Тест по истории развития вычислительной техники. Сергей алексеевич лебедев основоположник отечественной вычислительной техники

На iOS - iPhone, iPod touch 12.07.2019
На iOS - iPhone, iPod touch

«Архитектура ЭВМ» - в изначальном своем смысле используется в градостроении. Машины одного семейства. Использованы при программировании. Потребности специалистов. Hardware. Компьютер. Архитектура и организация. Роль программной и аппаратной частей. Архитектура. Принцип совместимости снизу вверх. Термин “архитектура ЭВМ”.

«Основные устройства компьютера» - Чаще всего представляет собой рукоятку с кнопками управления. Различаются количеством и расположением клавиш, формой (обычные, эргономические, складные), типом контактной группы и т. п.. Основные устройства персонального компьютера. Клавиатура Устройство для ввода информации и управления работой программ.

«Процессор и системный блок» - Многопроцессорная архитектура. Тактовая частота Разрядность процессора Производительность процессора. Структура такой машины, имеющей общую оперативную память и несколько процессоров. Системная плата. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Системная или материнская плата.

«Аппаратное обеспечение компьютера» - Также возможен обмен данными между компьютерами. Подключение производится через порты – специальные разъемы на задней панели. Мышь (механическая, оптическая). На DVD-диск может быть записано от 4.7 до 13 и даже до 17 Gb. Как устроен компьютер. ПЗУ предназначено для хранения постоянной программной и справочной информации.

«Звуковая карта» - Параметры. Звуковая информация на ПК. Цифровой (WAV) – точная цифровая копия музыки или др. звука. Звуковая карта -. Звуковая карта (характеристики): Основные форматы компьютерного звука: Актуально для Интернет-телефона. Методы воспроизведения MIDI – звука: Поддержка аппаратного декодирования MP3. Элементы звуковой карты:

«Строение компьютера» - Устройства персонального компьютера. Предназначены для создания иллюзии трёхмерного пространства. Устройства «виртуальной реальности». Модем. Устройства персонального компьютера: Устройство управления. Системный блок. Строение компьютера. Очки «объёмного изображения». Игровые манипуляторы. (джойстики).

Всего в теме 22 презентации

К 100-летию со дня рождения основоположника отечественной вычислительной техники

Вступление

Осипов Ю. С. С. А. Лебедев - основоположник отечественной электронной

вычислительной техники 5

Потоп Б. Е. Рожденный для науки 7

Раздел 1. К биографии С. А. Лебедева

Бурцев В. С., Малиновский Б. Н., Лебедева Н. С. Сергей Алексеевич Лебедев.

Ученый, труженик, человек 9

Автобиография 49

Свидетельство Компьютерного Общества 1ЕЕЕ о награждении Сергея Алек­
сеевича Лебедева медалью «Сотри1ег Рюпеег» от 1 октября 1997 г. Моск­
ва, Россия 51

Основные даты жизни и деятельности С. А. Лебедева 54

Раздел 2. Научные труды и статьи С. А. Лебедева

Искусственная устойчивость синхронных машин 57

Малая электронная счетная машина 73

Электронная цифровая вычислительная машина БЭСМ 146

Электронные вычислительные машины 203

Быстродействующие универсальные вычислительные машины 206

Мощное средство научного исследования 215

Электронная счетная машина 218

Назревшие задачи организации научной работы 220

Месяц в Японии 224

Хронологический указатель основных трудов академика С. А. Лебедева. . . 225

Раздел 3. Научная школа С. А. Лебедева

Мельников В. А. Роль С. А. Лебедева в развитии отечественной вычисли­
тельной техники 231

Бурцев В. С. Научная школа академика С. А. Лебедева в развитии вычисли­
тельной техники 238

