Типы сенсорных экранов. Сенсорные технологии

Faq 10.07.2019
Faq

Используемые материалы:

Стекло, листовой полиэстер, проводящее покрытие.

Принцип действия :

  • Сенсорные элементы, заданные шаблоном, расположены на обратной стороне сенсорной подложки.
  • Измеряется уровень сигнала на каждом элементе.
  • Касание определяется путем сравнения уровней сигналов между смежными элементами.

Преимущества:

  • Может быть ламинирована или химически обработана для дополнительной защиты от повреждений.
  • Экраны в основном ламинируют для предотвращения разбивания на осколки.
  • Касания могут осуществляться пальцем, пальцем в перчатке или проводящим стилусом.
  • Светопередача 85%-90%.
  • Определение одновременного касания в 3-х и более точках.

Недостатки:

  • Более сложная электроника и конструкция экрана по сравнению с другими технологиями и, как следствие, более высокая стоимость.
  • Не поддерживает работу с непроводящими стилусами.

Инфракрасная Infrared (Grid) (IR)

Используемые материалы:

Стеклянная или акриловая подложка, рамка по периметру стекла, светодиодная матрица

Принцип действия:

Светодиоды создают сетку инфракрасных световых лучей по осям X и Y на поверхности экрана. Фотоприемники улавливают эти лучи на противоположной стороне экрана. Касание определяется когда палец или стилус блокирует луч и не позволяет ему достичь фотоприемников. Контроллер постоянно сканирует по осям X и Y и в момент касания определяет блокировку и вычисляет координату касания методом триангуляции.

Преимущества:

  • На работу экрана не влияют царапины и износ поверхности.
  • Касания осуществляются пальцем, рукой в перчатке, или толстым стилусом.
  • Светопередача 90% - 92%

Недостатки:

  • Крупные загрязнения, пролитые жидкости или какие-то препятствия на поверхности экрана могут приводить к ложным срабатываниям и создавать мертвые зоны.
  • Касания происходят слегка над поверхностью экрана, что может привести к непреднамеренному срабатыванию.
  • Требуется рамка защищающая светодиоды и фотоприемники.

Оптическая

Используемые матреиалы:

Стеклянная подложка, оптические сенсоры линейного сканирования, световые шины.

Принцип действия:

Миниатюрные камеры расположены в 2-ух верхних углах подложки. Подсвеченные или отражающие границы 3-х противоположных сторон проецируют однородное поле инфракрасного света немного выше поверхности стекла. Касание распознается благодаря перекрыванию пальцем или другим объектом светового потока от камер. Контроллер обрабатывает оптическую информацию и вычисляет координаты Х и Y.

Преимущества:

  • На работу экрана не влияют царапины
  • Нажатие осуществляется пальцем, рукой в перчатке или стилусом.
  • Масштабируемость
  • Светопередача более 90

Недостатки:

  • Пролитая жидкость или загрязнения поверхности могут вызвать ложные срабатывания или привести к неработоспособности экрана.
  • Для данного типа технологии требуется рамка для защиты камер в углах экрана
  • Защитная рамка приводит к увеличению толщины сенсорного экрана на 3,5 мм.
  • Нажатие срабатывает чуть ранее реального касания поверхности
  • Определение 2-ух точек касания осуществляется 2-я камерами, а 3-х и более точек касания - 4 камерами.

ПАВ (технология на поверхностно-акустических волнах)

Используемые материалы:

Стекло, пьезоэлектрические преобразователи

Принцип действия:

  • Пьезоэлектрические датчики установленные по углам стекла генерируют акустические волны по поверхности стеклянной подложки по осям Х и Y.
  • Акустические волны отражаются от специальных насечек на стекле, перенаправляя энергию в пьезоэлектрические приемники.
  • Касание поверхности сенсорного экрана вызывает уменьшение части волны в прямой зависимости от координат касания.
  • Касание определяется по времени задержки от переданного импульса до места затухания поверхностной волны.

Преимущества:

  • Касания могут осуществляться пальцем, некоторыми перчатками или мягким проводящим стилусом.
  • Светопередача более 90%.

