Уменьшение вероятности обнаружения сигнала с течением времени. Вероятность обнаружения и опознавания - системы тепловидения. Полоса пропускания приемного тракта

На iOS - iPhone, iPod touch 18.03.2019
На iOS - iPhone, iPod touch

Рассмотрим другой случай, когда переменной величиной является толщина пластины d . Возьмем два параллельных луча 1 и 2 от монохроматического источника, падающих на поверхность прозрачного клина с углом  (рис. 5).

В результате отражения от верхней и нижней поверхностей клина когерентные световые лучи 1 и 1", 2" и 2" интерферируют в точках B 1 и В 2 , усиливая или ослабляя друг друга в зависимости от толщины клина в точках падения. Совокупности точек с одинаковой освещенностью образуют интерференционные полосы, которые в этом случае называются полосами равной толщины, поскольку каждая образована лучами, отраженными от мест с одинаковой толщиной клина.

Так как интерферирующие лучи пересекаются вблизи поверхности клина, то принято говорить, что полосы равной толщины локализованы вблизи поверхности клина. Их можно наблюдать невооруженным глазом, если угол  достаточно мал (1), или использовать микроскоп.

Кольца Ньютона

Частным случаем полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ воздушного зазора между плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны R (рис.6).

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхности воздушного зазора между линзой и пластинкой. Для наглядности лучи 1 и 1", отраженные от воздушного зазора, изображены рядом с падающим лучом. При наложении отраженных лучей возникают полосы равной толщины. Толщина воздушного зазора d меняется симметрично в разные стороны относительно точки касания линзы и пластины. Поэтому полосы равной толщины имеют вид концентрических окружностей, которые принято называть кольцами Ньютона.

Определим радиус r кольца Ньютона, образованного лучами, отраженными отповерхностей воздушного зазора толщиной d. Из рис.6 следует, что

Поскольку d  R , то членом d 2 можно пренебречь и тогда

(11)

Толщина зазора определяет оптическую разность хода , которая, с учетом потери полуволны на отражение, равна

(12)

Подставив сюда d из формулы (11), получим

(13)

Если
, то наблюдается светлое кольцо максимальной интенсивности, для радиуса которого формула (13) дает

(14)

где
– номер кольца. Если
, то наблюдается темное кольцо. Радиус т- го темного кольца равен

(15)

Из формул (14) и (15) следует, что радиусы колец Ньютона и расстояние между ними растут с увеличением радиуса кривизны линзы (или другими словами, с уменьшением угла между линзой и пластинкой).

Если на линзу падает белый свет, то в отраженном свете наблюдается центральное темное пятно, окруженное системой цветных колец, которые соответствуют интерференционным максимумам для разных длин волн. В проходящем све­те потеря полуволны /2 при отражении света от воздушной прослойки происходит дважды. Поэтому светлым кольцам в отраженном свете будут соответствовать темные кольца в проходящем свете и наоборот.

При наличии любых, даже незначительных дефектов на поверхности линзы и пластинки правильная форма колец искажается, что позволяет осуществлять быстрый контроль качества шлифовки плоских пластин и линз.

Лабораторная работа 302

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

Цель работы : изучить оптическую схему для наблюдения колец Ньютона, определить радиус кривизны линзы.

Оптическая схема для наблюдения колец Ньютона в отраженном свете представлена на рис. 7.

Свет от источника S проходит через конденсорную линзу К и попадает на наклонный светофильтр Ф, расположенный под углом 45° к направлению луча. Отразившись от светофильтра, свет попадает на линзу Л и далее – на воздушный клин, образованный линзой и пластиной П. Лучи, отраженные от верхней и нижней поверхностей клина, проходят сквозь линзу Л в обратном направлении и попадают в окуляр Ок зрительной трубы. Интерференционная картина, возникающая при их наложении, имеет вид чередующихся светлых и темных колец, интенсивность которых убывает к периферии (см. рис.6). В центре колец находится темное пятно минимум нулевого порядка.

Общий вид прибора для наблюдения колец Ньютона показан на рис. 8.

Он состоит из микроскопа 1, на предметном столике которого закреплена лампа накаливания 2, светофильтр 3, и плосковыпуклая линза 4, прижатая к плоскопараллельной пластине 5. Лампа питается от сети 220В через понижающий трансформатор 6. Микроскоп снабжен микрометрическим винтом 7, с помощью которого зрительная труба 8 микроскопа перемещается относительно предметного столика.

Для измерения радиуса колец окуляр микроскопа имеет одинарную и двойную реперные линии. Отсчеты производятся по миллиметровой шкале 9 и круговой шкале 10, проградуированной в сотых долях миллиметра.

Измерив радиус любого из колец Ньютона, можно рассчитать радиус кривизны линзы К, воспользовавшись формулами (14) или (15). Однако из-за деформации стекла в точке соприкосновения линзы и пластины точность такого расчета оказывается невысока. Для повышения точности радиус кривизны R рассчитывают по разности радиусов двух колец r m и r n . Записав формулу (15) для темных колец с номерами т и п, получим выражение:

(15)

При расчетах удобнее пользоваться формулой, в которой радиусы колец заменены на их диаметры d m и d n

(16)

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ЭГА и МТ

КУРСОВАЯ РАБОТА

По курсу:

“Методы и системы обработки сигналов”

«Определение характеристик оптимального обнаружения»

Выполнил: Озерин М.В. ­_______­______________

студент 4-го курса гр. Э-15 (дата) (подпись)

Руководитель: Черницер В.М. _____________________

(дата) (подпись)

Таганрог 1999

ВВЕДЕНИЕ

При проектировании гидроакустических систем (ГАС) различного функционального назначения на этапе проектирования решаются задачи оптимизации технических характеристик ГАС и выбора структуры приемного тракта, оптимизирующего отношение сигнал-помеха. Для таких систем основными параметрами является: дальность действия, пространственная разрешающая способность. В данном случае ищут компромиссное решение между этими параметрами, отдавая предпочтение одному или другому в зависимости от стоящей перед разработчиками задачи. Расчет ведется при фиксированной дальности и поэтому выбор оптимальной частоты определяется минимальной излучающей мощности. ЗАДАНИЕ

Рассчитать и построить семейство характеристик обнаружения и определить значение порогового сигнала для исходных данных. Расчет проводится для когерентной последовательности и некогерентной последовательности импульсов при полностью известном сигнале, со случайной начальной фазой и амплитудой.