Рябов Г. Г. Первые шаги автоматизации проектирования ЭВМ 252

Королев Л.Н., Томилин А.Н. С. А. Лебедев и развитие математического и

программного обеспечения вычислительных машин СССР 256

Раздел 4. Вычислительные машины, созданные С. А. Лебедевым и учеными его школы

Вступление 262

БЭСМ АН СССР (БЭСМ-1), БЭСМ-2 266

«ДИАНА-1», «ДИАНА-2» 268

ЭВМ М-20, БЭСМ-4 268

ЭВМ М-40, М-50, 5Э92 269

СВМ 5Э89, набор электронных модулей «Азов» 270

ЭВМ 5Э926, 5Э51 271

ЭВМ 5Э65, 5Э67 274

ЭВМ 5Э26, 40У6 274

МВК Эльбрус-1, Эльбрус-2 277

СВС, ВК «Эльбрус 1-КБ» (1-КБ) 281

Модульный конвейерный процессор (МКП) 282

Вычислительная система (ВС) Эльбрус 3-1 283

«Электроника СС БИС» 284

Раздел 5. Публикация документов

Подборка поздравительных телеграмм и писем в адрес С. А. Лебедева.... 287

Письма С. А. Лебедеву из Китая 295

Раздел 6. Наш Сергей Алексеевич (воспоминания близких, коллег, учеников)

Лаврентьев М.А. Из воспоминаний «Опыты жизни. 50 лет в науке» 306

Марчук Г. И. Наш патриарх 309

Белоцерковский О. М. Лебедев и Физтех 310

Валиев К. А. Главный конструктор ЭВМ С. А. Лебедев 311

Бурцев В. С. Учитель, воспитатель, друг 313

Маврина Т. А. Воспоминания о брате 320

Лебедев С. С. Вспоминая об отце 323

Корзун И. В. Мои друзья Лебедевы 334

Рабинович З.Л. О Сергее Алексеевиче Лебедеве (о киевском периоде его

деятельности и личные воспоминания о нем) 345

Лисовский И. М. Сергей Алексеевич Лебедев. Создатель первой в континен-
тальной Европе и в Советском Союзе цифровой электронной вычислитель-
ной машины (МЭСМ) 358

Элькснин В. С. Воспоминания о Сергее Алексеевиче Лебедеве 370

Головистиков П. П. Из статьи «Первые годы ИТМ и ВТ» 372

Рыжов В. И. Сергей Алексеевич 375

Бардиж В. В. Кафедра ЭВМ 377

Лаут В. Н. Как я попал в ИТМ? 379

Из письма А. С. Федорова дочерям и сыну С.А. Лебедева 380

Хетагуров Я. А. Мои воспоминания о С. А. Лебедеве 381

Артамонов Г. Т. Отец по жизни 383

Смирнов В. И. Запоздалые воспоминания о Сергее Алексеевиче Лебедеве. . 384

Томилин А.Н. Справедливость, доверие, требовательность, доброта 388

Хайлов И. К. Из Физтеха в ИТМ и ВТ 389

Митрополъский Ю.И. Воспоминания о С. А. Лебедеве 390

Юдин Д. Б. Встреча с С. А. Лебедевым 392

Раздел 7. Друзья шутят

Осечинская Е. И., Осечинский И. В. Семейные байки 393

Из капустника-50 1998 г. 416

Сказка о радиолампах 422

Гердт 3. Грамота 425

Приложения

Литература о жизни и деятельности С. А. Лебедева 426

Список сокращений 431

Именной указатель 433

ВСТУПЛЕНИЕ

С. А. Лебедев - основоположник отечественной электронной вычислительной техники

Президент РАН академик Ю. С. Осипов

2 ноября 2002 г. исполняется 100 лет со дня рождения выдающегося ученого, талантливого педагога, замечательного человека Сергея Алексеевича Лебедева. Еще студентом он начал разрабатывать новую в то время проблему устойчивости и ре-гулирования больших энергосистем. Возглавив лабораторию, а затем и отдел во Всесоюзном электротехническом институте, С. А. Лебедев вскоре стал одним из круп-нейших в стране специалистов по вопросам автоматизации электрических систем. Он успешно разрабатывал методы расчета искусственной устойчивости высоковольтных линий электропередач, создавал модели сетей переменного тока для определения оптимального режима работы сооружавшихся тогда в СССР мощных энергосистем. В ВЭИ незадолго до начала Великой Отечественной войны Сергей Алексеевич при-ступил к разработке принципов построения электронной вычислительной машины, в основе которой лежала двоичная система счисления.