Недостатки:

  • Жидкости или крупные загрязнения (пыль, грязь) могут вызвать ложные срабатывания или мертвые зоны на экране.
  • Требуется надежная защита от грязи и воды, что усложняет процесс сборки устройств
  • Широкий бордюр не позволяет интегрировать экран во многие модели мониторов.
  • Определяется только одна точка касания - отсутствие мультитач

Поверхностно-емкостная (ClearTek)

Используемые материалы:

Стеклянная подложка, Покрытие из прозрачного метталического оксида Glass substrate, transparent metal oxide coating

Принцип действия:

  • Напряжение прилагается к углам сенсорного экрана.
  • Электроды по периметру сенсорного экрана распределяют напряжение для создания однородного электрического поля через проводящую поверхность экрана.
  • В момент касания часть тока снимается с поверхности экрана и измеряется контроллером.
  • Относительная величина тока обратно пропорциональна растоянию от точки касания до углов экрана.
  • Пропорция токов от 4-х углов позволяет рассчитать координаты X и Y точки касания.

Преимущества:

  • Устойчивость к загрязнениям (грязь, пыль, жир и т.п) и жидкостям на поверхности экрана.
  • Срабатывание даже при легком касании экрана.
  • Самой быстрый отклик на нажатие среди сенсорных технологий.
  • Светопередача 88% - 92%.

Недостатки:

  • Поддерживает только касания пальцем (без перчаток) или стилусом подключенным к котроллеру.
  • Сильные царапины могут повлять на работоспособность экрана.
  • Определяется только одно касание - отсутствие мультитач.

Дмитрий Кузовков

Сенсорные технологии активно вторгаются на российский компьютерный рынок. Дебют этих систем состоялся более четырех лет назад, но бурный рост рынка начался только этим летом, когда на станциях Московского метрополитена, в крупных гостиницах и на вокзалах появились сенсорные информационные киоски. Часть из них была установлена в рамках проекта “Городская информационная система Москвы”, другая - как проекты отдельных фирм.

Впервые сенсорная технология появилась более 25 лет назад, когда специалисты американской фирмы ELO TouchSystems разработали электродную резистивную технологию, позволяющую добиться редкого сочетания высокой надежности и гарантированной точности с потрясающей адаптивностью. Эта разработка дала толчок к развитию сенсорных технологий. На рынке стали появляться сенсорные экраны, использующие принцип поверхностных акустических волн (ELO TouchSystems), изменения распределенной емкости (MicroTouch), инфракрасных волн и 4-электродную резистивную технологию (ряд тайваньских фирм).

Рассмотрим особенности различных типов реализации сенсорного интерфейса.

Резистивная 5-электродная технология

Сенсорный экран, выполненный по этому принципу (AccuTouch), представляет собой стеклянное основание, покрытое снаружи слоем пластика. На обе поверхности изнутри нанесен специальный проводящий слой. Пространство между стеклом и пластиком заполнено особым составом, запатентованным фирмой ELO TouchSystems. Этот состав надежно изолирует проводящие поверхности. При нажатии на пластик состав расступается и проводники соприкасаются между собой. Изменение сопротивления регистрируется контроллером, и координата прикосновения передается в компьютер.

Принцип поверхностных акустических волн (ПАВ)

Экран, основанный на этом принципе (IntelliTouch), выполнен в виде стеклянной панели с пьезоэлектрическими преобразователями, расположенными в углах экрана. Специальный контроллер посылает на них высокочастотный электрический сигнал, который преобразуется в акустические волны. Волны отражаются массивом датчиков, расположенным по краям панели. Приемные датчики собирают отраженные волны и направляют их обратно на преобразователи, которые преобразуют полученные данные в электрический сигнал, анализируемый контроллером. Особенность этой технологии в том, что координата прикосновения вычисляется не только по осям X и Y, но и по оси Z.

Принцип изменения распределенной емкости

Экран выполнен в виде стеклянной панели с нанесенным на нее проводящим слоем, т. е. поверхность экрана представляет собой распределенную емкость, изменяющуюся при прикосновении. Эти изменения регистрируются и обрабатываются контроллером, который затем вычисляет координату прикосновения.