Таблица 1.1

Данные для расчеты


2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1. Характеристика обнаружения

Характеристиками обнаружения называются кривые, определяющие зависимость между вероятностью правильного обнаружения Р о, вероятностью ложной тревоги P лт и величиной сигнала выраженного в относительных еденицах:

(2.1)

Параметр q численно равен отношению сигнал-помеха (С/П) по напряжению на выходе согласованного фильтра (СФ). Если задано допустимое значение P лт, то расписывается соответствующее значение P o .

2.1.1 Случай полностью известного сигнала

Условные плотности вероятности корреляционного интеграла при отсутствии сигнала W(K/0) и при наличии сигнала W(K/1) определяются из выражения:

(2.2)

где величины K и E s корреляционный интеграл и энергия сигнала. При сравнении значений К с порогом К о вероятность ложной тревоги определяется отношением порогового уровня к среднеквадратичному значению s к.

(2.3)

Вероятность правильного обнаружения зависит не только от отношения порога К о среднеквадратичному значению s к, но и от отношения

(2.4)

где q – параметр обнаружения.

(2.5)

В выражениях 2.3 и 2.5 в F(U) – интеграл вероятности:

(2.6)

Выражение 2.5 преобразуется к виду

(2.7)

где q o =K o /s k .

Если интеграл вероятности определяется в виде

то выражение (2.3), (2.5), (2.6) приобретают вид

P лт =1-Ф(q o), (2.7)

P лт =1-Ф(q-q o), (2.8)

где q – параметр обнаружения.

Вероятность правильного обнаружения при заданной вероятности ложной тревоги тем больше, чем больше параметр обнаружения (рис 2.1). Пользуясь кривыми обнаружения, можно найти пороговый сигнал, т.е. сигнал, который при заданной вероятности ложной тревоги, может быть обнаружен с требуемой вероятностью правильного обнаружения Р п.

Рис. 2.1 Кривые обнаружения

Случай полностью известного сигнала на практике встречается редко, но его удобно использовать для сравнения различных типов устройств обнаружения.

2.2. Случай сигнала со случайной начальной фазой

Условные плотности вероятности для корреляционного интеграла при наличии сигнала:

(2.9)

при отсутствии сигнала:

Модель корреляционного интеграла при отсутствии сигнала подчиняется релеевскому закону распределения, а при наличии сигнала, обобщенному релеевскому закону.

Максимально допустимая вероятность ложной тревоги

(2.11)

а пороговое значение отношение сигнал-помеха

(2.12)

Вероятность правильного обнаружения определяется, как

(2.13)

где S – переменная интегрирования.

Когда отношение сигнал-шум равен

формулы (2.9) и (2.13) упрощается, и расчет вероятности P o можно вести по формуле

(2.14)

где Ф(U) – интеграл вероятности.

2.3. Случай со случайной амплитудой и начальной фазой

(2.15) (2.16)

Вероятность ложной тревоги

(2.17)

Вероятность правильного обнаружения

(2.18)

Исключая q o из (2.18), получим

(2.19)

В случае приема последовательности из n одинаковых когерентных импульсов энергетическое отношение сигнал/шум

(2.20)

где E u /N o – энергетическое отношение сигнал/шум, соответствующее одному импульсу последовательности.

По характеристикам обнаружения определяются значения q n и пороговый сигнал, соответствующий полной энергии сигнала в пачке (E S). Поэтому в случае когерентного обнаружения, энергия минимального порогового сигнала одного импульса должна быть – E S /n. А в случае некогерентного обнаружения E S /Ön. Выигрыш при когерентном приеме составляет Ön раз. Параметр обнаружения q может быть представлен как отношение максимального напряжения сигналаA s к среднеквадратичного значения шума

(2.21)

При этом пороговом сигналом определяется коэффициент распознавания (различимости) d, который вычисляется как минимальное отношение сигнал/шум, обеспечивающее обнаружение с требуемой вероятностью:

для случая когерентного обнаружения

для случая некогерентного обнаружения

где W и =A s 2 /2 – импульсная мощность.

При n=1 различие между когерентным и некогерентным приемами отсутствует.

3. РАСЧЕТ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ГАС

Оптимальная частота работы ГАС

Оптимальную частоту выбираем из расчета, что сигнал будет иметь приемлемый шум и малое поглощение.

где r max – дистанция до цели обнаружения (км).

Но так как можно перебирать частоту в некотором диапазоне, то выбираем частоту f опт =39000, при этом получаем выигрыш в минимальном шуме, но имеем более сильное поглощение сигнала.

Полоса пропускания приемного тракта

Она складывается из доплеровского смещения частот и ширины спектра эхо-сигнала

Для наглядности изложения введем основные понятия и характеристики оптимального обнаружения, иллюстрируя их на простейшем примере. Предположим, что на интервале наблюдения (обработки) может присутствовать или отсутствовать полезный сигнал, характеризуемый постоянным значенизм (рис. 4.1, а). В качестве обнаруживаемого сигнала можно было бы принять отрезок синусоиды с постоянной амплитудой, однако это не изменит существа рассматриваемой ниже процедуры обнаружения.

Достоверному обнаружению сигнала мешает наличие шума (рис. 4.1, б), в смеси с которым наблюдается сигнал (когда он присутствует). Следовательно, по реализациям, содержащим смесь сигнала с шумом (рис. 4.1, в) или только шум, необходимо установить факт присутствия сигнала.

Таким образом, процедура обнаружения сводится к обработке реализаций случайной функции

В каждой из этих реализаций возможно наличие или отсутствие обнаруживаемого сигнала.

Будем обозначать случайные функции и случайные величины большими (заглавными) буквами а набор их возможных значений, а следовательно, и аргументы (независимые переменные) соответствующих законов распределения - малыми буквами, например

Достаточно полной статистической характеристикой случайной функции является ее многомерная плотность

распределения. Она вводится следующим образом. Рассматриваются значения случайной функции в дискретные моменты времени что означает замену случайной функции случайной последовательностью. На всей совокупности возможных реализаций значения случайной функции в моменты времени представляют собой последовательность случайных величин Такую последовательность иногда называют многомерной случайной величиной или случайным вектором.

