей степени является аналогом не названных моделей, а 2600S, 3770S, 4770S и 4790S, но... Важно это лишь с технической точки зрения, которая, в общем-то, мало кого интересует. В плане распространенности, легкости приобретения и других значимых (в отличие от технических деталей) характеристик это как раз «регулярное» семейство, к которому и будет присматриваться большинство владельцев «старых» Core i7. Или потенциальных владельцев - пока еще апгрейд временами остается чем-то полезным, большинство пользователей процессоров младших семейств процессоров при необходимости увеличения производительности присматривается в первую очередь к устройствам для уже имеющейся «на руках» платформы, а только потом уже рассматривает (или не рассматривает) идею ее замены. Правильный это подход или не очень - покажут тесты.

Конфигурация тестовых стендов

Процессор Intel Core i7-2700K Intel Core i7-3770 Intel Core i7-4770K Intel Core i7-5775C Intel Core i7-6700
Название ядра Sandy Bridge Ivy Bridge Haswell Broadwell Skylake
Технология пр-ва 32 нм 22 нм 22 нм 14 нм 14 нм
Частота ядра std/max, ГГц 3,5/3,9 3,4/3,9 3,5/3,9 3,3/3,7 3,4/4,0
Кол-во ядер/потоков 4/8 4/8 4/8 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128 128/128 128/128
Кэш L2, КБ 4×256 4×256 4×256 4×256 4×256
Кэш L3 (L4), МиБ 8 8 8 6 (128) 8
Оперативная память 2×DDR3-1333 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600 2×DDR4-2133
TDP, Вт 95 77 84 65 65
Графика HDG 3000 HDG 4000 HDG 4600 IPG 6200 HDG 530
Кол-во EU 12 16 20 48 24
Частота std/max, МГц 850/1350 650/1150 350/1250 300/1150 350/1150
Цена T-7762352 T-7959318 T-10384297 T-12645073 T-12874268

Для пущей академичности имело бы смысл тестировать Core i7-2600 и i7-4790, а вовсе не 2700К и 4770К, но первый в наше время найти уже сложно, в то время как 2700К у нас под рукой в свое время нашелся и был протестирован. Равно как и 4770К тоже изучался, причем в «обычном» семействе он имеет полный (4771) и близкий (4770) аналоги, и вся упомянутая троица от 4790 отличается несущественно, так что возможностью минимизировать количество работы мы решили не пренебрегать. В итоге, кстати, процессоры Core второго, третьего и четвертого поколений оказались максимально близки друг к другу по официальному диапазону тактовых частот, да и 6700 отличается от них незначительно. Broadwell тоже можно было «подтянуть» к этому уровню, взяв результаты не i7-5775C, а Xeon E3-1285 v4, но только лишь подтянуть, а не полностью устранить различие. Именно поэтому мы решили воспользоваться более массовым (благо и большинство других участников такие же), а не экзотическим процессором.

Что касается прочих условий тестирования, то они были равными, но не одинаковыми: частота работы оперативной памяти была максимальной поддерживаемой по спецификациям. А вот ее объем (8 ГБ) и системный накопитель (Toshiba THNSNH256GMCT емкостью 256 ГБ) были одинаковыми для всех испытуемых.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и iXBT Game Benchmark 2015 . Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

iXBT Application Benchmark 2015

Как мы уже не раз писали, в этой группе немалое значение имеет видеоядро. Однако далеко не все так просто, как можно было бы предположить только лишь по техническим характеристикам - например, i7-5775C все же медленнее, чем i7-6700, хотя у первого как раз GPU намного мощнее. Впрочем, еще более показательно тут сравнение 2700К и 3770, которые в плане исполнения OpenCL-кода различаются принципиально - первый задействовать для этого GPU вообще не способен. Второй - способен. Но делает это настолько медленно, что никаких преимуществ перед предшественником не имеет. С другой стороны, наделение такими способностями «самого массового GPU на рынке» привело к тому, что их начали понемногу использовать производители программного обеспечения, что проявилось уже к моменту выхода на рынок следующих поколений Core. И наряду с небольшими улучшениями и процессорных ядер способно привести к достаточно заметному эффекту.

Однако не везде - вот как раз случай, когда прирост от поколения к поколению совсем незаметен. Впрочем, он есть, но такой, что проще не обращать на него внимания. Интересным тут является разве что то, что прошедший год позволил совместить такое увеличение производительности с существенно менее жесткими требованиями к системе охлаждения (что открывает обычным настольным Core i7 и сегмент компактных систем), однако не во всех случаях это актуально.

А вот пример, когда на GPU уже удалось переложить немалую часть нагрузки. Единственное, что может «спасти» в этом случае старые Core i7 это дискретная видеокарта, однако пересылки данных по шине эффект портят, так что i7-2700K и в этом случае не обязательно догонит i7-6700, а 3770 на это способен , но вот угнаться ни за 4790К или 6700К, ни за 5775С с любым видео уже не может . Собственно, ответ на иногда возникающий у части пользователей недоуменный вопрос - зачем в Intel уделяют столько внимания интегрированной графике, если для игр ее все равно мало, а для других целей давно достаточно? Как видим, не слишком-то и «достаточно», если самым быстрым иногда способен (как здесь) оказаться процессор с далеко не самой мощной «процессорной» частью. И уже заранее интересно - что мы сможем получить от Skylake в модификации GT4e ;)

Поразительное единодушье, обеспеченное тем, что этой программе не требуются ни новые наборы инструкций, ни какие-то чудеса на ниве увеличения многопоточной производительности. Небольшая разница между поколениями процессоров, все же, есть. Но выискивать ее можно разве что при в точности идентичной тактовой частоте. А когда таковая различается существенно (что мы имеем в исполнении i7-5775С, в однопоточном режиме отстающем от всех на 10%) - можно и не искать:)

Audition «умеет» более-менее все. Разве что к дополнительным потокам вычисления довольно равнодушен, но использовать их умеет. Причем, судя по результатам, на Skylake делает это лучше, чем было свойственно предыдущим архитектурам: преимущество 4770К над 4690К составляет порядка 15%, а вот 6700 обходит 6600К уже на 20% (при том, что частоты у всех примерно равные). В общем, скорее всего, в новой архитектуре будет ждать нас еще немало открытий. Небольших, но иногда дающих кумулятивный эффект.

Как и в случае распознавания текста, где именно 6700 отрывается от предшественников наиболее «резво». Хоть в абсолютном итоге и незначительно, но ждать на относительно старых и хорошо «вылизанных» алгоритмах такого прироста при учете того, что, по сути, перед нами энергоэффективный процессор (кстати - 6700К действительно намного быстрее справляется с этой задачей) априори было бы слишком оптимистично. Мы и не ждали. А практика оказалась интереснее априорных предположений:)

С архиваторами все топовые процессоры справляются очень хорошо независимо от поколения. Во многом, как нам кажется, потому, что для них-то эта задача уж очень уже простая. Собственно, счет уже идет на секунды, так что что-то здесь радикально улучшить практически невозможно. Если только ускорить работу системы памяти, но DDR4 имеет более высокие задержки, нежели DDR3, так что гарантированный результат дает разве что увеличение кэшей. Поэтому самым быстрым оказался единственный среди протестированных процессор с GPU GT3e - кэш-память четвертого уровня используется не только видеоядром. С другой стороны, не так уж и велик прирост от дополнительного кристалла, так что архиваторы просто та нагрузка, на которую в случае заведомо быстрых систем (а не каких-нибудь мини-ПК) можно уже не обращать внимания.