Технология использования инфракрасных волн

Экран выполнен в виде рамки с рядами инфракрасных излучателей, которые создают решетку. Появление постороннего предмета в пределах решетки регистрируется контроллером, обрабатывается и передается в компьютер.

Конструктивно сенсорные экраны выполняются в виде стеклянного основания, повторяющего кривизну поверхности электронно-лучевой трубки или жидкокристаллической матрицы монитора. На рынке присутствуют сферические, FST, цилиндрические и плоские экраны, что позволяет выбрать оптимальный вариант для любого монитора.

Исключение составляют экраны, использующие инфракрасные волны, и “вандалостойкие” экраны SecureTouch фирмы ELO. Первые, как уже говорилось, выполнены в виде рамки, которая надевается на монитор. Вторые устанавливаются перед монитором. Обусловлено это тем, что SecureTouch представляет собой сенсорный экран повышенной прочности. Разработанный на базе технологии ПАВ, SecureTouch способен противостоять грубому воздействию. Он будет продолжать работать, несмотря на царапины, которые испортили бы любой другой сенсорный экран, и способен выдерживать удары тяжелых предметов. Основой SecureTouch является отожженное или отпущенное стекло, толщиной 0,25 или 0,5 дюйма.

Сенсорные экраны этого класса проходят испытания согласно требованиям спецификации UL (UL-1950). На поверхность экрана с высоты 51,5 дюйма (примерно 131 см) несколько раз бросают стальной шар весом один килограмм. SecureTouch выдерживает испытание без повреждений и царапин на поверхности.

В начале этого года появилась еще одна разновидность сенсорного экрана. Это экраны Scribex фирмы ELO. Scribex дает возможность рукописного ввода информации в компьютерную систему. Таким образом решаются насущные проблемы банковских и торговых приложений. Новое решение помогает пользователям избежать трудностей, возникающих при авторизации доступа и заполнении различных документов с клавиатуры. Экраны выполнены по 5-электродной резистивной технологии. Высокое разрешение и большая скорость сканирования позволяют ввести подпись с качеством, достаточным для идентификации ее большинством программ.

Программно-сенсорные экраны полностью эмулируют стандартную мышь. Драйвер позволяет установить режимы реакции на нажатие, отжатие, двойное прикосновение. В настоящее время доступны драйверы под DOS, Windows 3.x, Windows 95, Windows NT и ряд UNIX-систем, OS/2, Apple Macintosh.

Выпускается много разновидностей контроллеров сенсорных экранов, отличающихся друг от друга способом связи с компьютером. Контроллеры PC-Bus вставляются в слот расширения системной платы, последовательные - подключаются к последовательному порту. Последние могут быть как внешними, так и внутренними, встраиваемыми непосредственно в монитор. Для работы в портативных ПК выпускается серия PCMCIA-контроллеров.

Технология сенсорного ввода имеет ряд свойств, делающих ее незаменимой во многих приложениях. Первое из них - реализация генетически заложенной установки “прикосновения к интересующему объекту”. Для человека естественно прикасаться к предмету для получения дополнительной информации о нем. Это происходит интуитивно и не приводит к внутреннему конфликту, который подчас вызывают традиционные средства ввода. Это свойство идеально решает проблему дружественного интерфейса в справочно-информационных системах, рассчитанных на массовый доступ.

Характеристики сенсорных технологий

Второе свойство - максимальная защита от ошибок оператора. Многие, наверное, помнят заклеенную клавиатуру на кассовых машинах в магазинах. Нерациональное размещение клавиш и высокие нагрузки приводят к ошибкам ввода. Поэтому кассиры нашли простой выход и закрывали редко используемые клавиши спичечными коробками. При использовании сенсорного ввода клавиатура на экране монитора формируется программно. Это позволяет не перегружать оператора и выводить только те клавиши, которые используются в данный момент. Кроме того, можно подобрать оптимальные размер и цвет клавиш.