Совместная плотность распределения этих случайных величин где на практике принимается за статистическую характеристику случайной функции Такая многомерная плотность распределения зависит от наличия или отсутствия сигнала. В этом смысле она является условной, что отмечено введением в аргумент плотности распределения символа

Степень детализации случайного процесса, которая имеет место при описании его -мерной плотностью распределения, будет тем выше, чем больше значение

Совокупность значений утв случайных величин полученная из каждой конкретной реализации (рис. 4.1, г), называется выборкой. В ряде случаев саму совокупность случайных величин называют обобщенной выборкой.

Использование многомерных распределений для обнаружения позволяет получить обозримые результаты и технически реализуемые обнаружители лишь при определенных ограничениях, которым должна удовлетворять обрабатываемая случайная последовательность. В большинстве случаев эти ограничения не обременительны для практических приложений. Одним из таких ограничений может явиться требование нормальности случайных величин Другое, часто используемое ограничение, состоит в том, что рассматриваемые случайные величины принимаются независимыми. Независимость может быть обеспечена надлежащим выбором моментов отсчета

В дальнейшем будем полагать, что такая независимость имеет место. Тогда при наличии сигнала

а при отсутствии сигнала

Следовательно, многомерные плотности распределения достаточно просто выражаются через одномерные.

В статистической радиотехнике, которая использует аппарат математической статистики, выводы о наличии сигнала и его параметрах делаются на основе принятых реализаций и соответствующих им выборок. Хотя эти реализации и содержат всю информацию об интересующих нас явлениях, получить такую информацию непосредственно из реализации или выборкичасто не представляется возможным. Они должны подвергнуться обработке (анализу). Важным элементом этого анализа является получение некоторых усредненных характеристик выборки. Весьма продуктивной и в ряде случаев оптимальной будет обработка выборки на

основе использования функции правдоподобия и отношения правдоподобия.

В математической статистике функция правдоподобия формируется из многомерной плотности распределения (4.4.2) случайных величин путем замены в ней независимых переменных значениями выборки утв, полученными в результате приема каждой конкретной реализации.

В задачах обнаружения функции правдоподобия при наличии и отсутствии сигнала будут равны соответственно

Обычно в литературе не делают различий в обозначениях аргументов функций распределения (4.4.2), (4.4.3) и числовых данных каждой конкретной выборки (4.4.4), (4.4.5), что нередко приводит к недоразумениям. Поэтому в дальнейшем выборочные данные, представляющие набор случайных чисел и функций от них, которые также являются случайными числами на совокупности выборок, будут снабжаться индексом (выборка).

Величина функции правдоподобия для каждой конкретной выборки характеризует, какое из двух событий или является более правдоподобным. При построении процедур обнаружения сигналов на основе рассмотренных выше статистических характеристик выборочных данных бывает удобнее сравнивать между собой не величины а их отношение

называемое отношением правдоподобия, с порогом Отношение правдоподобия также является случайной величиной на совокупности выборок.

По соображениям, которые станут ясными из дальнейшего, предпочитают сравнивать с порогом не само значение а его натуральный логарифм, т. е.

где Поскольку логарифмическая функция неубывающая, а - неотрицательная величина, оказываются эквивалентными процедуры сравнения с порогом с порогом С.

Процесс обнаружения сводится к следующему. Для каждой реализации вычисляется логарифм отношения правдоподобия и сравнивается с порогом С. Если оказывается, что то принимается решение о наличии сигнала в данной реализации, а при сигнал считается отсутствующим.

При сравнительно малых отношениях сигнал/шум, а также вследствие случайности принимаемых реализаций логарифм отношения правдоподобия является случайной величиной и возможно выполнение неравенства при отсутствии сигнала. В этом случае обнаружитель примет ошибочное решение о наличии сигнала. Ошибки такого рода называются ложными тревогами. И наоборот, если при наличии сигнала, то выдается ошибочное решение, называемое пропуском сигнала.

При низком пороге пропуски сигнала будут практически отсутствовать, но сильно поднимется процент ложных тревог. Завышение порога увеличит число пропусков сигнала при уменьшении ложных тревог. Интуитивно чувствуется, что существует оптимальное значение порога. Такое значение действительно имеется, причем оно зависит от ряда условий, и в частности от критерия, положенного в основу построения оптимального обнаружителя. Выбор того или иного критерия оптимальности системы, в том числе и для систем обнаружения сигналов, является в значительной степени субъективным актом, т. е. критерий не выводится из теории, а назначается волевым приемом, исходя из особенностей функционирования конкретной оптимизируемой системы. Разумность и ценность принятого критерия качества работы системы проверяется на практике.

Так, установлено, что для оптимизации обнаружителей радиолокационных станций целесообразно использовать критерий Неймана - Пирсона, а для систем связи более подходит критерий идеального наблюдателя. При использовании критерия Неймана - Пирсона задается уровень ложных тревог и требуется, чтобы вероятность обнаружения при этом была бы максимальной. Критерий идеального наблюдателя требует, чтобы суммарная ошибка, вызванная

как ложными тревогами, так и пропуском сигнала, была минимальной.

После того, как критерий принят, определяется оптимальное значение порога С на основании требований данного критерия и устанавливается структура оптимального обнаружителя.

Логарифм отношения правдоподобия определяемый формулой (4.4.7), представляет собой выборочное значение некоторой случайной величины Вид плотности распределения этой случайной величины зависит от того, присутствует в данной реализации сигнал или его нет.

Обозначим через плотность распределения V при наличии сигнала в реализации, а через при его отсутствии. В соответствии с принятыми ранее определениями, вероятность ложной тревоги выражается формулой:

а вероятность пропуска сигнала -

Полученным результатам можно дать наглядное геометрическое представление (рис. 4.2). Здесь изображены плотности распределения случайной величины V (логарифма отношения правдоподобия) соответственно при отсутствии и наличии сигнала. Вероятность ложной тревоги представляет собой площадь под кривой справа от порогового значения С (луч а вероятность пропуска сигнала площадь под кривой слева от него (луч

Очевидно, что вероятность правильного обнаружения будет равна

Эта вероятность определяется как площадь под кривой справа от порога С.

Как следует из приведенного рисунка, с увеличением порогового уровня уменьшается вероятность ложной тревоги, но одновременно уменьшается и вероятность правильного обнаружения. При снижении порога картина будет обратной.

