Устройства рентгеновской трубки. Принципы получения рентгеновских лучей. Для чего нужна рентгеновская трубка и как она работает

Для Symbian 01.08.2019
Для Symbian

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лабораторная работа №1

Руководитель: профессор кафедры ММС

Кульков Сергей Николаевич

Студенты группы 4Б21:

Кондратенко А.И.

Проскурников Г.В.

Дронов А.А.

Томск, 2015

Цель: познакомиться, изучить, а так же получить навыки в рентгенографическом анализе порошков.

Устройство рентгеновского апарата

Одним из наиболее эффективных методов изучения строения кристаллических веществ является рентгенография.

Рентгенография делится на 2 типа:

1. рентгеноструктурный анализ (РСтА);

2. рентгенофазовый анализ (РФА).

Первый метод является наиболее общим и информативным и позволяет однозначно определить все детали кристаллической структуры (координаты атомов и т.д.). Объектом исследования в РСтА является монокристалл. Второй метод позволяет идентифицировать вещество и определить некоторые параметры кристаллической структуры. Объектами исследования РФА являются поликристаллические образцы.

Рентгеновский аппарат предназначается для превращения электроэнергии в рентгеновское излучение. Устройство рентгеновского аппарата зависит от его функции, но в целом он состоит из источника излучения, блока питания, системы управления и периферии.

Как работает рентгеновский аппарат

Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать – при низкой мощности аппарата). Генератор излучения – это рентгеновская трубка, одна или несколько.

Система управления – это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения. Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель – кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа. В излучение при этом переходит не более 1% подаваемой на трубку энергии, остальное превращается в тепло, прежде всего греется анод. Для того чтобы избежать его повреждения от перегрева, либо используются тугоплавкие материалы (вольфрам, молибден), либо конструируется специальная система охлаждения (водное охлаждение, вращающийся анод). Современные рентгеновские установки снабжаются специальными устройствами для стабилизации тока и защиты излучателя от перегрузки. Кроме того, устанавливается система защиты окружающих от избыточного излучения (а также от тока высокого напряжения).

Рентгеновская трубка устройство

Рентгеновская трубка - электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Высоковольтное напряжение для разогревакатода подается через минусовой высоковольтный кабель с накального трансформатора, который находится вгенераторном устройстве. Накаленная спираль катода, при прикладывание к рентгеновской трубке высокого напряжения,начинает выбрасывать ускоряющийся потокэлектронов, а затем они резко тормозятся на вольфрамовой пластинке анода, что и приводит к появлениюрентгеновских лучей.

Принцип работы рентгеновской трубки

Рисунок 1 - Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 – окна из бериллия для выхода рентгеновского излучения; 3 – термоэмиссионный катод; 4 – стеклянная колба, изолирующая анодную часть трубки от катодной; 5 – выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 – электростатическая система фокусировки электронов; 7 – ввод (антикатод); 8 – патрубки для ввода и вывода проточной воды, охлаждающей вводный стакан.

Площадь анода, на которую попадают электроны, называют фокусом. В современных рентгеновских трубках обычно имеется два фокуса: большой и малый. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается.

Рентгенодиагностическую трубку размещают в просвинцованном кожухе, который заполнентрансформаторным маслом. В кожухе имеются отверстиядля подсоеденения высоковольтных кабелей и выходное окно, через которое выводится пучок излучения. Для минимизации дозы рентгеновского излучения в современных рентгеновских аппаратах, например ФМЦ на выходном окне крепится устройство колимации. Для того, чтоб исключить появление на аноде рентгеновской трубки повреждений, последний должен вращаться, для этого внизу кожуха рентгеновской трубки размещается устройство вращения анода.

Для полного понимания значения всех факторов, влияющих на прцесс коррекции ошибок, читатель должен познакомиться с принципом работы рентгеновской трубки, генерирующей рентгеновское излучение. Рентгеновская трубка представляет собой стеклянную колбу, из которой откачан воздух. Внутри колбы находятся два основных элемента любой рентгеновской трубки: катод и анод. Катод является источником электронов, а анод представляет собой мишень, бомбардируемую пучком электронов с катода.