Однако нападение фашистской Германии на СССР заставило ученого прервать эти исследования и сосредоточить все силы на разработке принципиально новых видов вооружения. В кратчайшие сроки он создал электронное устройство стаби-лизации танкового орудия при прицеливании, которое успешно прошло испытания и было принято на вооружение.

В 1945 г. Сергей Алексеевич был избран действительным членом АН УССР. Здесь он вскоре смог сконцентрировать свою творческую энергию на создании первой в СССР и в континентальной Европе электронной вычислительной машины. В 1947 г. в руководимом им Институте электротехники АН УССР была создана лаборатория, перед которой стояла задача: в кратчайший срок разработать и сдать в эксплуатацию электронно-вычислительную машину. В конце 1950 г. Малая электронная вычис-лительная машина начала работать, через год она была принята Государственной комиссией во главе с М.В. Келдышем.

Одновременно С.А. Лебедев продумывал принципы действия и схемы основных узлов большой (быстродействующей) электронной счетной машины (БЭСМ). Она была создана под его руководством уже в Москве, в Институте точной механики и вычислительной техники АН СССР в 1950-1953 гг. БЭСМ положила начало целой серии ЭВМ, разработанных под руководством и непосредственном участии С. А. Лебедева (БЭСМ-2, М-20, М-40, М-50, БЭСМ-4, БЭСМ-6, 5Э92б, 5Э26, Эльбрус и многие другие).

Эти разработки определили столбовую дорогу мирового компьютеростроения на несколько десятилетий вперед. Следует подчеркнуть, что на момент своего создания и БЭСМ, и М-20, и БЭСМ-6 были самыми производительными ЭВМ в Европе и практически находились на уровне американских машин. В 1953 г. С. А. Лебедев возглавил ИТМ и ВТ и стал действительным членом АН СССР.

Сергей Алексеевич и его научная школа внесли огромный вклад в укрепление обороноспособности страны. Он непосредственно участвовал в создании ЭВМ для

6 Осипов Ю. С. С. А. Лебедев - основоположник отечественной электронной ВТ

радиолокационных и ракетных комплексов, первой в СССР системы противоракет-ной обороны (ПРО), противосамолетных комплексов «С-300» и др.

С. А. Лебедев воспитал научную школу разработчиков наиболее сложного класса средств вычислительной техники - быстродействующих суперЭВМ. За двадцать лет под его руководством было создано пятнадцать суперЭВМ, и каждая - новое слово в вычислительной технике, более производительная, более надежная и удобная в эксплуатации. Без этих суперЭВМ было бы немыслимым создание отечественного атомного оружия и атомной энергетики, ракетостроение, запуски искусственных спутников Земли, отправка космических кораблей с человеком на борту и многие другие результаты научно-технического прогресса.

Имя С. А. Лебедева носит ИТМ и ВТ РАН, бессменным директором которого он был почти четверть века. И в Российской академии наук, и в Национальной академии наук Украины учреждены научные премии имени С.А. Лебедева. Международное компьютерное общество присудило ему посмертно медаль «пионера вычислительной техники». Данный сборник - дань памяти этому великому ученому, свидетельство нашего безмерного к нему уважения и восхищения перед ним как цельным, скром-ным, прекрасным человеком.

Создание в тяжелые послевоенные годы первой оригинальной отечественной ЭВМ и многих последующих все более и более производительных вычислительных машин было научным подвигом С. А. Лебедева и его соратников. Имя Сергея Алек-сеевича Лебедева - основоположника отечественной электронной вычислительной техники - по праву стоит в одном ряду с именами И. В. Курчатова и С. П. Королева.