Первые сенсорные экраны создавались с использованием прозрачной резистивной пленки. Эта технология широко распространена и сейчас. Существуют 4, 5 и 8-проводные резистивные сенсорные экраны. Основу конструкции 4-проводного экрана составляют две прозрачные пленки из полиэстера (polyester), майлара (mylar), пластизола (plastisol, PL) или полиэтилентерефталата (polyethylene terephtalate, PET), находящиеся друг напротив друга и разделенные микроскопическими шариками-изоляторами. Внутренние, обращенные друг к другу поверхности пленок покрыты прозрачным токопроводящим (резистивным) составом на основе двуокиси индия и олова (indium tin oxide - ITO). Для определенности назовем один из резистивных слоев задним, а другой, расположенный ближе к наблюдателю, передним (рис.3).

Контакт с этими слоями обеспечивается посредством двух пар металлизированных полосок-электродов. Первая пара расположена вертикально, по краям заднего слоя, а вторая пара - горизонтально, по краям переднего слоя. Все четыре электрода подключены к микроконтроллеру, который последовательно определяет координаты точки касания по горизонтали и вертикали. Работу контроллера в первом случае можно приблизительно описать следующим образом. На вертикальные электроды заднего резистивного слоя подается постоянное напряжение, например, 5 В, и от одного электрода к другому протекает некоторый ток I. При этом на каждом горизонтальном участке заднего резистивного слоя ток создает падение напряжения, пропорциональное длине участка.

При касании экрана передний резистивный слой деформируется и касается заднего слоя. В этом случае передний слой выполняет роль щупа, определяющего напряжение на заднем слое в точке касания. Горизонтальные электроды переднего слоя замыкаются микроконтроллером накоротко (для уменьшения влияния сопротивления переднего резистивного слоя) и суммарный сигнал 5 поступает через буферный каскад, (имеющий большое входное сопротивление), на аналого-цифровой преобразователь (АЦП). Напряжение на входе АЦП определяет положение точки касания по горизонтали. Для определения координаты по вертикали передний и задний резистивные слои «меняются местами»: на горизонтальные электроды переднего слоя микроконтроллер подает постоянное напряжение, а электроды заднего слоя замыкает, (этот слой используется как щуп). Определение координат точки касания производится микроконтроллером с высокой скоростью - более ста раз в секунду. Слабым звеном 4-проводного экрана является передняя пленка из полиэстера. Многократные деформации приводят к разрушению проводящего слоя, в результате чего уменьшается точность определения координат. Производители гарантируют стабильную работу устройства при количестве нажатий в одной точке до миллиона.

8-проводные экраны отличаются от 4-проводных незначительно - для повышения точности определения координат введены дополнительные 4 проводника, которые соединены с теми же самыми двумя парами металлизированных электродов, расположенных по краям проводящих покрытий. Однако надежности экрана в целом это не увеличивает.

А вот 5-проводный резистивный экран обладает улучшенными характеристиками. Переднее резистивное покрытие, подвергающееся деформации при касании, заменено проводящим и используется исключительно в качестве щупа. А заднее резистивное покрытие наносится не на пленку полиэстера, а на стекло. Поэтому к названию 5-проводных экранов часто добавляют аббревиатуру FG (Film on Glass). Четыре электрода, которые создают вертикальный и горизонтальный градиент напряжений, находятся на заднем резистивном слое. Пятый электрод является выводом переднего проводящего слоя-щупа. Повреждение этого слоя при деформации практически не влияет на точность определения координат, поэтому такие экраны более надежные. Считается, что они выдерживают до 35 миллионов нажатий в одной точке. Кроме того, 5-проводные экраны, в отличие от 4 и 8-проводных, допускают установку на сферические или цилиндрические экраны отображающих устройств на основе ЭЛТ.

Резистивная технология позволяет определять координаты точки касания с высокой точностью. Теоретически, применение 12-разрядных АЦП позволяет различать 4096х4096 точек по горизонтали и вертикали. На практике разрешающая способность вдвое ниже, однако этого вполне достаточно при использовании резистивного экрана, например для рисования или ведения записей в электронном блокноте.

К достоинствам резистивных экранов следует отнести: возможность активации (касания) любым предметом (пальцем, банковской карточкой или тупым концом стилуса), стойкость от пыли, влаги, конденсата, паров, загрязнения поверхности, что позволяет им надежно работать, когда другие типы экранов выходят из строя; низкую стоимость и простоту установки.