Плюс-минус пол-лаптя от Солнца, что, в общем, тоже подтверждает, что все топовые процессоры справляются с такими задачами одинаково, контроллеры в чипсетах трех серий примерно идентичные, так что существенная разница может быть обусловлена только накопителем.

А вот в таком банальном сценарии, как простое копирование файлов, еще и теплопакетом: модели с пониженным «разгоняются» достаточно вяло (благо формально и не за чем), что приводит к чуть более низким результатам, чем могло бы. Но в целом тоже не тот случай, ради которого может возникнуть желание менять платформу.

Что получаем в итоге? Все процессоры примерно идентичны друг другу. Да, конечно, разница между лучшим и худшим превышает 10%, но не стоит забывать о том, что это различия, накопившиеся за три с лишним года (а возьми мы i7-2600, так было бы 15% почти за пять). Таким образом, практического смысла в замене одной платформы на другую нет, пока старая работает. Естественно, если речь идет о LGA1155 и ее последователях - как мы уже убедились «перепад» между LGA1156 и LGA1155 куда более заметный, причем не только в плане производительности. На последних на данный момент платформах Intel что-то можно «выжать» использованием «стероидных» Core i7 (если уж все равно ориентироваться именно на это недешевое семейство), но не так и много: по интегральной производительности i7-6700K обгоняет i7-6700 на 15%, так что и его отрыв от какого-нибудь i7-2700K увеличивается почти до 30%, что уже более весомо, но все равно еще не принципиально.

Игровые приложения

По понятным причинам, для компьютерных систем такого уровня мы ограничиваемся режимом минимального качества, причем не только в «полном» разрешении, но и с его уменьшением до 1366×768: Несмотря на очевидный прогресс в области интегрированной графики, она пока не способна удовлетворить требовательного к качеству картинки геймера. А 2700К мы решили и вовсе на стандартном игровом наборе не проверять: очевидно, что тех его владельцев, кто использует именно интегрированное видеоядро, игры не интересуют от слова совсем. Кого интересуют хоть как-то, те уж точно как минимум какую-нибудь «затычку для слота» в закромах нашли и установили, благо наше тестирование по предыдущей версии методики показало, что HD Graphics 3000 не лучше, чем даже Radeon HD 6450, причем обоих практически ни на что не хватает. Вот HDG 4000 и более новые IGP уже какой-никакой интерес собой представляют.

Вот, например, в Aliens vs. Predator можно поиграть на любом из изучаемых процессоре, но только снизив разрешение. Для FHD же подходит только GT3e, причем неважно какой - просто в сокетном исполнении такая конфигурация на данный момент доступна лишь для Broadwell со всеми вытекающими.

Зато «танчики» на минималках уже на всем «бегают» столь хорошо, что стройная картина только в высоком разрешении и «вытанцовывается»: в низком даже непонятно - кто лучше, а кто хуже.

Grid2 при всей своей слабой требовательности к видеочасти все еще ставит процессоры строго по ранжиру. Но особенно хорошо это видно опять в FHD, где и пропускная способность памяти уже имеет значение. В итоге на i7-6700 уже можно разрешение не снижать. На i7-5775C тем более, причем и абсолютные результаты намного выше, так что если данная сфера применения интересует, а использование дискретной видеокарты по каким-либо причинам нежелательно, альтернатив этой линейке процессоров по-прежнему нет. В чем нет и ничего нового.

Лишь старшие Haswell «вытягивают» игру хотя бы в низком разрешении, а Skylake делает это уже без оговорок. Broadwell не комментируем - это не архитектурное, а, скажем так, количественное превосходство.

Более старая игра серии на первый взгляд аналогична, но тут уже и между Haswell и Skylake даже количественных отличий не наблюдается.

В Hitman - наблюдаются и заметные, но перехода количества в качество по-прежнему нет.

Как и здесь, где даже режим низкого разрешения может «вытянуть» только процессор с GT3e. У остальных - весомый, но все еще недостаточный даже для таких «подвигов» прогресс.

Минимальный режим настроек в этой игре относится очень щадящим образом ко всем слабосильным GPU, хотя HDG 4000 еще «хватало» лишь на HD, но не FHD.

И снова тяжелый случай. Менее «тяжелый», чем Thief, но достаточный для того, чтобы продемонстрировать наглядно, что никакая интегрированная графика не может считаться игровым решением.

Хотя в некоторые игры может позволить поиграть и с относительным комфортом. Впрочем, ощутимым только если усложнять IGP и количественно наращивать все функциональные блоки. Собственно, как раз в легких режимах прогресс в области GPU Intel наиболее заметен - примерно два раза за три года (более старые-то разработки вообще уже нет смысла рассматривать серьезно). Но из этого не следует, что со временем интегрированная графика сможет легко и непринужденно догнать дискретную сравнимого возраста. Скорее всего, «паритет» будет установлен с другой стороны - имея в виду огромную базу инсталлированных решений невысокой производительности, производители тех же игр на нее и будут ориентироваться. Почему раньше этого не делали? Вообще говоря, делали - если рассматривать не только 3D-игры, а вообще рынок, огромное количество весьма популярных игровых проектов было предназначено как раз для того, чтобы нормально работать и на достаточно архаичных платформах. Но определенный сегмент программ, «двигавших рынок» был всегда, причем именно он и привлекал максимум внимания со стороны прессы и не только. Сейчас же процесс явно близок к точке насыщения, поскольку, во-первых, парк разнообразной компьютерной техники уже очень велик, и желающих заниматься перманентным апгрейдом все меньше. А во-вторых, «мультиплатформенность» нынче подразумевает под собой не только специализированные игровые консоли, но и разнообразные планшеты-смартфоны, где, очевидно, с производительностью все еще хуже, чем у «взрослых» компьютеров, независимо от степени интегрированности платформ последних. Но для того, чтобы данная тенденция стала преобладающей, нужно, все же, как нам кажется достигнуть определенного уровня гарантированной производительности. Чего пока нет. Но над проблемой все производители работают более чем активно и Intel тут исключением не является.

Итого

Что же мы видим в конечном итоге? В принципе, как не раз было сказано, последнее существенное изменение в процессорных ядрах семейства Core состоялось почти пять лет назад. На этом этапе уже удалось достичь такого уровня, «атаковать» который напрямую никто из конкурентов не может. Поэтому основной задачей Intel является улучшение положения в, скажем так, сопутствующих областях, а также наращивание количественных (но не качественных) показателей там, где это имеет смысл. Тем более, что серьезное влияние на массовый рынок оказывает растущая популярность портативных компьютеров, давно обогнавших по этому показателю настольные и становящихся все более портативными (несколько лет назад, например, ноутбук массой 2 кг еще считался «условно легким», а сейчас активно растут продажи трансформеров, в случае которых большая масса убивает весь смысл их существования). В общем, разработка компьютерных платформ давно идет не по пути наилучшего удовлетворения потребностей покупателей больших настольных компьютеров. В лучшем случае - не в ущерб им. Поэтому то, что в целом в этом сегменте производительность систем не снижается, а даже немного растет, уже повод для радости - могло быть и хуже:) Плохо только то, что из-за изменений в периферийной функциональности приходится постоянно менять и сами платформы: это сильно подкашивает такое традиционное преимущество модульных компьютеров, как ремонтопригодность, но здесь ничего не попишешь - попытки сохранять совместимость любой ценой до добра тем более не доводят (сомневающиеся могут посмотреть на, к примеру, AMD AM3+).