Рожденный для науки

Президент НАН Украины академик Б. Е. Патон

Столетие со дня рождения академика украинской и российской академий, осно-воположника отечественной электронной цифровой вычислительной техники Сергея Алексеевича Лебедева (1902-1974 гг.) проводится в год Украины в России. Слу-чайное совпадение двух казалось бы разных событий глубоко символично. Первые творческие успехи С. А. Лебедева в области электронной цифровой вычислительной техники связаны с его пятилетним пребыванием в Киеве. Именно здесь 44-летний ученый, широко известный выдающимися научными трудами и сложнейшими про-ектами в области энергетики, принял давно зревшее решение создать цифровую ЭВМ и блестяще осуществил свой замысел. Под его руководством в Институте электротехники АН Украины всего за два года силами небольшого коллектива была спроектирована, построена и в 1951 г. принята в регулярную эксплуатацию первая в бывшем Советском Союзе и в континентальной Европе малая электронная счетно-решающая машина МЭСМ с динамически изменяемой программой и параллельно-последовательным арифметическим устройством. Принципы построения МЭСМ бы-ли разработаны С. А. Лебедевым независимо от работ, осуществлявшихся в то время на западе и практически одновременно с учеными США и Западной Европы.

В 1952 и 1953 гг. МЭСМ была единственной ЭВМ в бывшем СССР, на которой решались важнейшие задачи того времени: фрагменты вычислений из области термо-ядерных процессов, космической и ракетной техники, дальних линий электропередач и др. Именно тогда было положено начало советской школы программирования.

Описание МЭСМ стало первым учебником по вычислительной технике. Лабо-ратория С.А. Лебедева выполнила роль организационного зародыша вычислитель-ного центра АН Украины, на базе которого впоследствии был создан получивший широкую известность один из крупнейших в мире Институт кибернетики имени В. М. Глушкова НАН Украины.

МЭСМ явилась прототипом следующего детища Лебедева - Быстродействующей электронной счетной машины (БЭСМ), проектировать которую С. А. Лебедев начал еще в Киеве, но закончил после переезда в Москву (в 1955 г. на международной конференции в Дармштадте БЭСМ была признана лучшей в Европе ЭВМ). Рождение МЭСМ в трудное послевоенное время - это подлинный научный и инженерный триумф С. А. Лебедева и руководимого им талантливого коллектива.

За последующие 20 лет работы в Москве в Институте точной механики и вы-числительной техники АН СССР (ныне РАН), где С.А. Лебедев был директором все эти годы и который носит сейчас его имя, под его руководством были созда-ны пятнадцать уникальных суперЭВМ для гражданских и военных применений. Заложенный С.А. Лебедевым еще в МЭСМ принцип распараллеливания процесса обработки информации был при этом существенно развит и остается до сих пор одним из основных при построении суперЭВМ. «Уметь дать направление - признак гениальности», - сказал о таких людях немецкий философ Ф. Ницше.

Раскрывшийся во второй половине жизни творческий потенциал С. А. Лебедева, сумевшего от ламповых ЭВМ прийти к ЭВМ на интегральных схемах, позволяет утверждать, что среди своих современников он является одним из крупнейших ученых-первопроходцев информационных технологий.

Замечательной чертой Сергея Алексеевича была его забота о молодежи, доверие к ней, поручение молодым решения самых сложных задач. Этому способствовал незаурядный педагогический талант ученого. Многие ученики Сергея Алексеевича стали крупными учеными и развивают свои научные школы.

Патон Б. Е. Рожденный для науки

Мы всегда будем гордиться тем, что именно в Академии наук Украины, в нашем родном Киеве, расцвел талант С.А. Лебедева как выдающегося ученого в области вычислительной техники и математики, а также крупнейших автоматизированных систем.

Сергею Алексеевичу ничто человеческое не было чуждо, он любил жизнь во всех ее проявлениях. Прекрасная семья русских интеллигентов Лебедевых собирала вокруг себя представителей передовой культуры того времени. Увлекался Сергей Алексеевич и спортом, особенно альпинизмом. И может быть, взбираясь на горные вершины, он готовил себя к познанию тех научных вершин вычислительной техники, которые он одним из первых в мире увидел и покорил.

Поистине велик был этот замечательный и вместе с тем очень скромный человек. Лучший памятник ему - талантливая научная школа, созданная им и продолжающая славные дела и традиции своего незабвенного Учителя.

Вся жизнь выдающегося ученого - это героический пример служения науке, своему народу. С. А. Лебедев всегда стремился объединить высочайшую науку с прак-тикой, с инженерными задачами.