Для вычисления вероятностей можно воспользоваться и непосредственно совместными плотностями распределений последовательности случайных величин порождающих анализируемые выборки утв. Такая возможность обусловлена правилами обнаружения, сформулированными ранее. Пространство всех возможных выборок (пространство существования случайного вектора разбивается на две непересекающиеся области Попадание данной конкретной выборки в область эквивалентно тому, что случайная величина V примет значение попадающее на луч оси (рис. 4.2). Если выборка попадает в область то будет находиться на луче Отсюда следует, что

т. е. при таком подходе к определению требуется вычисление -кратных интегралов, поэтому на практике чаще пользуются выражениями (4.4.8) и (4.4.9).

Проведенный анализ показывает, что путем вычисления отношения правдонодобия удалось преобразовать -мерное (а в пределе бесконечномерное) пространство выборок (пространство наблюдений) в одномерное. Подобные преобразования широко применяются в математической статистике и составляют суть анализа опытных данных для получения из них определенных выводов.

Если преобразование осуществляется так, что не происходит потери информации, содержащейся в исходной

выборке, то оно называется достаточным, а полученная в результате его случайная величина - достаточной статистикой. Отношение правдоподобия является достаточной статистикой.

Оптимальность критерия Неймана - Пирсона состоит в том, что при его использовании оперируют с достаточными статистиками (отношением правдоподобия), и выявляется лишь при сравнении с другими процедурами обработки, не приводящими к достаточным статистикам. Такое сравнение показывает, что при заданном уровне ложных тревог процедура Неймана - Пирсона дает наибольшую вероятность правильного обнаружения. Пороговое значение при использовании критерия Неймана-Пирсона находится в результате решения уравнения

в котором заданы вид плотности распределения и величина допустимой вероятности ложной тревоги

Для определения порогового уровня Сии при использовании критерия идеального наблюдателя необходимо вычислить вероятность полной ошибки

где априорные (т. е. задаваемые до начала анализа реализации) вероятности отсутствия и наличия сигнала соответственно.

Для нахождения порога который обеспечивает минимум необходимо производную по С от правой части выражения (4.4.14) приравнять нулю. В результате получается уравнение

Решая это уравнение относительно порога, находят значение соответствующее критерию идеального наблюдателя.

С принципиальной точки зрения критерий идеального наблюдателя кажется более содержательным в сравнении с критерием Неймана - Пирсона, так как в нем учитывается

прошлый опыт, отраженный в величинах априорных вероятностей Однако на практике бывает очень трудно найти ситуации, в которых можно заранее и достаточно обоснованно указать величины поэтому часто их берут равными Тогда уравнение для определения будет иметь вид:

Этот частный случай критерия идеального наблюдателя иногда называют критерием максимального правдоподобия.

Условие (4.4.16) означает, что порог должен соответствовать точке пересечения кривых на рис. 4.2, поэтому ложные тревоги и пропуски сигнала будут наблюдаться с равными вероятностями. При использовании критерия Неймана - Пирсона порог обычно устанавливается так, чтобы вероятность ложных тревог была существенно меньше вероятности пропуска сигнала. В этом основное различие рассмотренных критериев.

Общим для этих критериев является то, что процедуры обнаружения при использовании каждого из них строятся на основе вычисления отношения правдоподобия. Это обстоятельство обусловлено тем, что они входят в качестве подклассов в более общий так называемый байесовский критерий или, как его еще именуют, критерий минимума среднего риска.

Байесовское обнаружение, разработанное в теории статистических решений, состоит в том, что помимо выборки и априорных вероятностей задаются еще определенные потери или ущерб, которые вызываются ложными тревогами и пропуском сигнала. По этим данным вычисляется средний риск, связанный с принятием решения о наличии или отсутствии сигнала. Пороговое значение С выбирается так, чтобы средний риск был минимален. Если потери, обусловленные ложными тревогами и пропуском сигнала, принять одинаковыми, то байесовский критерий переходит в критерий идеального наблюдателя.

Поскольку задать обоснованные величины потерь для реальных ситуаций очень трудно, практическая ценность байесовского критерия невелика. Однако он позволяет в теоретическом плане более четко обосновать оптимальность всех процедур обнаружения, построенных на основе вычисления отношения правдоподобия.

Для построения структурных схем обнаружителей, использующих приведенные выше критерии, и получения данных о качестве работы этих обнаружителей необходимо задаться конкретным видом плотностей распределения последовательности случайных величин из которых формируется выборка .

При переходе к непрерывному процессу обработки многомерные условные плотности распределения преобразуются (там, где это возможно) в функционалы соответственно, а логарифм отношения правдоподобия записывается в виде

Если сигнал обнаруживается в белом шуме, имеющем спектральную плотность то вычисления по формуле (4.4.17) дают

Здесь энергия сигнала, выделяемая за время В задачах обнаружения известного сигнала считается заданной. Величина полученная от каждой реализации, сравнивается с порогом

для критерия Неймана - Пирсона и

для критерия идеального наблюдателя. Здесь отношение удвоенной энергии сигнала к спектральной плотности шума; а аргумент интеграла вероятности, вычисленный для заданного значения вероятности ложной тревоги.

На основании (4.4.18) получается структурная схема оптимального обнаружителя, показанная на рис. 4.3.

Основные операции, выполняемые в обнаружителе подобного типа, сводятся к следующим. Принимаемая смесь сигнала с шумом или один шум умножаются в устройстве

с коэффициентом передачи на копию сигнала которая должна храниться в приемнике. Коэффициент передачи умножителя введен лишь для согласования размерностей и величина его не имеет принципиального значения. Поэтому часто его полагают равным единице. С выхода умножителя напряжение подается на интегратор, где оно интегрируется в течение времени и далее через звено с коэффициентом передачи поступает на пороговое устройство Множитель введен для нормировки, а коэффициент так же, как и коэффициент согласует размерность тракта обработки сигнала.