3 января, в день рождения отца-основателя компании Гордона Мура (он родился 3 января 1929 г.), компания Intel анонсировала семейство новых процессоров Intel Core 7-го поколения и новые чипсеты Intel 200-й серии. У нас появилась возможность протестировать процессоры Intel Core i7-7700 и Core i7-7700K и сравнить их с процессорами предыдущего поколения.

Процессоры Intel Core 7-го поколения

Новое семейство процессоров Intel Core 7-го поколения известно под кодовым наименованием Kaby Lake, и новыми эти процессоры являются с некоторой натяжкой. Они, как и процессоры Core 6-го поколения, производятся по 14-нанометровому техпроцессу, и в их основе лежит одна и та же процессорная микроархитектура.

Напомним, что ранее, до выхода Kaby Lake, компания Intel выпускала свои процессоры в соответствии с алгоритмом «Tick-Tock» («тик-так»): раз в два года менялась процессорная микроархитектура и раз в два года менялся техпроцесс производства. Но смена микроархитектуры и техпроцесса были сдвинуты друг относительно друга на год, так что раз в год менялся техпроцесс, затем, через год, менялась микроархитектура, потом, опять через год, менялся техпроцесс, и т. д. Однако долго выдерживать столь быстрый темп компания не смогла и в итоге отказалась от этого алгоритма, заменив его на трехгодичный цикл. Первый год идет внедрение нового техпроцесса, второй год - внедрение новой микроархитектуры на базе существующего техпроцесса, а третий год - оптимизация. Таким образом, к «Tick-Tock» добавили еще год оптимизации.

Процессоры Intel Core 5-го поколения, известные под кодовым наименованием Broadwell, ознаменовали собой переход на 14-нанометровый техпроцесс («Tick»). Это были процессоры с микроархитектурой Haswell (с незначительными улучшениями), но производимые по новому 14-нанометровому техпроцессу. Процессоры Intel Core 6-го поколения, известные под кодовым наименованием Skylake («Tock»), производились по тому же 14-нанометровому техпроцессу, что и Broadwell, но имели новую микроархитектуру. А процессоры Intel Core 7-го поколения, известные под кодовым наименованием Kaby Lake, производятся по тому же 14-нанометровому техпроцессу (правда, теперь он обозначается «14+») и основаны на той же микроархитектуре Skylake, но все это оптимизировано и улучшено. В чем конкретно заключается оптимизация и что именно улучшено - пока это тайна, покрытая мраком. Данный обзор писался до официального анонса новых процессоров, и никакой официальной информации компания Intel предоставить нам не смогла, поэтому информации о новых процессорах пока еще очень мало.

Вообще, про день рождения Гордона Мура, который в 1968 году совместно с Робертом Нойсом основали компанию Intel, мы в самом начале статьи вспомнили не случайно. На протяжении многих лет этому легендарному человеку приписывали много такого, чего он никогда не говорил. Сначала его предсказание возвели в ранг закона («закон Мура»), потом этот закон стал основополагающим планом для развития микроэлектроники (эдакий аналог пятилетнего плана развития народного хозяйства СССР). Однако закон Мура при этом неоднократно приходилось переписывать и корректировать, поскольку реальность, к сожалению, спланировать можно далеко не всегда. Теперь нужно либо в очередной раз переписывать закон Мура, что, в общем-то, уже смешно, либо попросту забыть про этот так называемый закон. Собственно, в Intel так и поступили: уж раз он больше не работает, то его решили потихоньку предать забвению.

Впрочем, вернемся к нашим новым процессорам. Официально известно, что семейство процессоров Kaby Lake будет включать четыре отдельные серии: S, H, U и Y. Кроме того, будет и серия Intel Xeon для рабочих станций. Процессоры Kaby Lake-Y, ориентированные на планшеты и тонкие ноутбуки, а также некоторые модели процессоров серии Kaby Lake-U для ноутбуков уже были анонсированы ранее. А в начале января компания Intel представила лишь некоторые модели процессоров H- и S-серий. На настольные системы ориентированы процессоры S-серии, которые имеют LGA-исполнение и о которых мы будем говорить в этом обзоре. Kaby Lake-S имеют разъем LGA1151 и совместимы с материнскими платами на базе чипсетов Intel 100-й серии и новых чипсетов Intel 200-й серии. План выхода процессоров Kaby Lake-S нам не известен, но есть информация, что всего планируется 16 новых моделей для настольных ПК, которые традиционно составят три семейства (Core i7/i5/i3). Во всех процессорах для настольных систем Kaby Lake-S будет использоваться только графическое ядро Intel HD Graphics 630 (кодовое наименование Kaby Lake-GT2).

Семейство Intel Core i7 составят три процессора: 7700K, 7700 и 7700T. Все модели этого семейства имеют 4 ядра, поддерживают одновременную обработку до 8 потоков (технология Hyper-Threading) и имеют кэш L3 размером 8 МБ. Разница между ними заключается в энергопотреблении и тактовой частоте. Кроме того, топовая модель Core i7-7700K имеет разблокированный коэффициент умножения. Краткие спецификации процессоров семейства Intel Core i7 7-го поколения приведены далее.

Семейство Intel Core i5 составят семь процессоров: 7600K, 7600, 7500, 7400, 7600T, 7500T и 7400T. Все модели этого семейства имеют 4 ядра, но не поддерживают технологию Hyper-Threading. Размер их кэша L3 составляет 6 МБ. Топовая модель Core i5-7600K имеет разблокированный коэффициент умножения и TDP 91 Вт. Модели с буквой «T» имеют TDP 35 Вт, а обычные модели - TDP 65 Вт. Краткие спецификации процессоров семейства Intel Core i5 7-го поколения приведены далее.

Процессор Core i5-7600K Core i5-7600 Core i5-7500 Core i5-7600T Core i5-7500T Core i5-7400 Core i5-7400T
Техпроцесс, нм 14
Разъем LGA 1151
Количество ядер 4
Количество потоков 4
Кэш L3, МБ 6
Номинальная частота, ГГц 3,8 3,5 3,4 2,8 2,7 3,0 2,4
Максимальная частота, ГГц 4,2 4,1 3,8 3,7 3,3 3,5 3,0
TDP, Вт 91 65 65 35 35 65 35
Частота памяти DDR4/DDR3L, МГц 2400/1600
Графическое ядро HD Graphics 630
Рекомендованная стоимость $242 $213 $192 $213 $192 $182 $182

Семейство Intel Core i3 составят шесть процессоров: 7350K, 7320, 7300, 7100, 7300T и 7100T. Все модели этого семейства имеют 2 ядра и поддерживают технологию Hyper-Threading. Буква «T» в названии модели говорит о том, что ее TDP составляет 35 Вт. Теперь в семействе Intel Core i3 есть и модель (Core i3-7350K) с разблокированным коэффициентом умножения, TDP которой составляет 60 Вт. Краткие спецификации процессоров семейства Intel Core i3 7-го поколения приведены далее.