Основные недостатки - низкая прозрачность (примерно 75% для 4 и

8-проводных экранов и до 85% - для 5-проводных), недостаточная механическая прочность (экран можно повредить острым предметом),

необходимость периодической калибровки экрана, плохая работа при низких температурах, (что связано с уменьшением эластичности передней деформируемой пленки). Кроме того, резистивный экран способен распознавать только одну точку касания, то есть если при вводе текста ладонь руки давит на экран, то координаты вычисляются неверно. И лишь совсем недавно резистивные панели от фирмы Elo Touch “научились” распознавать

несколько одновременных нажатий, правда на програмном уровне. Резистивные экраны распространены очень широко. Они применяются там, где не требуется высокое качество цветопередачи и исключена возможность актов вандализма, например, в POS (point of sail)-системах (кассовые терминалы), карманных компьютерах, GPS-навигаторах, сотовых телефонах, промышленном и медицинском оборудовании, сложных измерительных приборах и других подобных устройствах.

Резистивная технология

Плюс: точность и высокая чувствительность. Минус: невысокая яркость и недопустимость прикосновения острыми предметами.

Мкостная технология

Плюс: большое разрешение, малое время отклика, хорошее качество изображения и большой ресурс. Минус: реагирует только на контакт с пальцем.

Технология ПАВ (поверхностные акустические волны)

Плюс: высокая чувствительность, большая яркость и малая цена. Минус: чувствительность к воздействию внешних факторов, то есть колебания температуры и давления влияют на их работу.

Инфракрасные мониторы

Такая техника является самой надёжной и долговечной. Количество прикосновений, перепады температуры, погодные условия – не влияют на работу экрана. Минус: реагируют на любые прикосновения и на попадание солнечных лучей. Но этот недостаток не имеет особой значимости, стоит лишь установить защитную программу, требующую подтверждения выполнения операции.
Как видим, сенсорные мониторы, хоть и не лишены недостатков - достаточно хороши для определённых целей.

Перспективные конструкции и технологии мониторов

Технология E-Ink

В наше время большинство пользователей ПК все еще предпочитают читать текст на бумаге. Кроме привычки воспринимать информацию с листа бумаги, есть еще и объективные факторы, такие как количество отраженного от дисплея света (характеризуется коэффициентом отражения) и контрастность (отношение интенсивностей отражаемых световых потоков от белых и черных участков изображения).
Даже в последних моделях мониторов коэффициент отражения и контрастность примерно в два раза ниже, чем, скажем, у страницы книги. Вдобавок печатные издания имеют более широкий угол обзора и им можно придать ту форму, которая удобнее для чтения. В общем, читать текст на бумаге, конечно, удобнее (видимо, именно поэтому даже с приходом Интернета бумажные издания продолжают существовать).
Поэтому при производстве мониторов ПК, возможно, получит распространение технология E-Ink (Electronic Ink - "Электронные чернила "), разрабатываемая компаниями Philips, E Ink и лабораторией Bell Labs.
Bell Labs представила общественному вниманию гибкий пластиковый лист, способный отображать простейшие символы графики. Толщина новинки - не более миллиметра, что позволяет сравнивать его с листом бумаги, благо он имеет довольно высокую эластичность и достаточно прочен. Сейчас размеры точки на таком листе не очень маленькие, но в будущем планируется уменьшить его размер до нескольких микрон (как в современных мониторах или даже меньше).
Использование таких технологий позволит производить не просто плоские экраны , но имеющие возможность сворачиваться и/или принимать произвольную форму. Основная проблема в этих технологиях - чем заменить стеклянную подложку? Если применить пластик, то гибкость обеспечена, однако он, в отличие от стекла, пропускает кислород и воду, присутствие которых несовместимо с электролюминесцентными свойствами органических диодов. Так что пока гибкие OLED-дисплеи "живут" не больше двух-трех недель, но исследовательские лаборатории рапортуют, что через несколько лет можно будет начать их массовое производство.
Основной элемент дисплеев, создаваемых E - Ink, - матрица микрокапсул, каждая из которых содержит положительно заряженные частицы белого цвета и отрицательно заряженные - черного. При подведении к капсуле отрицательного заряда белые (положительно заряженные) частицы под действием кулоновских сил отталкиваются и поднимаются в верхнюю часть капсулы, где их видит наблюдатель. А при подведении положительного заряда верх капсулы окрашивается в черный цвет. Такой способ получения изображения обеспечивает высокую контрастность цвета и широкий угол обзора . Кроме того, сейчас разрабатываются технологии, позволяющие использовать в качестве подложки для слоя из таких микрокапсул совершенно произвольные по составу и форме поверхности. Ведутся работы и по созданию цветных дисплеев на основе "электронных чернил", в которых принцип получения цвета будет сходен с используемой в ЖК-мониторах системой красных, желтых и зеленых светофильтров

Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.

Использование

Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.

Ноутбук с сенсорным экраном

Нельзя не отметить и ноутбуки, некоторые модели которых оснащаются поворотным сенсорным дисплеем, что придает мобильному компьютеру не только более широкую функциональность, но и большую гибкость в управлении им на улице и на весу.

К сожалению, пока подобных моделей ноутбуков, называемых в народе «трансформеры», не так много, но они есть.

В целом, технологию сенсорного экрана можно охарактеризовать как наиболее удобную в случае, когда необходим мгновенный доступ к управлению устройством без предварительной подготовки и с потрясающей интерактивностью: элементы управления могут сменять друг друга в зависимости от активируемой функции. Тот, кто хоть раз работал с сенсорным устройством, сказанное выше прекрасно понимает.

Типы сенсорных экранов

Всего на сегодня известно несколько типов сенсорных панелей. Естественно, что каждая из них обладает своими достоинствами и недостатками. Выделим основные четыре конструкции:

  • Резистивные
  • Ёмкостные
  • Проекционно-ёмкостные

Кроме указанных экранов, применяются матричные экраны и инфракрасные, но ввиду их низкой точности их область применения крайне ограничена.

Резистивные

Резистивные сенсорные панели относятся к самым простым устройствам. По своей сути, такая панель состоит из проводящей подложки и пластиковой мембраны, обладающих определенным сопротивлением. При нажатии на мембрану происходит её замыкание с подложкой, а управляющая электроника определяет возникающее при этом сопротивление между краями подложки и мембраны, вычисляя координаты точки нажатия.

Преимущество резистивного экрана в его дешевизне и простоте устройства. Они обладают отличной стойкостью к загрязнениям. Основным достоинством резистивной технологии является чувствительность к любым прикосновениям: можно работать рукой (в том числе в перчатках), стилусом (пером) и любым другим твердым тупым предметом (например, верхним концом шариковой ручки или углом пластиковой карты). Однако имеются и достаточно серьезные недостатки: резистивные экраны чувствительны к механическим повреждениям, такой экран легко поцарапать, поэтому зачастую дополнительно приобретается специальная защитная пленка, защищающая экран. Кроме того, резистивные панели не очень хорошо работают при низких температурах, а также обладают невысокой прозрачностью – пропускают не более 85% светового потока дисплея.

Использование пера с сенсорным экраном

Применение

  • Коммуникаторы
  • Сотовые телефоны
  • POS-терминалы
  • Tablet PC
  • Промышленность (устройства управления)
  • Медицинское оборудование

Коммуникатор

Ёмкостные

Технология ёмкостного сенсорного экрана основана на принципе того, что предмет большой ёмкости (в данном случае человек) способен проводить электрический ток. Суть работы ёмкостной технологии заключается в нанесении на стекло электропроводного слоя, при этом на каждый из четырех углов экрана подается слабый переменный ток. Если прикоснуться к экрану заземленным предметом большой емкости (пальцем), произойдет утечка тока. Чем ближе точка касания (а значит, и утечки) к электродам в углах экрана, тем больше сила тока утечки, которая и регистрируется управляющей электроникой, вычисляющей координаты точки касания.

Ёмкостные экраны очень надежны и долговечны, их ресурс составляет сотни миллионов нажатий, они отлично противостоят загрязнениям, но только тем, которые не проводят электрический ток. По сравнению с резистивными они более прозрачны. Однако недостатками является все же возможность повреждения электропроводного покрытия и нечувствительность к прикосновениям непроводящими предметами, даже руками в перчатках.