В момент окончания интегрирования на выходе звена образуется сигнал

который сравнивается в пороговом устройстве с напряжением для вынесения решения о наличии или отсутствии сигнала в принятой реализации. После этого интегратор устанавливается на нуль и цикл обнаружения начинается вновь. Коэффициент

Величины пороговых напряжений ипин и для критериев идеального наблюдателя и Неймана - Пирсона получаются из (4.4.18) - (4.4.20) и равны

Напряжение на выходе интегратора, отсчитываемое в момент времени представляет собой выборочное значение некоторой случайной величины распределенной по нормальному закону. Его математическое ожидание Май и дисперсия при отсутствии сигнала равны соответственно

при наличии сигнала

Вычисление вероятностей ложной тревоги и правильного обнаружения осуществляется по формулам:

При расчетах по формулам (4.4.26) и (4.4.27) пороговый уровень определяется соотношениями (4.4.22) и (4.4.23) в зависимости от принятого критерия обнаружения.

Для облегчения расчетов по формулам (4.4.22), (4.4.23) (4.4.26) и (4.4.27) разработаны таблицы и графики .

Схема на рис. 4.3 отображает оптимальный обнаружитель корреляционного типа или, как его еще называют, корреляционный приемник. Можно показать, что эта схема эквивалентна по качественным показателям обнаружения схеме с согласованным фильтром (рис. 4.4). Согласованный фильтр задается весовой функцией или комплексной частотной характеристикой причем с точностью до постоянного множителя является зеркальным отображением сигнала относительно прямой Ключ замыкается в момент окончания сигнала.

Выбор схемы обнаружителя в форме корреляционного приемника или согласованного фильтра диктуется лишь удобствами конструирования.

Практически разработанные системы обнаружения часто еще далеки по своим свойствам от рассмотренных выше оптимальных обнаружителей. Это объясняется рядом причин, которые условно можно разбить на две группы.

Первую группу составляют те, которые вызваны изменением условий, принимаемых при синтезе оптимального обнаружителя, относительно обнаруживаемых сигналов и помех, в силу следующих обстоятельств: помеховое воздействие не может быть сведено к белому шуму; в месте приема не известна фаза принимаемого колебания; производится прием флуктуирующего сигнала; не известно положение принимаемого сигнала на оси времени и т. д.

Вторая группа вызвана отказом от применения тех элементов оптимальной схемы, которые сложны в технических реализациях.

Ухудшения предельных показателей, вызванных перечисленными причинами, принято характеризовать потерями чувствительности обнаружителя.

Небелый гауссов шум будем характеризовать нулевым средним значением и корреляционной функцией Такой шум называют также коррелированным или «окрашенным». Для получения алгоритма работы оптимального обнаружителя сигнала, принимаемого в смеси с коррелированным шумом, необходимо выполнить те же операции, что и в случае белого шума, т. е. вычислить логарифм отношения правдоподобия и сравнить его с порогом, величина которого зависит от принятого критерия. Отличие от обнаружения сигнала в белом шуме состоит лишь в больших трудностях, возникающих при вычислении отношения правдоподобия. Эти трудности связаны с тем, что при «окрашенном» шуме обобщенная выборка представляет собой систему коррелированных случайных величин совместная плотность распределения которых уже не может быть представлена в виде произведения плотностей распределения каждой из этих величин.

Наиболее известными являются два подхода к вычислению отношения правдоподобия, которым соответствуют две формы структурной схемы оптимального обнаружителя. Первый метод состоит в том, что отношение правдоподобия вычисляется непосредственно на основе многомерных

плотностей распределения коррелированных случайных величин при наличии и отсутствии сигнала .

При втором подходе случайную функцию раскладывают на интервале в ортогональный ряд, который обычно называют рядом Корунена - Лоэва. Удобство такого разложения состоит в том, что коэффициенты этого ряда образуют систему некоррелированных случайных величин, а если анализируемые процессы нормальны, то эти коэффициенты еще и статистически независимы. Поэтому в отношении их применима рассмотренная ранее методика построения оптимальных обнаружителей сигнала в белом шуме. Получение независимых отсчетов для коррелированного нормального процесса называют иногда отбеливанием «окрашенного» шума .

Рассмотрим основные результаты, которые дают два упомянутых подхода к синтезу оптимальных обнаружителей. Наибольшая сложность, возникающая при вычислении многомерной плотности распределения статистически зависимых случайных величин, состоит в нахождении матрицы обратной по отношению к корреляционной матрице При непрерывной обработке принимаемых реализаций обращение матриц сводится к решению интегрального уравнения

где непрерывный аналог обратной корреляционной матрицы. По аналогии с обратной матрицей функцию называют иногда обратнокорреляционной функцией.

Основные трудности в решении уравнения (4.4.28) вызывают конечные пределы интегрирования. Если уравнение (4.4.28) решено и определена то логарифм отношения правдоподобия запишется в виде

Если шум белый, т. е. то из (4.4.28) находим Подставляя это значение обратнокорреляционной функции в (4.4.29), получаем выведенное ранее отношение (4.4.18).

Для удобства построения структурной схемы обнаружителя введем функцию определив ее как

Если принять, что функция выполняет роль некоторого обобщенного опорного сигнала, то можно усмотреть аналогию в выражениях (4.4.18) и (4.4.31) и построить-структурную схему обнаружителя в виде, представленном на рис. 4.5. Здесь напряжение умножается на принимаемую реализацию а результат умножения интегрируется в течение интервала времени

Напряжение сформированное на выходе интегратора в момент времени

сравнивается в пороговом устройстве с пороговым уровнем который определяется формулами (4.4.22), (4.4.23), если в них положить

Показателями достоверности работы обнаружителя по-прежнему являются вероятности ложной тревоги и правильного обнаружения, которые вычисляются по формулам (4.4.26) и (4.4.27). Соотношение (4.4.33) показывает, что достоверность обнаружения теперь зависит от формы сигнала. Напомним, что при обнаружении сигнала в белом шуме величина определялась лишь энергией сигнала и спектральной плотностью шумов, а форма сигнала на нее не влияла.

Функция может быть вычислена непосредственно по корреляционной функции шумов без перехода к обратнокорреляционной функции Для этого выражение (4.4.28) следует умножить справа и слева на «с проинтегрировать полученное соотношение от до и заменить переменную интегрирования

Возможно также построение оптимального обнаружителя сигнала в коррелированном шуме по схеме с согласованным фильтром. Весовая функция такого фильтра вычисляется по виду обобщенного сигнала определяемого выражением (4.4.34). Поэтому в любом случае для построения оптимального обнаружителя необходимо решать интегральное уравнение (4.4.34).

В работе показано, что если интегрирование производится в бесконечных пределах или же когда спектральная плотность помехи описывается дробно-рациональной функцией частоты то решение уравнения (4.4.34) получается в замкнутой форме.