Чипсеты Intel 200-й серии

Одновременно с процессорами Kaby Lake-S компания Intel анонсировала и новые чипсеты Intel 200-й серии. Точнее, пока был представлен только топовый чипсет Intel Z270, а остальные будут анонсированы чуть позже. Всего же семейство чипсетов Intel 200-й серии будет включать пять вариантов (Q270, Q250, B250, H270, Z270) для десктопных процессоров и три решения (CM238, HM175, QM175) для мобильных процессоров.

Если сопоставлять семейство новых чипсетов с семейством чипсетов 100-й серии, то здесь все очевидно: Z270 - это новый вариант Z170, H270 идет на замену H170, Q270 заменяет Q170, а чипсеты Q250 и B250 заменяют Q150 и B150 соответственно. Единственный чипсет, которому не нашлось замены, это H110. В 200-й серии нет чипсета H210 или его аналога. Позиционирование чипсетов 200-й серии точно такое же, как у чипсетов 100-й серии: Q270 и Q250 ориентированы на корпоративный рынок, Z270 и H270 ориентированы на пользовательские ПК, а B250 - на SMB-сектор рынка. Впрочем, это позиционирование весьма условно, и у производителей материнских плат часто встречается собственное ви́дение позиционирования чипсетов.

Итак, что нового в чипсетах Intel 200-й серии и чем они лучше чипсетов Intel 100-й серии? Вопрос не праздный, ведь процессоры Kaby Lake-S совместимы и с чипсетами Intel 100-й серии. Так стоит ли покупать плату на Intel Z270, если плата, к примеру, на чипсете Intel Z170 окажется дешевле (при прочих равных)? Увы, говорить о том, что у чипсетов Intel 200-й серии есть серьезные преимущества, не приходится. Практически единственное отличие новых чипсетов от старых заключается в немного увеличенном количестве HSIO-портов (высокоскоростных портов ввода/вывода) за счет добавления нескольких портов PCIe 3.0.

Далее мы подробно рассмотрим чего и сколько добавлено в каждом чипсете, а пока вкратце рассмотрим особенности чипсетов Intel 200-й серии в целом, ориентируясь при этом на топовые варианты, в которых все реализовано по максимуму.

Начнем с того, что, как и чипсеты Intel 100-й серии, новые чипсеты позволяют комбинировать 16 процессорных портов PCIe 3.0 (PEG-портов) для реализации различных вариантов слотов PCIe. Например, чипсеты Intel Z270 и Q270 (как и их аналоги Intel Z170 и Q170) позволяют комбинировать 16 PEG-портов процессора в следующих комбинациях: x16, х8/х8 или x8/x4/x4. Остальные чипсеты (H270, B250 и Q250) допускают только одну возможную комбинацию распределения PEG-портов: x16. Также чипсеты Intel 200-й серии поддерживают двухканальный режим работы памяти DDR4 или DDR3L. Кроме того, чипсеты Intel 200-й серии поддерживают возможность одновременного подключения до трех мониторов к процессорному графическому ядру (точно так же, как и в случае чипсетов 100-й серии).

Что касается портов SATA и USB, то тут ничего не изменилось. Интегрированный SATA-контроллер обеспечивает до шести портов SATA 6 Гбит/с. Естественно, поддерживается технология Intel RST (Rapid Storage Technology), которая позволяет конфигурировать SATA-контроллер в режиме RAID-контроллера (правда, не на всех чипсетах) с поддержкой уровней 0, 1, 5 и 10. Технология Intel RST поддерживается не только для SATA-портов, но и для накопителей с интерфейсом PCIe (x4/x2, разъемы M.2 и SATA Express). Возможно, говоря о технологии Intel RST, имеет смысл упомянуть и новую технологию создания накопителей Intel Optane, но на практике тут пока говорить не о чем, готовых решений еще нет. В топовых моделях чипсетов Intel 200-й серии поддерживается до 14 USB-портов, из которых до 10 портов могут быть USB 3.0, а остальные - USB 2.0.

Как и в чипсетах Intel 100-й серии, в чипсетах Intel 200-й серии реализована поддержка технологии Flexible I/O, которая позволяет конфигурировать высокоскоростные порты ввода/вывода (HSIO) - PCIe, SATA и USB 3.0. Технология Flexible I/O позволяет конфигурировать некоторые HSIO-порты как порты PCIe или USB 3.0, а некоторые HSIO-порты - как порты PCIe или SATA. В чипсетах Intel 200-й серии в совокупности может быть реализовано 30 высокоскоростных портов ввода/вывода (в чипсетах Intel 100-й серии было 26 HSIO-портов).

Шесть первых высокоскоростных портов (Port #1 - Port #6) строго фиксированы: это порты USB 3.0. Следующие четыре высокоскоростных порта чипсета (Port #7 - Port #10) могут быть сконфигурированы либо как порты USB 3.0, либо как порты PCIe. Порт Port #10 при этом может использоваться и как сетевой порт GbE, то есть в сам чипсет встроен MAC-контроллер сетевого гигабитного интерфейса, а PHY-контроллер (MAC-контроллер в связке с PHY-контроллером образуют полноценный сетевой контроллер) может быть подключен только к определенным высокоскоростным портам чипсета. В частности, это могут быть порты Port #10, Port #11, Port #15, Port #18 и Port #19. Еще 12 портов HSIO (Port #11 - Port #14, Port #17, Port #18, Port #25 - Port #30) закреплены за портами PCIe. Еще четыре порта (Port #21 - Port #24) конфигурируются либо как порты PCIe, либо как порты SATA 6 Гбит/с. Порты Port #15, Port #16 и Port #19, Port #20 имеют особенность. Они могут быть сконфигурированы либо как как порты PCIe, либо как порты SATA 6 Гбит/с. Особенность заключается в том, что один порт SATA 6 Гбит/с можно сконфигурировать либо на порте Port #15, либо на порте Port #19 (то есть это один и тот же порт SATA #0, который может быть выведен либо на Port #15, либо на Port #19). Аналогично, еще один порт SATA 6 Гбит/с (SATA #1) выводится либо на Port #16, либо на Port #20.

В результате получаем, что всего в чипсете может быть реализовано до 10 портов USB 3.0, до 24 портов PCIe и до 6 портов SATA 6 Гбит/с. Правда, тут стоит отметить еще одно обстоятельство. Одновременно к этим 20 портам PCIe может быть подключено не более 16 PCIe-устройств. Под устройствами в данном случае понимаются контроллеры, разъемы и слоты. Для подключения одного PCIe-устройства может потребоваться один, два или четыре порта PCIe. К примеру, если речь идет о слоте PCI Express 3.0 x4, то это одно PCIe-устройство, для подключения которого требуется 4 порта PCIe 3.0.

Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 200-й серии показана на рисунке.