Как видно из рис.1, катод имеет форму чашки (фокусирующая чашка), в которой находится вольфрамовая спиральная нить накаливания. Под действием проходящего через нить электрического тока нить накаливается и испускает электроны.

Количество испускаемых электронов пропорционально величине электрического тока, проходящего через нить. Ток измеряется в миллиамперах (мА). Один миллиампер равен 1/1000 ампера (А). Таким образом величина тока (измеряемого в миллиамперах), проходящих через нить, определяет интенсивность рентгеновского излучения, испускаемого мишенью. Увеличение тока через нить (увеличение мА) приводит к увеличению количества испускаемых электронов, что, в свою очередь, ведет к увеличению интенсивности (количества рентгеновских квантов) рентгеновского излучения.

Рис. 1. Схема, иллюстрирующая принцип действия рентгеновской трубки.

Фокусирующая чашка катода фокусирует электроны в пучок, направленный на мишень анода. Анод обычно изготавливается из меди, поскольку медь характеризуется высокой теплопроводностью и ее легче охлаждать. На лицевой стороне анода, обращенной к катоду, имеется массивная вольфрамовая пластина, называемая мишенью. Маленький участок мишени, в которую попадает пучок электронов, называется фокусным пятном. Этот участок является источником рентгеновского излучения. Большая часть энергии электронов, попадающих в мишень, преобразуется в тепло и лишь один процент превращается в рентгеновское излучение.

Катод заряжен отрицательно, анод — положительно. Напряжение между ними выражается в пиковых киловольтах и называется пиковым киловольтажем (кВп). Один киловольт равен 1000 Вольт. Величина напряжения (количество киловольт) определяет скорость пучка электронов. При увеличении напряжения ("киловольтажа") увеличивается скорость пучка электронов, бомбардирующих мишень, что, в свою очередь, ведет к увеличению энергии формируемого мишенью рентгеновского излучения (т.е. качества излучения).

Все органы управления элементами рентгеновской трубки расположены вне ее (снаружи) и подключены к катоду и аноду. Таймер контролирует время, в течение которого катод формирует пучок электронов. Полное количество электронов, образуемых катодом и достигающих анода, определяется произведением силы тока (в миллиамперах, мА) на длительность экспозиции в секундах (с), т.е. - (мА) х (с) или мАс.

Пучок рентгеновского излучения, облучающего объект, формируется специальным окошком, которое находится в металлическом кожухе, окружающем стеклянную колбу рентгеновской трубки. Этот пучок включает рентгеновское излучение разной длины волны и проникающей способности, определяемое величиной пикового киловольтажа (кВп), выбранного для данной экспозиции. Суммарное количество рентгеновского излучения в пучке на выходе рентгеновской трубки зависит оттока (мА), времени и выбранного пикового киловольтажа (кВп).

Длина волны рентгеновского излучения определяет его энергию, т.е. способность проникать внутрь объекта. Рентгеновское излучение с более короткой длиной волны, образуемое при более высоком значении кВп, обладает большей проникающей способностью по сравнению с рентгеновским излучением с большей длиной волны (менее энергетичное излучение). Рентгеновское излучение, прошедшее через объект, образует на пленке изображение. Пучок рентгеновского излучения, входящий в ткани пациента, характеризуется равномерным распределением интенсивности излучения в зависимости от длины волны.

Рентгеновское излучение, попавшее в ткани пациента, частично поглощается или проходит практически без поглощения в зависимости от того, что находится на пути пучка (ткани органов или кости). В результате на выходе из объекта излучения (пациента) возникает специфическая картина распределения интенсивности рентгеновского излучения (именуемое выборочным ослаблением излучения). Это распределение интенсивности рентгеновского излучения несет в себе всю диагностическую информацию о пациенте. Эта информация затем фиксируется на рентгеновской пленке (смотри рис. 2).

Зоны приоритетного внимания.

Другие статьи

Рентгенологические характеристики нормы и патологии в стоматологи. Остеопороз, остеолиз, деструкция, гиперцементоз, остеосклероз.