Информационный киоск

Применение

  • В охраняемых помещениях
  • Информационные киоски
  • Некоторые банкоматы

Проекционно-ёмкостные

Проекционно-ёмкостные экраны основаны на измерении ёмкости конденсатора, образующегося между телом человека и прозрачным электродом на поверхности стекла, которое и является в данном случае диэлектриком. Вследствие того, что электроды нанесены на внутренней поверхности экрана, такой экран крайне устойчив к механическим повреждениям, а с учетом возможности применения толстого стекла, проекционно-ёмкостные экраны можно применять в общественных местах и на улице без особых ограничений. К тому же этот тип экрана распознает нажатие пальцем в перчатке.

Платежный терминал

Данные экраны достаточно чувствительны и отличают нажатия пальцем и проводящим пером, а некоторые модели могут распознавать несколько нажатий (мультитач). Особенностями проекционно-ёмкостного экрана являются высокая прозрачность, долговечность, невосприимчивость к большинству загрязнений. Минусом такого экрана является не очень высокая точность, а также сложность электроники, обрабатывающей координаты нажатия.

Применение

  • Электронные киоски на улицах
  • Платежные терминалы
  • Банкоматы
  • Тачпэды ноутбуков
  • iPhone

С определением поверхностно-акустических волн

Суть работы сенсорной панели с определением поверхностно-акустических волн заключается в наличии ультразвуковых колебаний в толще экрана. При прикосновении к вибрирующему стеклу, волны поглощаются, при этом точка прикосновения регистрируется датчиками экрана. Плюсами технологии можно назвать высокую надежность и распознавание нажатия (в отличие от ёмкостных экранов). Минусы заключаются в слабой защищенности от факторов окружающей среды, поэтому экраны с поверхностно-акустическими волнами нельзя применять на улице, а кроме того, такие экраны боятся любых загрязнений, блокирующих их работу. Применяются редко.

Другие, редкие типы сенсорных экранов

  • Оптические экраны. Инфракрасным светом подсвечивают стекло, в результате прикосновения к такому стеклу происходит рассеивание света, которое обнаруживается датчиком.
  • Индукционные экраны. Внутри экрана расположена катушка и сетка чувствительных проводов, реагирующих на прикосновение активным пером, питающимся от электромагнитного резонанса. Логично, что такие экраны реагируют на нажатия только специальным пером. Применяются в дорогих графических планшетах.
  • Тензометрические – реагируют на деформацию экрана. Такие экраны имеют малую точность, зато очень прочны.
  • Сетка инфракрасных лучей – одна из самых первых технологий, позволяющих распознавать прикосновения к экрану. Сетка состоит из множества светоизлучателей и приемников, расположенных по сторонам экрана. Реагирует на блокировку соответствующих лучей предметами, на основании чего и определяет координаты нажатия.
  • Сдвинуть два пальца вместе – уменьшение изображения (текста)
  • Раздвинуть два пальца в стороны – увеличение (Zoom)
  • Движение несколькими пальцами одновременно – прокрутка текста, страницы в браузере
  • Вращение двумя пальцами на экране – поворот изображения (экрана)

О пользе и недостатках сенсорных экранов

В карманных устройствах сенсорные экраны появились давно. Причин этому несколько:

  • Возможность делать минимальное количество органов управления
  • Простота графического интерфейса
  • Легкость управления
  • Оперативность доступа к функциям устройства
  • Расширение мультимедийных возможностей

Однако и недостатков хоть отбавляй:

  • Отсутствие тактильной обратной связи
  • Частая необходимость в использовании пера (стилуса)
  • Возможность повреждения экрана
  • Появление отпечатков пальцев и других загрязнений на экране
  • Более высокое потребление энергии

В результате, полностью избавиться от клавиатуры не всегда получается, ведь гораздо удобнее набирать текст с помощью привычных клавиш. Зато сенсорный экран интерактивнее, благодаря более оперативному доступу к элементам меню и настройкам современных гаджетов.

Надеемся, что этот материал поможет вам при выборе устройства с сенсорным экраном.

Обсудить на форуме



Рекомендуем почитать

Наверх