Если сравнить с тем, что было в чипсетах Intel 100-й серии, то изменений совсем мало: добавили четыре строго фиксированных порта PCIe (HSIO-порты чипсета Port #27 - Port #30), которые можно использовать для объединения Intel RST for PCIe Storage. Все остальное, включая нумерацию HSIO-портов, осталось неизменным. Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 100-й серии показана на рисунке.

До сих пор мы рассматривали функциональные возможности новых чипсетов вообще, без привязки к конкретным моделям. Далее, в сводной таблице, приводим краткие характеристики каждого чипсета Intel 200-й серии.

И для сравнения приводим краткие характеристики чипсетов Intel 100-й серии.

Диаграмма распределения высокоскоростных портов ввода/вывода для пяти чипсетов Intel 200-й серии показана на рисунке.

И для сравнения аналогичная диаграмма для пяти чипсетов Intel 100-й серии:

И последнее, что стоит отметить, рассказывая о чипсетах Intel 200-й серии: только в чипсете Intel Z270 реализована поддержка разгона процессора и памяти.

Теперь, после нашего экспресс-обзора новых процессоров Kaby Lake-S и чипсетов Intel 200-й серии, перейдем непосредственно к тестированию новинок.

Исследование производительности

Нам удалось протестировать две новинки: топовый процессор Intel Core i7-7700K с разблокированным коэффициентом умножения и процессор Intel Core i7-7700. Для тестирования мы использовали стенд следующей конфигурации:

Кроме того, чтобы можно было оценить производительность новых процессоров по отношению к производительности процессоров предыдущих поколений, мы также протестировали на описанном стенде процессор Intel Core i7-6700K.

Краткие спецификации тестируемых процессоров приведены в таблице.

Для оценки производительности мы использовали нашу новую методику с применением тестового пакета iXBT Application Benchmark 2017 . Процессор Intel Core i7-7700K был протестировал два раза: с настройками по умолчанию и в состоянии разгона до частоты 5 ГГц. Разгон производился путем изменения коэффициента умножения.

Результаты рассчитаны по пяти прогонам каждого теста с доверительной вероятностью 95%. Обращаем внимание, что интегральные результаты в данном случае нормируются относительно референсной системы, в которой тоже используется процессор Intel Core i7-6700K. Однако конфигурация референсной системы отличается от конфигурации стенда для тестирования: в референсной системе используется материнская плата Asus Z170-WS на чипсете Intel Z170.

Результаты тестирования представлены в таблице и на диаграмме.

Логическая группа тестов Core i7-6700K (реф. система) Core i7-6700K Core i7-7700 Core i7-7700K Core i7-7700K @5 ГГц
Видеоконвертирование, баллы 100 104,5±0,3 99,6±0,3 109,0±0,4 122,0±0,4
MediaCoder x64 0.8.45.5852, с 106±2 101,0±0,5 106,0±0,5 97,0±0,5 87,0±0,5
HandBrake 0.10.5, с 103±2 98,7±0,1 103,5±0,1 94,5±0,4 84,1±0,3
Рендеринг, баллы 100 104,8±0,3 99,8±0,3 109,5±0,2 123,2±0,4
POV-Ray 3.7, с 138,1±0,3 131,6±0,2 138,3±0,1 125,7±0,3 111,0±0,3
LuxRender 1.6 x64 OpenCL, с 253±2 241,5±0,4 253,2±0,6 231,2±0,5 207±2
Вlender 2.77a, с 220,7±0,9 210±2 222±3 202±2 180±2
Видеоредактирование и создание видеоконтента, баллы 100 105,3±0,4 100,4±0,2 109,0±0,1 121,8±0,6
Adobe Premiere Pro CC 2015.4, с 186,9±0,5 178,1±0,2 187,2±0,5 170,66±0,3 151,3±0,3
Magix Vegas Pro 13, с 366,0±0,5 351,0±0,5 370,0±0,5 344±2 312±3
Magix Movie Edit Pro 2016 Premium v.15.0.0.102, с 187,1±0,4 175±3 181±2 169,1±0,6 152±3
Adobe After Effects CC 2015.3, с 288,0±0,5 237,7±0,8 288,4±0,8 263,2±0,7 231±3
Photodex ProShow Producer 8.0.3648, с 254,0±0,5 241,3±4 254±1 233,6±0,7 210,0±0,5
Обработка цифровых фотографий, баллы 100 104,4±0,8 100±2 108±2 113±3
Adobe Photoshop CС 2015.5, с 521±2 491±2 522±2 492±3 450±6
Adobe Photoshop Lightroom СС 2015.6.1, с 182±3 180±2 190±10 174±8 176±7
PhaseOne Capture One Pro 9.2.0.118, с 318±7 300±6 308±6 283,0±0,5 270±20
Распознавание текста, баллы 100 104,9±0,3 100,6±0,3 109,0±0,9 122±2
Abbyy FineReader 12 Professional, с 442±2 421,9±0,9 442,1±0,2 406±3 362±5
Архивирование, баллы 100 101,0±0,2 98,2±0,6 96,1±0,4 105,8±0,6
WinRAR 5.40 СPU, с 91,6±0,05 90,7±0,2 93,3±0,5 95,3±0,4 86,6±0,5
Научные расчеты, баллы 100 102,8±0,7 99,7±0,8 106,3±0,9 115±3
LAMMPS 64-bit 20160516, с 397±2 384±3 399±3 374±4 340±2
NAMD 2.11, с 234±1 223,3±0,5 236±4 215±2 190,5±0,7
FFTW 3.3.5, мс 32,8±0,6 33±2 32,7±0,9 33±2 34±4
Mathworks Matlab 2016a, с 117,9±0,6 111,0±0,5 118±2 107±1 94±3
Dassault SolidWorks 2016 SP0 Flow Simulation, с 253±2 244±2 254±4 236±3 218±3
Скорость файловых операций, баллы 100 105,5±0,7 102±1 102±1 106±2
WinRAR 5.40 Storage, с 81,9±0,5 78,9±0,7 81±2 80,4±0,8 79±2
UltraISO Premium Edition 9.6.5.3237, с 54,2±0,6 49,2±0,7 53±2 52±2 48±3
Скорость копирования данных, с 41,5±0,3 40,4±0,3 40,8±0,5 40,8±0,5 40,2±0,1
Интегральный результат CPU, баллы 100 104,0±0,2 99,7±0,3 106,5±0,3 117,4±0,7
Интегральный результат Storage, баллы 100 105,5±0,7 102±1 102±1 106±2
Интегральный результат производительности, баллы 100 104,4±0,2 100,3±0,4 105,3±0,4 113,9±0,8

Если сравнить результаты тестирования процессоров, полученных на одном и том же стенде, то здесь все очень предсказуемо. Процессор Core i7-7700K при настройках по умолчанию (без разгона) чуть быстрее (на 7%), чем Core i7-7700, что объясняется разницей в их тактовой частоте. Разгон процессора Core i7-7700K до 5 ГГц позволяет получить выигрыш в производительности до 10% по сравнению с производительностью этого процессора без разгона. Процессор Core i7-6700K (без разгона) немного более производительный (на 4%) в сравнении с процессором Core i7-7700, что также объясняется разницей в их тактовой частоте. При этом модель Core i7-7700K на 2,5% производительнее модели предыдущего поколения Core i7-6700K.