Структура согласованного фильтра при коррелированном шуме такова, что этот фильтр ослабляет в большей степени те спектральные составляющие принимаемой реализации, частоты которых соответствуют частотам наибольшей интенсивности в спектре шума.

Процесс оптимального обнаружения сигнала в коррелированном шуме, основанный на переходе к статистически независимым выборочным значениям, в случае непрерывной обработки реализации сводится к введению в схему обнаружителей так называемого отбеливающего фильтра. Структурная схема подобного обнаружителя представлена на рис. 4.6. Реализация на выходе отбеливающего фильтра

Представляет собой смесь преобразованного сигнала и белого шума.

Для сохранения необходимых соотношений между преобразованной реализацией и опорным сигналом на обоих входах умножителя в тракт последнего также вводится аналогичный фильтр. Остальная часть схемы полностью соответствует схеме оптимального обнаружителя сигнала в белом шуме.

Для нахождения параметров отбеливающего фильтра положим, что на его вход подано лишь шумовое воздействие с нулевым средним значением и корреляционной функцией Весовая функция фильтра должна быть такова, чтобы шум на его выходе имел корреляционную функцию, равную т. е.

Таким образом, для нахождения структуры отбеливающего фильтра необходимо решить интегральное уравнение (4.4.35). Это решение зависит исключительно от вида корреляционной функции входного шума. Если длительность обрабатываемой реализации больше времени памяти фильтра, то допустимо расширение пределов интегрирования до бесконечности. В этом случае при стационарном шумовом воздействии уравнение (4.4.35) легко решается с помощью преобразования Фурье

Отсюда находим выражение для комплексного коэффициента передачи фильтра через одностороннюю спектральную плотность коррелированного шума на его входе и спектральную плотность белого шума на его выходе.

Рассмотренная ранее задача, в которой при приеме были точно известны амплитуда и начальная фаза обнаруживаемого сигнала, на практике не встречается и принятое условие является удобной математической абстрацией, служащей для получения предельных значений достоверности обнаружения. Реальные условия приема радиосигналов намного сложнее. Первое приближение к таким условиям соответствует случаю, когда в точке приема точно известны частота полезного сигнала и его положение на оси времени с точностью до периода высокочастотных колебаний, а неизвестными являются начальная фаза и амплитуда.

Применительно к радиолокационным задачам подобная ситуация характеризует обнаружение отраженного от цели сигнала при неизменном и заранее известном расстоянии между целью и точкой приема. Предполагается также, что частота передатчика РЛС абсолютно стабнльна или влияние нестабильности исключается путем запоминания частоты излучаемого сигнала до момента прихода отраженного импульса.

Если какой-либо параметр сигнала точно неизвестен, а заданы лишь его статистические характеристики, то теория оптимальных методов приема рекомендует для этого случая два различных подхода. Согласно первому неизвестный параметр должен быть измерен, т. е. получена его оптимальная оценка, и в схему обнаружителя вводится сигнал, который вместо неизвестного параметра содержит оценку этого параметра. Такая рекомендация приводит к получению достаточно сложных схем с одновременным обнаружением и измерением (23, 164, 98]. Однако если влияние неизвестных параметров на достоверность обнаружения невелико, такое усложнение нецелесообразно. В этом случае предпочтителен другой подход, в соответствии с которым необходимо усреднить отношение правдоподобия по неизвестным параметрам и тем самым исключить их из структуры оптимального обнаружителя. Этот подход основан на не совсем точной концепции, состоящей в том, что неизвестные

Следующим этапом приближения к реальным условиям работы обнаружителя является принятие допущения о неизвестной несущей частоте сигнала и неизвестном положении его на оси времени. Частота сигнала бывает неизвестна в силу нестабильности частоты передатчика, а также из-за наличия допплеровского смещения частоты, вызванного взаимным перемещением пунктов передачи и приема. Отсутствие данных о расстоянии между радиолокационной станцией и целью, а также между двумя корреспондентами в системе связи приводит к тому, что становится неизвестным положение сигнала на оси времени.

В теоретическом плане задача сводится к так называемому сложному или многоальтернативному обнаружению. Оптимальный обнаружитель в этом случае строится в виде многоканальной схемы. Возможный диапазон задержек сигнала разбивается на интервалы, каждый из которых соответствует одному элементу разрешения цели по дальности. Для каждого такого интервала строится оптимальный обнаружитель. Отметим, что в таком многоканальном обнаружителе осуществляется процедура обнаружения и измерения, так как появление сигнала в том или ином канале позволяет установить по номеру канала временную задержку сигнала, а следовательно, и дальность до цели. Аналогично строится и многоканальная схема с частотным разделением каналов, если неизвестна частота сигнала.

Теория оптимального обнаружения сигналов, основанная на анализе отношений правдоподобия, предполагает известными распределения вероятностей принимаемых реализаций. Вид закона распределения вероятностей определяет структуру обнаружителя, а знание параметров этого закона позволяет рассчитать величину порога, необходимую для получения требуемой достоверности обнаружения.

В математической статистике методы, в которых для получения статистических выводов необходимо знание законов распределения анализируемых процессов, называют параметрическими. Несмотря на широкое применение параметрических методов в статистической радиотехнике, их использование может натолкнуться на трудности принципиального

характера, что наблюдается, например, при недостатке статистических данных в описании процессов на входе радиотехнического устройства или при изменении таких данных во времени непредсказуемым образом. Простейшей, но весьма характерной ситуацией подобного рода является возрастание интенсивности шумов на выходе приемника, вызванное либо увеличением коэффициента его усиления, либо действием широкополосных шумовых помех. Если параметры обнаружителя оставить неизменными, то это приведет к повышению вероятности ложной тревоги.

Для стабилизации уровня ложной тревоги в рассмотренные выше обнаружители параметрического типа вводят дополнительный канал приема, в котором осуществляется оценка интенсивности шумов. В радиолокационных устройствах такой канал может быть выполнен дополнительным стробированием приемника на дистанции (временном интервале), где заведомо отсутствует сигнал цели. Измеренное значение интенсивности шумов используется либо для изменения порога, либо для нормировки шумов. Некоторые алгоритмы стабилизации ложных тревог путем изменения порога приведены в 182, 179]. Теоретическое обоснование нормирования шумов в оптимальном обнаружителе с неизвестной их интенсивностью дает правило, называемое -тестом Стьюдента 112]. Приближенно это правило реализуется в системах автоматической регулировки усиления приемника по шумам (ШАРУ).