Для успешной роботы в сложной области распознавания стоматологических заболеваний, каковой является рентгенологическая диагностика пациента

Изображение слишком светлое;

Вспомните, каким образом пакет с пленкой был установлен во рту, облучался ли пакет снаружи (т.е. сторона пакета, обычно обращенная к рентгеновской трубке, в данном случае обращена в противоположную сторону). Свинцовая фольга, прилегающая к "обратной" стороне пакета, защищает пленку от рассеянного излучения (т.е. отражений от облученных тканей) и уменьшает интенсивность рентгеновского излучения, попадающего на пленку.

Рентгенологические характеристики нормы и патологии в стоматологии. Рентгенодиагностика некариозных поражений зубов. Часть2.

У больных с несовершенным остеогенезом коронки зубов правильной формы и размеров, но отличаются повышенной стираемостью и имеют необычную окраску

Внутриротовая рентгенография. Методика съемки прямых панорамных рентгенограмм. Часть 2.

Сопоставление у большой группы больных прямых и боковых панорамных снимков заставило нас отдать предпочтение боковым. Они очерчивают полностью и без деформации весь зубной ряд обеих половин челюстей, отличаются более равномерным увеличением изображения и меньше искажают взаимоотношения межальвеолярных перегородок и зубов.

Химикаты для ручной и автоматической обработки.

Изучение тонкостей состояния лицевого скелета в его взаимоотношениях с мозговым черепом, зубами и альвеолярными отростками должно проводиться в трех направлениях: вертикальном, трансверзальном и сагиттальном.

Радиовизиография.

Все вышеописанные рентгеновские устройства нуждаются в использова-нии рентгеновской пленки, которая должна химически обрабатываться для получения снимка. На сегодняшний день цифровые технологии позволяют



Тема: Физико-технические основы рентгенологии. Методы исследования. Принцип искусственного контрастирования.

Введение.

Современные технологии лучевой диагностики в настоящее время представлены следующими методами:

  1. Рентгенологический метод.
  2. Рентгеновская компьютерная томография (РКТ).
  3. Магнитно-резонансная томография (МРТ).
  4. Ультразвуковое исследование (УЗИ).
  5. Радионуклидное исследование (РНИ).

При рентгенологическом методе и рентгеновской компьютерной томографии используется ионизирующее (рентгеновское) излучение, при радиоизотопном методе ионизирующее (гамма-излучение), соответственно при проведении вышеперечисленных методов, пациент получает лучевую нагрузку, что делает нежелательным использование их в детском возрасте; они абсолютно противопоказаны во время беременности.

При ультразвуковом исследовании и магнитно-резонансной томографии применяется неионизирующие излучения (пациент не получает лучевую нагрузку), следовательно, данные методы могут широко использоваться в педиатрии и во время беременности (I триместр беременности является относительным противопоказанием к проведению МРТ).

Открытие В.К.Рентгеном нового вида излучения.

В истории медицины нет более ярких примеров определяющего влияния на его развитие вновь открытых явлений из других областей познания мира, подобных открытию рентгеновских лучей. Это выдающееся открытие, совершившее переворот не только в медицине, но и во многих отраслях науки и техники, состоялось 8 ноября 1895 года. Сделал его профессор физики Вюрцбургского университета в Германии Вильгельм Конрад Рентген.

Изучая волновую природу катодных лучей, Рентген обнаружил неизвестное до этого явление – флюоресценцию кристаллов солей бария на расстоянии 2 метров от катодной трубки. В. К. Рентген сделал вывод об излучении катодной трубкой неизвестных науке лучей, обладающих высокой проникающей способностью и вызывающих свечение кристаллов сернокислого бария. Эти лучи Рентген назвал Х-лучами, а весь мир после его сообщения о сделанном открытии стал называть новый вид излучения рентгеновскими лучами.

В.К. Рентген сделал свое сообщение об открытии Х-лучей 23.01.1896г. на заседании Вюрцбургского физико-медицинского общества, где продемонстрировал первые рентгеновские снимки.

В.К. Рентген не извлек никаких материальных выгод из своего открытия. Он отказался от патента на свое изобретение, заявив: «В соответствии со славными традициями немецких университетских профессоров я считаю, что мое открытие принадлежит человечеству и ему не должны ни в коей мере мешать патенты, лицензии, контракты или контроль какой-либо группы людей».