Как видим, никакого скачка производительности новые процессоры Intel Core 7-го поколения не обеспечивают. По сути, это те же процессоры Intel Core 6-го поколения, но с чуть более высокими тактовыми частотами. Единственное преимущество новых процессоров заключается в том, что они лучше гонятся (речь, конечно, идет о процессорах K-серии с разблокированным коэффициентом умножения). В частности, наш экземпляр процессора Core i7-7700K, который мы не выбирали специально, без проблем разогнался до частоты 5,0 ГГц и абсолютно стабильно работал при использовании воздушного охлаждения. Удавалось запустить этот процессор и на частоте 5,1 ГГц, но в режиме стресс-тестирования процессора система зависала. Конечно, делать выводы по одному экземпляру процессора некорректно, но информация наших коллег подтверждает, что большинство процессоров Kaby Lake К-серии гонятся лучше, чем процессоры Skylake. Заметим, что наш образец процессора Core i7-6700K разгонялся в лучшем случае до частоты 4,9 ГГц, но стабильно работал только на частоте 4,5 ГГц.

Теперь посмотрим на энергопотребление процессоров. Напомним, что измерительный блок мы подключаем в разрыв цепей питания между блоком питания и материнской платой - к 24-контактному (ATX) и 8-контактному (EPS12V) разъемам блока питания. Наш измерительный блок способен измерять напряжение и силу тока по шинам 12 В, 5 В и 3,3 В разъема ATX, а также напряжение питания и силу тока по шине 12 В разъема EPS12V.

Под суммарной потребляемой мощностью во время выполнения теста понимается мощность, передаваемая по шинам 12 В, 5 В и 3,3 В разъема ATX и шине 12 В разъема EPS12V. Под потребляемой процессором мощностью во время выполнения теста понимается мощность, передаваемая по шине 12 В разъема EPS12V (этот разъем используется только для питания процессора). Однако нужно иметь в виду, что в данном случае речь идет об энергопотреблении процессора вместе с конвертером его напряжения питания на плате. Естественно, регулятор напряжения питания процессора имеет определенный КПД (заведомо ниже 100%), так что часть электрической энергии потребляется самим регулятором, а реальная мощность, потребляемая процессором, немного ниже измеряемых нами значений.

Результаты измерения для суммарной потребляемой мощности во всех тестах, за исключением тестов на производительность накопителя, представлены далее:

Аналогичные результаты измерения потребляемой процессором мощности таковы:

Интерес представляет, прежде всего, сравнение мощности энергопотребления процессоров Core i7-6700K и Core i7-7700К в режиме работы без разгона. Процессор Core i7-6700K имеет меньшее энергопотребление, то есть процессор Core i7-7700К немного более производительный, но у него и энергопотребление выше. Причем если интегральная производительность процессора Core i7-7700К выше на 2,5% в сравнении с производительностью Core i7-6700K, то усредненное энергопотребление процессора Core i7-7700К выше аж на 17%!

И если ввести такой показатель, как энергоэффективность, определяемый отношением интегрального показателя производительности к средней мощности энергопотребления (фактически, производительность в расчете на ватт потребленной энергии), то для процессора Core i7-7700К этот показатель составит 1,67 Вт -1 , а для процессора Core i7-6700К - 1,91 Вт -1 .

Впрочем, такие результаты получаются, только если сравнивать мощность энергопотребления по шине 12 В разъема EPS12V. А вот если считать полную мощность (что логичнее с точки зрения пользователя), то ситуация несколько иная. Тогда энергоэффективность системы с процессором Core i7-7700К составит 1,28 Вт -1 , а с процессором Core i7-6700К - 1,24 Вт -1 . Таким образом, энергоэффективность систем практически одинаковая.

Выводы

Никаких разочарований по поводу новых процессоров у нас нет. Никто и не обещал, что называется. Еще раз напомним, что речь идет не о новой микроархитектуре и не о новом техпроцессе, а всего лишь об оптимизации микроархитектуры и техпроцесса, то есть об оптимизации процессоров Skylake. Ожидать, что такая оптимизация может дать серьезный прирост производительности, конечно же, не приходится. Единственный наблюдаемый результат оптимизации заключается в том, что удалось немного повысить тактовые частоты. Кроме того, процессоры K-серии семейства Kaby Lake разгоняются лучше, чем их аналоги семейства Skylake.

Если говорить о новом поколении чипсетов Intel 200-й серии, то единственное, что отличает их от чипсетов Intel 100-й серии, это добавление четырех портов PCIe 3.0. Что это означает для пользователя? А ровным счетом ничего не означает. Ждать увеличения числа разъемов и портов на материнских платах не приходится, поскольку их и так уже чрезмерно много. В итоге функциональные возможности плат не изменятся, разве что удастся немного упростить их при проектировании: меньше придется придумывать хитроумных схем разделения, чтобы обеспечить работу всех разъемов, слотов и контроллеров в условиях нехватки линий/портов PCIe 3.0. Логично было бы предположить, что это приведет к снижению стоимости плат на чипсетах 200-й серии, но верится в это с трудом.

И в заключение несколько слов о том, имеет ли смысл менять шило на мыло. Компьютер на базе процессора Skylake и платы с чипсетом 100-й серии менять на новую систему с процессором Kaby Lake и платой с чипсетом 200-й серии нет никакого смысла. Это просто выбрасывание денег на ветер. Но если пришла пора менять компьютер по причине морального устаревания железа, то тут, конечно, имеет смысл обратить внимание на Kaby Lake и плату с чипсетом 200-й серии, причем смотреть надо в первую очередь на цены. Если система на Kaby Lake окажется сопоставима (при равной функциональности) по стоимости с системой на Skylake (и платой с чипсетом Intel 100-й серии), то смысл есть. Если же такая система окажется дороже, то в ней нет никакого смысла.

В этой статье будут детально рассмотрены последние поколения процессоров Intelна основе архитектуры «Кор». Эта компания занимает ведущее положение на рынке компьютерных систем, и большинство ПК на текущий момент собираются именно на ее полупроводниковых чипах.

Стратегия развития компании «Интел»

Все предыдущие поколения процессоров Intel были подчинены двухлетнему циклу. Подобная стратегия выпуска обновлений от данной компании получила название «Тик-Так». Первый этап, называемый «Тик», заключался в переводе ЦПУ на новый технологический процесс. Например, в плане архитектуры поколения «Санди Бридж» (2-е поколение) и «Иви Бридж» (3-е поколение) были практически идентичными. Но технология производства первых базировалась на нормах 32 нм, а вторых — 22 нм. То же самое можно сказать и про «ХасВелл» (4-е поколение, 22 нм) и «БроадВелл» (5-е поколение, 14 нм). В свою очередь, этап «Так» означает кардинальное изменение архитектуры полупроводниковых кристаллов и существенный прирост производительности. В качестве примера можно привести такие переходы:

    1-е поколение Westmere и 2-е поколение «Санди Бридж». Технологический процесс в этом случае был идентичным — 32 нм, а вот изменения в плане архитектуры чипа существенные — северный мост материнской платы и встроенный графический ускоритель перенесены на ЦПУ.