Основной недостаток рассмотренных схем стабилизации ложных тревог состоит в том, что получаемая в таких схемах оценка интенсивности шумов отличается от ее истинного значения на величину ошибки измерения, к которой очень чувствительны обнаружители параметрического типа. Например, в показано, что ошибка измерения среднего уровня шумов, составляющая 10%, вызывает изменение вероятности ложной тревоги приблизительно на порядок. Отмеченная особенность, а также чувствительность подобных обнаружителей к изменению вида закона распределения помех послужили причиной разработки обнаружителей непараметрического типа, для построения которых требуются очень ограниченные сведения о распределениях анализируемых реализаций.

Непараметрическая теория решений позволяет получать алгоритмы (на основе которых делаются статистические выводы), инвариантные к форме закона распределения.

Однако в практическом приложении этой теории применительно к обнаружению сигналов вопрос так широко не ставится. Обычно под непараметрическим обнаружением понимают алгоритм, который обеспечивает независимость от формы закона распределения какой-либо характеристики качества обнаружения. Такой характеристикой чаще всего бывает уровень ложных тревог. Следовательно, в непараметрических обнаружителях обеспечивается стабилизация ложных тревог при изменении условий приема. Это свойство приобретается ценой потери оптимальности. Однако показатели качества подобных обнаружителей могут быть сделаны достаточно близкими к оптимальным .

Простейшим обнаружителем непараметрического типа является знаковый обнаружитель . Этот обнаружитель строится на основе следующих предположений относительно статистических свойств принятых реализаций. Если сигнал отсутствует и реализация утв состоит лишь из шумовых компонент, то принимается, что случайные величины

Одной из разновидностей знакового обнаружителя является так называемый фазовый автокоррелятор , функциональная схема которого представлена на рис. 4.7. Широкополосный и узкополосный фильтры (ШФ и УФ)

настроены на частоту сигнала. Полоса пропускания узкополосного фильтра согласована с длительностью сигнала т. е. Для соотношения полос фильтров ШФ и УФ выполняется следующее условие:

Напряжение с выходов фильтров подаются на ограничители и далее на каскад совпадений (КС), формирующий импульсы нормированной амцлитуды, длительность которых пропорциональна времени совпадения положительных полярностей напряжений, поступающих с ограничителей. Далее следует интегратор и пороговое устройство (ПУ). Обнаружение сигнала производится по превышению напряжения на выходе интегратора порогового уровня иа. В статье рассмотрен усовершенствованный вариант знакового обнаружителя.

В ряде задач приёма сигналов в присутствии шумов нельзя ограничиться таким общим критерием, как отношение сигнал / шум. Возникает необходимость использовать более тонкие статистические свойства процессов, которые дают возможность количественно оценить достоверность полученных данных. (например, о координатах объекта по сигналам РНС или координатах цели по данным радиолокатора). Вследствие случайного характера помех принципиально невозможно добиться их полного устранения. Использование рассмотренных выше «оптимальных» фильтров меняет характеристики случайного процесса, но процесс остаётся случайным. Путём совершенствования приёмных устройств можно снизить вероятность ошибки только до некоторого уровня. .

В данном пособии ограничимся изложением классической задачи обнаружения сигнала. Пусть на выходе приёмного устройства имеется некий сигнал - случайный процесс:

U(t) = V(t) + z (t) (7.1)

Этот процесс может представлять либо только шумы - z (t) . либо сумму детерминированного сигнала V(t) и шума. Будем считать, что факт наличия сигнала V(t) тоже случаен.

Для решения вопроса о наличии сигнала в данный момент можно принять правило: сигнал присутствует, если U (t) > E, т.е. превышает некоторый уровень, порог и что сигнал отсутствует в противоположном случае. U(t)

Ошибочный ответ может быть дан в двух несовместимых между собою случаях:1) когда сигнал отсутствует, V(t) = 0, но напряжение шума превышает уровень Е. (событие А = «ложная тревога» .- Л.Т.) 2) Когда сигнал присутствует, V(t) 0, но сумма сигнала и шума не превышает уровня U(t) Б, «пропуск сигнала»).

Вероятность ложной тревоги (событие А ), т. е. того, что будут совмещены два события - отсутствие сигнала и превышение шумом уровня Е (при отсутствии сигнала) , равна априорной вероятности отсутствия сигнала, умноженной на апостериорную вероятность превышения уровня Е, при условии, что сигнал отсутствует. Априорной вероятностью q отсутствия сигнала зададимся, а апостериорную вероятность превышения шумом уровня Е легко получить по одномерной функции распределения шума W(x).

Тогда (7.2)

Вероятность того, что будут совмещены два события - присутствие сигнала и непревышение суммарным напряжением уровня Е (вероятность события Б ) равна априорной вероятности присутствия сигнала, умноженной на апостериорную вероятность непревышения уровня Е при условии, что сигнал присутствует. Априорная вероятность присутствия сигнала равна:

Апостериорную вероятность непревышения уровня Е можно получить, используя одномерную функцию распределения суммы сигнала и шума - .

, тогда (7.3),

Так как события А и Б несовместимы, то вероятность ошибочного ответа Р (А или Б ) равна:

Р(А или Б) = Р(А) + Р(Б) =

Следовательно, искомая вероятность правильного ответа равна:

Возникает вопрос: как выбрать пороговый уровень Е? Ясно, что если уровень выбрать высоким, то вероятность Р(А) - ложной тревоги будет мала, но вероятность пропуска имеющегося сигнала будет велика. Наоборот, при низком уровне Е мала будет вероятность пропуска сигнала, но будет значительной вероятность ложной тревоги Р (А).Эти качественные рассуждения можно облечь в количественные соотношения, зависящие от конкретной задачи.

Может быть поставлена задача нахождения оптимальной величины порога Е, для которого вероятность правильного ответа (7.5) при заданных функциях распределения сигнала и шума максимальна. Вычисляя производную выражения (7.5) по Е и приравнивая её нулю, получаем уравнение для определения оптимального уровня:

Что даёт (7.6).