Благодарное человечество навсегда увековечило память о В.К.Рентгене в названии науки, медицинской специальности и диагностических исследований.

Физические основы рентгенологического метода и принципы работы аппаратуры.

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением, представляет собой поток квантов (фотонов), двигающихся со скоростью света – 300.000 км/с. Электрического заряда кванты не имеют, масса их пренебрежительно мала.

Свойства рентгеновских лучей:

1) Проникающая способность - проходят через объекты, не пропускающие видимый свет, т.е. с их помощью можно увидеть внутреннюю структуру объекта;

2) Флюоресцирующее - вызывают свечение некоторых химических соединений; на этом основана методика рентгеновского просвечивания (рентгеноскопия);

3) Фотохимическое действие - разлагают некоторые химические соединения, в частности, галоидные соединения серебра, применяемые в фотоэмульсиях (на этом основана рентгенография).

4) Ионизирующее действие - рентгеновское излучение способно вызывать распад нейтральных атомов на положительные и отрицательные ионы.

5) Биологическое действие – изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии ионизирующего излучения. В 1986 г. русский физиолог И.Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Поэтому проводимые рентгеновские обследования строго учитываются, суммарная доза полученного облучения не должна превышать определенных границ. Многочисленные исследования показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Устройство рентгеновской трубки.

Рентгеновская трубка (излучатель) представляет собой стеклянную колбу, в концы которой впаяны электроды – анод и катод. Катод представляет собой спираль, анод – диск со скошенной поверхностью в месте контакта с попадающими на него электронами. Катод нагревается сильным током низкого напряжения и начинает испускать свободные электроны, которые формируют вокруг него так называемое электронное облако. При подаче на электроды высокого напряжения (десятки и сотни киловольт) электроны от поверхности катода отрываются (это явление называется электронной эмиссией), устремляются к аноду и ударяются о его поверхность. Анод вращается с огромной скоростью, на его скошенную поверхность попадает поток электронов, при этом их высокая кинетическая энергия преобразуется в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. И только около 1% от всей энергии, образованной вследствие торможения электронов об анод, покидает рентгеновскую трубку в виде рентгеновского излучения. Скошенная поверхность анода, на которую направлен поток электроном, определяет направление рентгеновского излучения перпендикулярно к оси их движения в рентгеновской трубке. Благодаря вращению анода поток электронов в разные моменты времени ударяется о разные участки его поверхности, что предохраняет анод от перегревания (рис. 1).

Рисунок 1. Схема строения рентгеновской трубки: 1 – катод, 2 – анод, 3 – поток электронов, 4 – рентгеновское излучение.

Таким образом, по своим физическим характеристикам рентгеновское излучение является тормозным электромагнитным излучением. Источника постоянного излучения (радиоактивного вещества) рентгеновская трубка не содержит, следовательно, пребывание рядом с неработающей рентгеновской трубкой безопасно, человек не подвергается облучению.

Выделяют два основных метода рентгенологического исследования: рентгенография и рентгеноскопия (просвечивание). Каждый из этих методов имеет свои преимущества и недостатки, часто они используются вместе.

Преимущества рентгеноскопии:

§ Метод прост и экономичен (так как часто не затрачивается серебросодержащая рентгеновская пленка);

§ Позволяет исследовать пациента при постепенных поворотах (многоосевое исследование);

§ Возможность полипозиционного исследования;

§ Позволяет наблюдать внутренние органы в их динамике (сердечные сокращения, сосудистая пульсация, перистальтика ЖКТ);

§ Возможность рентгенопальпации.

Преимущества рентгенографии:

§ Главное преимущество заключается в том, что на рентгенограмме выявляется большее количество деталей рентгеновского изображения;

§ Рентгеновский снимок – это объективный документ, пригодный для демонстрации, для прослеживания процесса в динамике и т.д.;

§ Рентгенография – объективный метод исследования, в то время как, рентгеноскопия – субъективный, проводить описание снимков, выполненных в ходе рентгеноскопии имеет право только тот врач, который проводил исследование;

§ Меньше лучевая нагрузка на пациента (так как меньше время воздействия рентгеновского излучения: при рентгенографии – секунды или доли секунд, при рентгеноскопии – минуты).