    3-е поколение «Иви Бридж» и 4-е поколение «ХасВелл». Оптимизировано энергопотребление компьютерной системы, повышены тактовые частоты чипов.

    5-е поколение «БроадВелл» и 6-е поколение «СкайЛайк». Снова повышены частота, еще более улучшено энергопотребление и добавлены несколько новых инструкций, которые улучшают быстродействие.

Сегментация процессорных решений на базе архитектуры «Кор»

Центральные процессорные устройства компании «Интел» имеют следующее позиционирование:

    Наиболее доступные решения — это чипы «Целерон». Они подходят для сборки офисных компьютеров, которые предназначены для решения наиболее простых задач.

    На ступеньку выше расположились ЦПУ серии «Пентиум». В архитектурном плане они практически полностью идентичны младшим моделям «Целерон». Но вот увеличенный кэш 3-го уровня и более высокие частоты дают им определенное преимущество в плане производительности. Ниша этого ЦПУ — игровые ПК начального уровня.

    Средний сегмент ЦПУ от «Интел» занимают решения на основе «Кор Ай3». Предыдущие два вида процессоров, как правило, имеют всего 2 вычислительных блока. То же самое можно сказать и про «Кор Ай3». Но вот у первых двух семейств чипов отсутствует поддержка технологии «ГиперТрейдинг», а у «Кор Ай3» - она есть. В результате на уровне софта 2 физических модуля преобразуются в 4 потока обработки программы. Это обеспечивает существенный прирост быстродействия. На базе таких продуктов уже можно собрать игровой ПК среднего уровня, или даже сервер начального уровня.

    Нишу решений выше среднего уровня, но ниже премиум-сегмента заполняют чипы занимают решения на базе «Кор Ай5». Этот полупроводниковый кристалл может похвастаться наличием сразу 4 физических ядер. Именно этот архитектурный нюанс и обеспечивает преимущество в плане производительности над «Кор Ай3». Более свежие поколения процессоров Intel i5 имеют более высокие тактовые частоты и это позволяет постоянно получать прирост производительности.

    Нишу премиум-сегмента занимают продукты на основе «Кор Ай7». Количество вычислительных блоков у них точно такое же, как и у «Кор Ай5». Но вот у них, точно также, как и у «Кор Ай3», есть поддержка технологии с кодовым названием «Гипер Трейдинг». Поэтому на программном уровне 4 ядра преобразуются в 8 обрабатываемых потоков. Именно этот нюанс и обеспечивает феноменальный уровень производительности, которым может похвастаться любой Цена у этих чипов соответствующая.

Процессорные разъемы

Поколения устанавливаются в разные типы сокетов. Поэтому установить первые чипы на этой архитектуре в материнскую плату для ЦПУ 6-го поколения не получится. Или, наоборот, чип с кодовым названием «СкайЛайк» физически не получится поставить в системную плату для 1-го или 2-го поколения процессоров. Первый процессорный разъем назывался «Сокет Н», или LGA 1156 (1156 - это количество контактов). Выпущен он был в 2009 году для первых ЦПУ, изготовленных по нормам допуска 45 нм (2008 год) и 32 нм (2009 год), на базе данной архитектуры. На сегодняшний день он устарел как морально, так и физически. В 2010 году на смену приходит LGA 1155, или «Сокет Н1». Материнские платы данной серии поддерживают чипы «Кор» 2-го и 3-го поколений. Кодовые названия у них, соответственно, «Санди Бридж» и «Иви Бридж». 2013 год ознаменовался выходом уже третьего сокета для чипов на основе архитектуры «Кор» - « LGA 1150», или «Сокет Н2». В этот процессорный разъем можно было установить ЦПУ уже 4-го и 5-го поколений. Ну а в сентябре 2015 года на смену LGA 1150 пришел последний актуальный сокет - LGA 1151.

Первое поколение чипов

Наиболее доступными процессорными продуктами этой платформы являлись «Целерон G1101»(2,27 ГГц), «Пентиум G6950» (2,8 ГГц) и «Пентиум G6990»(2,9 ГГц). Все они имели всего 2 ядра. Нишу решений среднего уровня занимали «Кор Ай3» с обозначением 5ХХ (2 ядра/4 логических потока обработки информации). На ступеньку выше находились «Кор Ай5» с маркировкой 6ХХ (у них параметры идентичные «Кор Ай3», но частоты выше) и 7ХХ с 4-мя реальными ядрами. Наиболее производительные компьютерные системы собирались на базе «Кор Ай7». Их модели имели обозначение 8ХХ. Наиболее скоростной чип в этом случае имел маркировку 875К. За счет разблокированного множителя можно было разогнать такой Цена же у него была соответствующая. Соответственно можно было получить внушительный прирост быстродействия. Кстати, наличие приставки «К» в обозначении модели ЦПУ означало то, что множитель разблокирован и эту модель можно разгонять. Ну а приставка «S» добавлялась в обозначении энергоэффективных чипов.

Плановое обновление архитектуры и «Санди Бридж»

На смену первому поколению чипов на основе архитектуры «Кор» в 2010 году пришли решения под кодовым названием «Санди Бридж». Ключевыми «фишками» их были перенос северного моста и встроенного графического ускорителя на кремниевый кристалл кремниевого процессора. Нишу наиболее бюджетных решений занимали «Целероны» серий G4XX и G5XX. В первом случае был урезан кэш 3-го уровня и присутствовало всего одно ядро. Вторая серия, в свою очередь, могла похвастаться наличием сразу двух вычислительных блоков. Еще на ступеньку выше расположились «Пентиумы» моделей G6XX и G8XX. В этом случае разница в производительности обеспечивалась более высокими частотами. Именно G8XX из-за этой важной характеристики выглядели предпочтительнее в глазах конечного пользователя. Линейка «Кор Ай3» была представлена моделями 21ХХ (именно цифра «2» и указывает на то, что чип относится ко второму поколению архитектуры «Кор»). У некоторых из них в конце добавлялся индекс «Т» - более энергоэффективные решения с уменьшенной производительностью.

В свою очередь решения «Кор Ай5» имели обозначения 23ХХ, 24ХХ и 25ХХ. Чем выше маркировка модели, тем более высокий уровень производительности ЦПУ. Индекс «Т» в конце - это наиболее энергоэффективное решение. Если добавлена в конце наименования буква «S» - промежуточный вариант по энергопотреблению между «Т» - версией чипа и штатным кристаллом. Индекс «Р» - в чипе отключен графический ускоритель. Ну и чипы с буквой «К» имели разблокированный множитель. Подобная маркировка актуальна также и для 3-го поколения этой архитектуры.

Появления нового более прогрессивного технологического процесса

В 2013 году свет увидело уже 3-е поколение ЦПУ на основе данной архитектуры. Ключевое его нововведение — это обновленный техпроцесс. В остальном же не было введено в них каких-либо существенных нововведений. Физически они были совместимы со предыдущим поколением ЦПУ и их можно было ставить в те же самые материнские платы. Структура обозначений у них осталась идентичной. «Целероны» имели обозначение G12XX, а «Пентиумы» - G22XX. Только в начале вместо «2» была уже «3», которая и указывала на принадлежность к 3-му поколению. Линейка «Кор Ай3» имела индексы 32ХХ. Более продвинутые «Кор Ай5» обозначались 33ХХ, 34ХХ и 35ХХ. Ну флагманские решения «Кор Ай7» имели маркировку 37ХХ.