Статистический критерий (7.6), обеспечивающий максимальную вероятность правильного ответа при одном или нескольких измерениях, называется критерием «идеального наблюдателя ».

Как следует из уравнения (7.6), определяемый уровень зависит от вида функций распределения.

Рассмотрим решение этого уравнения на примере обнаружения положительной телеграфной посылки (положительного импульса с амплитудой V) на фоне шума, подчиняющемуся нормальному закону распределения, с дисперсией . Наличие или отсутствие сигнала скажется только на среднем значении суммарного сигнала (7.1).

Соответственно плотности распределения будут иметь вид:

, (7.7).

Смысл выбора порога (см. уравнение 7.6) иллюстрируется рис.3.7 .

Рис. 36 Рис.37

Оптимальный уровень определяется точкой пересечения графика (1) - распределения шума с графиком (2) - совместного распределения сигнала и шума.(с учётом масштабных коэффициентов q,p). Как видно из рисунка 3.7 , при сильном сигнале уровень Е должен выбираться высоким, а при слабом этот уровень приближается к среднеквадратичному напряжению шума.

В случае, когда априорная вероятность появления сигнала неизвестна, часто полагают р=1/2, считая, что априорно равновероятно, как наличие, так и отсутствие сигнала. (заметим, что при этом q=1/2 тоже). Тогда для распределений (7.7) величина порога оказывается равной Е= V/2. (См. Рис 3.6).

Если уровень Е выбран, то для рассматриваемого примера, где плотность распределения вероятностей шума и сигнала с шумом определены выражениями (7.7), для вероятностей ложной тревоги и пропуска сигнала, используя (7.2) и (7.3), получаются выражения:

- функция Крампа .

На практике обычно интересуются не вероятностью пропуска сигнала, а вероятностью правильного обнаружения D (при условии, что превышен уровень Е):

(при p=1/2)..(7.9).

Приведём другой пример. Подлежащий определению сигнал является огибающей суммарного высокочастотного колебания, которое вызвано как воздействием шума, так и полезного высокочастотного сигнала (радиоимпульса).

При воздействии одного шума плотность распределения огибающей r высокочастотного колебания описывается функцией Релея:

при , и при r

Дисперсия шума.

При совместном воздействии шума и высокочастотного сигнала огибающая

имеет плотность распределения, подчиняющуюся закону Релея - Райса:

, при r >0 (7.11).

и , при r модифицированная функция Бесселя.

Графики функций (7.10) и (7.11) приведены на рис. 38.

Если в этом примере опять принять p=q, то оптимальный уровень опять определится точкой пересечения кривой распределения шума с кривой совместного распределения сигнала и шума. Из рисунка видно: при сильном сигнале уровень Е должен выбираться высоким, а при слабом сигнале этот уровень приближается к среднеквадратичному напряжению шума. При p q масштабы графиков функций (7.10) и (7.11) соответственно изменятся, но оптимальный уровень будетпо-прежнемуопределяться уравнением (7.6).то есть точкой пересечения соответствующих графиков.

Рассмотренный критерий идеального наблюдателя, когда как ложное обнаружение, так и пропуск сигнала нежелательны в одинаковой степени, наиболее характерен для систем радиосвязи.

В радиолокационных системах обнаружения используется другой критерий, называемый критерием Неймана-Пирсона. Использование другого критерия объясняется тем, что ложное обнаружение цели может иметь весьма нежелательные последствия. Поэтому вероятность ложной тревоги должна быть весьма малой, обычно задаются её значением порядка -. Часто её значение не может быть увеличено даже учитывая то, что при этом снижается вероятность обнаружения сигнала. Итак, при использовании критерия Неймана-Пирсона вероятность ложной тревоги фиксируется изначально. Так как вероятность ложной тревоги функционально связана с относительным порогом, то последний также оказывается заданным

Практически стараются удовлетворить одновременно двум противоречивым требованиям: 1) чтобы вероятность Р(Б) пропуска сигнала не превосходила некоторой величины [Р(Б)

Левый график изображает функцию, а правый -.

Вертикальная линия, восстановленная из точки соответствующего значения относительного порога (E/s ), совместно с графиками ограничивает площади, соответствующие вероятностям Р(А) и Р(Б).Они отмечены разной штриховкой.. Приведенные графики позволяют качественно проанализировать различные ситуации. Так при увеличении отношения сигнал /шум (а/s ) график функции будет смещаться вправо(смотри рис.38). Поэтому для сохранения допустимой величины Р(Б) -вероятности пропуска сигнала, окажется возможным увеличить относительный порог E/s . При этом площадь Р(А) - вероятность ложной тревоги уменьшится! Верно и обратное.

Поэтому единственной возможностью увеличения вероятности правильного обнаружения цели остаётся повышение отношения сигнал /шум на входе порогового устройства, т. е. на выходе линейного тракта приёмного устройства. Эти вопросы были рассмотрены в предыдущих разделах. Методики расчета конкретных радиотехнических устройств и количественных оценок вероятностных характеристик приема реальных флуктуирующих сигналов в присутствии шума достаточно сложны и изложены в специальной литературе.

Страница 34 из 38

  1. Вероятность обнаружения

Вероятность обнаружения объектов простой геометрической формы на однородном фоне в присутствии случайных шумов рассматривалась в гл. 4. Выводы, сделанные на основе этого рассмотрения, таковы, что визуальная система работает, как бы вычисляя отношение сигнала к шуму и сравнивая его с пороговым значением отношения сигнала к шуму как критерием важности полученного сигнала. Имеется значительное количество данных, подтверждающих эту теорию в различных условиях наблюдения. В условиях ограничения видимости квантовыми шумами или контрастом теория подтверждается данными Блэкуэлла , а при наличии аддитивных шумов - данными Кольтмана и Андерсона , Шаде , а также Розелла и Вильсона , проведенные с реальными объектами в натурных условиях, показали, что процент обнаруживаемых объектов действительно возрастает с увеличением контраста. Бернштейн , например, установил, что изображения на экране электронно-лучевой трубки автомашин и людей должны иметь контраст CJL (LT - LB)/L в, равный 90%, чтобы обеспечить максимально возможную вероятность различения.
Кроме того, Бернштейн установил, что разрешение влияет на вероятность обнаружения только в той мере, в какой оно изменяет отношение сигнала к шуму или контраст объекта. Однако Колюччио и др. }

Рекомендуем почитать

Наверх