В большинстве случаев рентгенография на заключительном этапе включает в себя получение традиционного рентгеновского снимка на пленке. После выполнения снимка пленку подвергают специальной обработке: проявке, фиксации, промывке, сушке. Это может выполняться как вручную, так и автоматически в проявочных машинах.

Почернение рентгеновской пленки происходит при восстановлении металлического серебра в ее экспонированном эмульсионном слое. То есть чем больше рентгеновского излучения попадет на данный участок пленки, тем в большей степени она почернеет. И наоборот, если расположенный перед пленкой объект плохо пропускает рентгеновские лучи, то участок пленки, «экранированный» этим объектом, останется светлым.

Существует еще очень важная особенность получения рентгеновс­кого изображения, которая заключается в его суммационном характере. Что это такое? Проходя через исследуемый объект (тело человека), рентгеновский луч пересекает не одну, а огромное множество точек, каждая из которых обладает собственными свойствами по взаимодействию с рентгеновским лучом. Соответственно на любой точке рентгенограммы получится суммарное изображение всего множества проецирующихся друг на друга точек реального объекта, расположен­ных по ходу каждого рентгеновского луча.

Следовательно, на рентгенограмме определяется проекция объекта на плоскость. Судить о глубине расположения того или иного фрагмента исследуемого объекта по одной рентгенограмме нельзя.

Чтобы точно определить, где расположен интересующий объект, надо выполнять рентгенограммы в нескольких проекциях (прямой и боковой).

Основные рентгенологические симптомы:

§ Затемнение – участок более высокой плотности по сравнению с окружающими тканями, на рентгенограммах выглядит как более светлый участок (костные структуры, тела металлической плотности, обызвествления, конкременты).

§ Просветление – область повышенной прозрачности, которая выглядит на рентгенограммах как более темный участок (легочная ткань, воздушные полости, газ в кишке, мягкие ткани).

§ Дефект наполнения – образуется, когда какая-либо ткань препятствует заполнению просвета полого органа контрастным веществом, например, при заполнении мочевого пузыря контрастным веществом камень имеет вид дефекта наполнения (опухоли, конкременты, инородные тела).

Рентгеновская трубка - электровакуумный прибор, который служит источником рентгеновского излучения. Подобное излучение появляется при торможении электронов, которые испускаются катодом, и их ударе об анод; при этом энергия электронов, их скорость в пространстве между анодом и катодом увеличена сильным электрическим полем, частично модифицируется в энергию рентгеновского излучения. Излучение рентгеновской трубки является наложением тормозного рентгеновского излучения на специфическое излучение вещества анода. Рентгеновские трубки различают; по способу получения потока электронов - с катодом, который подвергается бомбардировке положительными ионами и с радиоактивным источником электронов, автоэмис-сионным катодом, термоэмиссионным катодом; по способу вакуумирования - разборные, отпаянные; по времени излучения - импульсные, непрерывного действия; по типу охлаждения анода - с радиационным, масляным, воздушным, водяным охлаждением; по размерам фокуса - микрофокусные, острофокусные и макрофокусные; по его форме - линейчатой, круглой, кольцевой формы; по способу фокусировки электронов на анод - с электромагнитной, магнитной, электростатической фокусировкой.

Рентгеновские трубки используют в рентгеновском структурном анализе, рентгеновской микроскопии , дефектоскопии, рентгенодиагностике, рентгенотерапии, рентгеновском спектральном анализе и микрорентгенографии. Наибольшее использование во всех областях находят отпаянные рентгеновские трубки с электростатической системой фокусировки электронов, водоохлаждаемым анодом, термоэмиссионным катодом. Термоэмиссионный катод рентгеновской трубки, как правило, является прямой нитью или спиралью из вольфрамовой проволоки, которая накаливается электрическим током. Рабочий участок анода представляет собой металлическую зеркальную поверхность, расположенную к потоку электронов перпендикулярно или под некоторым утлом. Для получения сплошного спектра рентгеновского излучения высоких интенсивности и энергий применяют аноды из Au, W; в структурном анализе применяются рентгеновские трубки с анодами из Ti, Cr, Fe, Си, Mo, Со, Ni, Ag. Основные характеристики рентгеновской трубки - удельная мощность, рассеиваемая анодом (10-104 Вт/мм2), предельно допустимое ускоряющее напряжение (1-500 кВ), электронный ток (0,01 мА - 1А), общая потребляемая мощность (0,002 Вт - 60 кВт) и размеры фокуса (1 мкм - 10 мм). КПД рентгеновской трубки составляет от 0,1 до 3%.

Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн. Рентгеновская трубка постоянного излучения состоит из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. Кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, что позволяет путем подачи управляющего напряжения на катод относительно корпуса и фокусирующего электрода изменять размеры фокусного пятна. Анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения. Фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода. Внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода. В конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна. Технический результат: упрощение конструкции, уменьшение габаритов, увеличение ресурса работы трубки, возможность регулировки фокусного пятна путем изменения потенциала катода относительно фокусирующего электрода. 1 ил.

Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн.

Известен источник рентгеновского излучения для селективного получения пучков рентгеновского излучения с различными длинами волн (А.с. 1434508 СССР, МКИ 3 В5J 17/00. Кузнецов В.Л., Соколов О.Б. и др. 1988 г.), состоящий из анода, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. Анод выполнен в виде полого цилиндра, на торцевую поверхность которого нанесен рабочий слой в виде нескольких секторных мишеней. Фокусирующий электрод выполнен в виде электрически изолированных друг от друга секций полого цилиндра, с зазором охватывающих анод. Количество секций фокусирующего электрода равно количеству секторных мишеней анода. В своей верхней части секции фокусирующего электрода снабжены разделительными экранирующими перегородками, расположенными над торцевой поверхностью анода параллельно стыкам его секторных мишеней и прикрепленными к соответствующим секциям. Катодный узел содержит нити накала, количество которых равно количеству секторных мишеней анода. Анод, катодный узел и фокусирующий электрод размещены в герметичном корпусе с окном для вывода рентгеновского излучения.

Задачей изобретения является упрощение конструкции, уменьшение габаритов, появляется возможность регулировки размеров фокусного пятна путем изменения потенциала катода относительно фокусирующего электрода, что расширяет функциональные возможности трубки, наличие нескольких нитей накала увеличивает ресурс работы рентгеновской трубки.

Указанная задача решается следующим образом.

Предлагается рентгеновская трубка постоянного излучения, состоящая из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. В отличие от известного технического решения кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, что позволяет путем подачи управляющего напряжения на катод относительно корпуса и фокусирующего электрода изменять размеры фокусного пятна, анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения, что упрощает его конструкцию. Фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода. Внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода. В конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна.

На чертеже представлена схема рентгеновской трубки, где:

1 - цилиндрический анод;

2 - кольцевой катодный узел, состоящий из двух или более нитей накала;

3 - фокусирующий электрод;

4 - окно для вывода рентгеновского излучения;

5 - герметичный корпус;

6 - выходной коллиматор;

7 - мишень;

8 - изолятор;

9 - область распыления материала катода;

10 - траектории электронов.

Рентгеновская трубка работает следующим образом.

Посредством токопроводящих проводов электрический ток поступает на нить или одну из нитей накала катодного узла 2, вокруг нагретой нити накала 2 образуется электронное облако, которое при наличии нулевого по отношению к нити накала 2 потенциала на фокусирующем электроде 3 перехватывается положительным по отношению к катодному узлу электрическим полем анода 1 и ускоряется в направлении мишени 7. При торможении электронов на мишени 7 генерируется рентгеновское излучение с длиной волны, определяемой материалом мишени, которое через выходное окно 4 направляется на исследуемый объект. При подаче положительного по отношению к фокусирующему электроду потенциала на катодный узел 2 электроны попадают в область тормозящего электрического поля, создаваемого фокусирующим электродом 3 и внутренней поверхностью корпуса 5, изменяющего траектории движения электронов 10, что обеспечивает изменение размеров фокусного пятна на мишени. Коллиматор 6 защищает выходное окно 4 от продуктов испарения материала катода, а фокусирующий электрод 3 защищает от продуктов испарения материала катода поверхность мишени 7. Область напыления 9 не захватывает поверхность выходного окна 4 за счет наличия коллиматора 6 и поверхность мишени 7 благодаря выступающей кромке фокусирующего электрода 3. Тем самым продукты испарения нитей накала не увеличивают со временем коэффициент поглощения выходного окна 4 и не оседают на поверхности мишени 7.