Четвертая ревизия архитектуры «Кор»

Следующим этапом стало 4 поколение процессоров Intel на основе архитектуры «Кор». Маркировка в этом случае была такая:

    ЦПУ экономкласса «Целероны» обозначались G18XX.

    «Пентиумы» же имели индексы G32XX и G34XX.

    За «Кор Ай3» были закреплены такие обозначения - 41ХХ и 43ХХ.

    «Кор Ай5» можно было узнать по аббревиатуре 44ХХ, 45ХХ и 46ХХ.

    Ну и для обозначения «Кор Ай7» были выделены 47ХХ.

Пятое поколения чипов

на базе данной архитектуры в основном было ориентировано на использование в мобильных устройствах. Для десктопных же ПК были выпущены лишь чипы линеек «Ай 5» и «Ай 7». Причем лишь весьма ограниченное количество моделей. Первые из них обозначались 56ХХ, а вторые — 57ХХ.

Наиболее свежие и перспективные решения

6 поколение процессоров Intel дебютировало в начале осени 2015 года. Это наиболее актуальная процессорная архитектура на текущий момент. Чипы начального уровня обозначаются в этом случае G39XX («Целерон»), G44XX и G45XX (так маркируются «Пентиумы»). Процессоры «Кор Ай3» имеют обозначение 61ХХ и 63ХХ. В свою очередь, «Кор Ай5» - это 64ХХ, 65ХХ и 66ХХ. Ну на обозначение флагманских решений выделено лишь маркировка 67ХХ. Новое поколение процессоров Intelпребываетлишь только в начале своего жизненного цикла и такие чипы будут актуальными еще достаточно длительное время.

Особенности разгона

Практически все чипы на основе данной архитектуры имеют заблокированный множитель. Поэтому разгон в этом случае возможен лишь за счет увеличения частоты В последнем, 6-м поколении, даже эту возможность увеличения быстродействия должны будут отключить в БИОСе производители материнских плат. Исключением в этом плане являются процессоры серий «Кор Ай5» и «Кор Ай7» с индексом «К». У них множитель разблокирован и это позволяет существенно увеличивать производительность компьютерных систем на баз таких полупроводниковых продуктов.

Мнение владельцев

Все перечисленные в этом материале поколения процессоров Intel имеют высокую степень энергоэффективность и феноменальный уровень быстродействия. Единственный их недостаток — это высокая стоимость. Но причина здесь кроется в том, что прямой конкурент «Интела» в лице компании «АМД», не может противопоставить ей более или менее стоящие решения. Поэтому «Интел» уже исходя из своих собственных соображений и устанавливает ценник на свою продукцию.

Итоги

В этой статье были детально рассмотрены поколения процессоров Intel лишь для настольных ПК. Даже этого перечня достаточно для того, чтобы потеряться в обозначениях и наименованиях. Кроме этого, есть также варианты для компьютерных энтузиастов (платформа 2011) и различные мобильные сокеты. Все это сделано лишь для того, чтобы конечный пользователь мог выбрать наиболее оптимальный для решения своих задач. Ну а наиболее актуальным сейчас из рассмотренных вариантов являются чипы 6-го поколения. Именно на них и нужно обращать внимание при покупке или сборке нового ПК.

При выборе процессора от компании Intel встает вопрос: а какой чип от этой корпорации выбрать? У процессоров есть множество характеристик и параметров, которые влияют на их производительность. И в соответствии с ней и некоторыми особенностями микроархитектуры производитель дает соответствующее название. Нашей задачей является освещение этого вопроса. В этой статье вы узнаете, что именно означают названия процессоров Intel, а также узнаете про микроархитектуры чипов от этой компании.

Указание

Надо заранее отметить, что здесь не будут рассматриваться решения раньше 2012 года, так как технологии идут быстрыми темпами и эти чипы имеют слишком малую производительность при большом энергопотреблении, а также их трудно купить в новом состоянии. Также здесь не будут рассмотрены серверные решения, так как они имеют специфичную сферу применения и не предназначены для потребительского рынка.

Внимание номенклатура изложенная ниже может оказаться недействительной для процессоров старее, чем обозначенный выше срок.

А также при возникновении трудностей можете посетить сайт . И прочесть вот эту статью, где рассказано про . А если хотите узнать про интегрированную графику от Intel, то вам .

Тик-Так

У Intel особая стратегия выпуска своих «камней», называющаяся Тик-Так (Tick-Tock). Она заключается в ежегодных последовательных улучшениях.

  • Тик означает смену микроархитектуры, которая ведет к смене сокета, улучшению производительности и оптимизации энергопотребления.
  • Так означает , что ведет к уменьшению энергопотребления, возможности расположения большего числа транзисторов на чипе, возможному поднятию частот и увеличению стоимости.

Вот так выглядит данная стратегия у десктопных и ноутбучных моделей:

МОДЕЛЬ «ТИК-ТАК» У ДЕСКТОПНЫХ ПРОЦЕССОРОВ
МИКРОАРХИТЕКРУРА ЭТАП ВЫХОД ТЕХПРОЦЕСС
Nehalem Так 2009 45 нм
Westmere Тик 2010 32 нм
Sandy Bridge Так 2011 32 нм
Ivy Bridge Тик 2012 22 нм
Haswell Так 2013 22 нм
Broadwell Тик 2014 14 нм
Skylake Так 2015 14 нм
Kaby Lake Так+ 2016 14 нм

А вот у маломощных решений (смартфоны, планшеты, нетбуки, неттопы) платформы выглядят следующим образом:

МИКРОАРХИТЕКТУРЫ МОБИЛЬНЫЙ ПРОЦЕССОРОВ
КАТЕГОРИЯ ПЛАТФОРМА ЯДРО ТЕХПРОЦЕСС
Нетбуки/Неттопы/Ноутбуки Braswell Airmont 14 нм
Bay Trail-D/M Silvermont 22 нм
Топовые планшеты Willow Trail Goldmont 14 нм
Cherry Trail Airmont 14 нм
Bay Tral-T Silvermont 22 нм
Clower Trail Satwell 32 нм
Топовые/средние смартфоны/планшеты Morganfield Goldmont 14 нм
Moorefield Silvermont 22 нм
Merrifield Silvermont 22 нм
Clower Trail+ Satwell 32 нм
Medfield Satwell 32 нм
Средние/бюджетные смартфоны/планшеты Binghamton Airmont 14 нм
Riverton Airmont 14 нм
Slayton Silvermont 22 нм

Надо отметить, что Bay Trail-D сделана для десктопов: Pentium и Celeron с индексом J. А Bay Trail-M для – это мобильное решение и также будет обозначаться среди Pentium и Celeron своей буквой – N.

Судя по последним тенденциям компании, сама производительность прогрессирует достаточно медленно, в то время как энергоэффективность (производительность на единицу потребленной энергии) растет год от года, того и гляди скоро в ноутбуках будут такие же мощные процессоры, как и на больших ПК (хотя такие представители есть и сейчас).



Рекомендуем почитать

Наверх