Литература

1. А.с. 1434508 СССР, МКИ 3 В5J 17/00 (Кузнецов В.Л., Соколов О.Б. и др. 1988 г.).

2. Иванов С.А., Щукин Г.А. Рентгеновские трубки технического назначения. Л., Энергоатомиздат, Ленинградское отд., 1989 г., 201 с.

Рентгеновская трубка постоянного излучения, состоящая из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса, отличающаяся тем, что кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения, фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода, внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода, в конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна.

Похожие патенты:

Изобретение относится к рентгеновским трубкам, содержащим автокатод, выполненный на основе углеродных материалов, и может быть использовано в качестве источника рентгеновского излучения в приборах дефектоскопии, досмотровой аппаратуре, медицинских рентгеновских аппаратах, диагностических установках рентгеновской спектроскопии.

Изобретение относится к миниатюрным импульсным рентгеновским трубкам (диаметр 12 мм, длина 24 мм), предназначенным для использования в медицине при внутриполостных облучениях опухолевых тканей и в технике для рентгенографирования сложных механизмов и устройств при внутреннем размещении источника излучения.

Изобретение относится к ускорительной технике и может быть использована при разработке импульсных рентгеновских трубок, предназначенных для облучения медицинских или промышленных объектов

Группа изобретений относится к устройству и способу для генерации мощного оптического излучения, в частности, в области экстремального УФ (ЭУФ) или мягкого рентгеновского излучения в диапазоне длин волн примерно от 1 нм до 30 нм. Область применения включает ЭУФ - литографию при производстве интегральных схем или метрологию. Технический результат-повышение мощности пучка оптического излучения. В устройстве и способе для генерации излучения из разрядной плазмы осуществляют лазерно-инициируемый разряд между первым и вторым электродами с вводом энергии импульсного источника питания в плазму разряда и генерацией из плазмы разряда излучения наряду с побочным продуктом в виде нейтральных и заряженных загрязняющих частиц (debris), при этом за счет выбора места облучения электрода лазерным лучом, геометрии электродов и разрядного контура формируют асимметричный разряд преимущественно изогнутой/бананообразной формы, собственное магнитное поле которого непосредственно вблизи разряда имеет градиент, определяющий направление преимущественного движения потока разрядной плазмы от электродов в область менее сильного магнитного поля. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к области рентгенотехники. Переносная рентгеновская система (200) имеет воспринимающее средство, чтобы обнаруживать, прикреплена ли отсеивающая решетка (230) к переносному детектору (240) или нет. Система выполнена с возможностью изменения автоматическим образом настроек (265а, 265b, 265с, 265d) по умолчанию экспозиции, когда решетка (230) удаляется или прикрепляется к переносному детектору (240). Технический результат - снижение риска недо- или переэкспозиции изображения. 4 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к области рентгеновской техники и может найти применение в медицине, научных исследованиях и оптоэлектронике. Рентгеновская трубка с модулируемым излучением содержит вакуумную оболочку с выводным окном, прозрачным для рентгеновского излучения, и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронную систему и анод, на поверхность которого нанесен слой металла мишени. При этом в заявленном изобретении в качестве источника электронов применяется микроканальная пластина, на вход которой подается ультрафиолетовое излучение полупроводникового фотодиода или лазера. Техническим результатом является обеспечение возможности модуляции излучения рентгеновской трубки. 1 ил.

Источник мягкого рентгеновского излучения на основе разборной рентгеновской трубки относится к области рентгеновской техники и предназначен для использования в качестве источника мягкого рентгеновского излучения с различными длинами волн для калибровки приемников излучения. Источник включает корпус, к которому крепится основание с расположенными на нем анодом и термокатодным узлом с электродами и нитью накала, высоковольтный и низковольтный вводы для соединения с источниками питания, а также фокусирующий электрод и систему охлаждения. Система охлаждения выполнена в виде петли трубопровода, электрически связанного с высоковольтным вводом, анод выполнен сплошным в форме параллелепипеда и зафиксирован непосредственно на трубопроводе с помощью крепежных элементов. Термокатодный узел снабжен упругодеформируемой деталью, закрепленной одним концом на одном из электродов термокатодного узла и связанной с нитью накала силовой связью с возможностью перемещения свободного конца и натяжения нити накала в процессе ее разогрева при подаче напряжения. Фокусирующий электрод выполнен в виде детали, частично охватывающей нить накала. Технический результат - упрощение конструкции и обеспечение стабильности параметров излучения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - получение излучения мягкого диапазона, обеспечивающего высокий контраст изображения при работе с объектами разной оптической плотности с сохранением рентгенооптических параметров в процессе наработки. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом, закрепленным на держателе, которые имеют осесимметричные отверстия относительно анода, выполненного в виде цилиндрического стержня переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Держатель выполнен в форме чаши, в цилиндрической части которой равномерно по ее периметру и перпендикулярно дну сформированы сквозные пазы, переходящие в пропилы в дне чаши, а катод выполнен из полиакрилонитрильных углеродных волокон, расположенных радиально относительно оси прибора и закрепленных на дне чаши, например, тонким металлическим кольцом точечной сваркой, при этом торцы одних концов полиакрилонитрильных углеродных волокон образуют границу отверстия катода, а другие концы зажаты в пропилах между дном чаши и внутренней поверхностью корпуса. 1 ил.

Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - повышение контрастности изображения при работе с объектами разной оптической плотности. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде стержня, переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Вершина конусной части анода выполнена с заострением под углом не более 60° и размещена ниже плоскости расположения катода на расстоянии не более 2 мм. 1 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано, например, для контроля металлических и газовых дефектных включений в полимерной кабельной изоляции с использованием рентгеновского излучения электрического газового барьерного разряда (ЭГБР). Металлический электрод выполнен отражающим, конической формы, с заданными углом конусности и толщиной. Выходное окно для рентгеновского ЭГБР излучения выполнено в цилиндрической стеклянной колбе на одном конце, а на другом конце - сквозное отверстие, в котором установлен патрубок для напуска в рентгеновскую трубку рабочего газа. В качестве рабочего газа использован аргон или азот с активирующей добавкой летучего в ЭГБР 0,1 мг/см3 мелкодисперсного порошка РbO2. Технический результат - повышение контрастности изображения металлических и газовых включений за счет мягкого рентгеновского излучения в диапазоне от 1 до 10 нм, что повышает точность их фотографической регистрации. 3 з.п. ф-лы, 3 ил.

Изобретение относится к рентгеновской технике, в частности к миниатюрным маломощным рентгеновским излучателям, и может быть использовано для создания устройств экспрессной диагностики и локального воздействия в медицине, технике, быту. Излучатель выполнен как стеклянный баллон вида таблетки, состоящий из двух стеклянных крышки-окна и крышки, склеенных вакуумплотно по краю низкоплавким свинцовым стеклом. Внутри баллона мишень и анод совмещены и выполнены в виде плёнки электропроводящего подбираемого материала, нанесённого на окно-крышку. Катод выполнен как автоэмиссионный катод в виде покрытия порошкового материала на плёнку газопоглотителя, нанесённого на крышку. Управляющий электрод выполнен в виде двух металлических сеток с расположенной между ними микроканальной стеклопластиной. Управляющий электрод усиливает поток эмитированных из катода электронов и отражает рентгеновское излучение со стороны катода к аноду. Технический результат - увеличение полезного выхода рентгеновского излучения; уменьшение электрических нагрузок на анод и катод и, как следствие, увеличение долговечности и стабильности работы прибора; расширение функциональных возможностей устройства за счет обеспечения безвредности окружающей среде. 2 ил.

Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн



Рекомендуем почитать

Наверх