Он жил и трудился в период бурного развития электроники, вычислительной техники, ракетостроения, освоения космоса и атомной энергии. Будучи патриотом своей страны, Сергей Алексеевич принял участие в крупнейших проектах И.В. Кур-чатова, С.П. Королева, М.В. Келдыша, обеспечивших создание щита Родины. Во всех их работах роль электронных вычислительных машин, созданных Сергеем Алексеевичем, без преувеличения, огромна.

Его выдающиеся труды навсегда войдут в сокровищницу мировой науки и техни-ки, а его имя должно стоять рядом с именами этих великих ученых.

Раздел 1 К БИОГРАФИИ С. А. ЛЕБЕДЕВА

Сергей Алексеевич Лебедев. Ученый, труженик, человек

В. С. Бурцев, Б.И. Малиновский, Н.С. Лебедева

Сергей Алексеевич Лебедев родился в Нижнем Новгороде 2 ноября 1902 г. Его дед Иван Андреевич, николаевский солдат, отслужил 25 лет штаб-трубачом в гусарском полку. От него требовалось особое мужество - трубач впереди войска, на виду у противника. Выйдя в отставку, поселился в Костроме, стал земским сторожем, женился на дочери псаломщика. 1 марта 1866 г. у них родился сын Алексей, спустя два года появился на свет Михаил. Свирепствовавшая в 1870 г. в Поволжье холера оборвала жизнь Ивана Андреевича Лебедева.

Нелегко пришлось его вдове и малолетним сыновьям. Мать стала работать на ткацкой фабрике. Четырехлетнего Алексея взяла к себе в деревню его тетка. В 9 лет он вернулся к матери в Кострому, два года ходил в приходскую школу, после чего пять лет работал конторщиком на той же фабрике, что и его мать. В городской библиотеке, которую он регулярно посещал, сблизился со сверстниками - семинари-стами и гимназистами, увлекавшимися идеями народничества. Именно тогда Алексей твердо решил стать сельским учителем. С пятью рублями в кармане, скопленными за долгие месяцы работы, отправился в поселок Новинское Ярославской губернии поступать в учительскую семинарию, открытую К.Д. Ушинским для детей-сирот. Закончив ее, а затем и учительский институт с отличием, стал учителем. Мечтал об изменении жизни народа путем образования и просвещения. В селе Родники, где он преподавал, организовал кружок для своих коллег и крестьян, наладил доставку литературы в близлежащие деревни.

Его активную деятельность заметил видный народник М. В. Сабунаев, бежавший из сибирской ссылки и стремившийся объединить разрозненные кружки Нижнего Новгорода, Ярославля, Костромы и других волжских городов. Однако в декаб-ре 1890 г. охранка провела повальные аресты среди народников. Был задержан и А.И. Лебедев, проведший в тюрьме два года. После освобождения из заключения власти лишили его права заниматься педагогической деятельностью, учредили над ним негласный надзор полиции. По свидетельству Алексея Ивановича, «негласный надзор» выражался во вполне гласном, подозрительного вида господине в котелке и пальто горохового цвета, торчавшем у ворот его дома во всякую погоду .

Тем не менее Алексей Иванович, уехавший вскоре после освобождения в Кинешму, продолжил там свою просветительскую деятельность. Устроил при земской управе публичную библиотеку, привлек к регулярным чтениям большую группу рабочих и молодежи города, создал пропагандистский кружок. «А. И. Лебедева знаю как старого народовольца и видного общественника, литературного деятеля, известного мне по времени знакомства в Кинешме в 1894 г., где он вел культурно-общественную работу среди рабочих и крестьян, создавал публичную библиотеку с радикальным

Работа добавлена на сайт сайт: 2015-07-10

;text-decoration:underline">ДЕ 10. История информатики

">56. Первой машиной, автоматически выполнявшей все 10 команд, была...

;font-family:"Times New Roman";color:#000000"> ;font-family:"Times New Roman";color:#000000;background:#ffff00">

">57. Что представляет собой большая интегральная схема (БИС) ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">кристалл кремния,на котором размещаются от десятков до сотен тысяч логичеких элементов

">58. Основоположником отечественной вычислительной техники является... ;color:#000000;background:#ffff00"> машина Сергея Алексеевича Лебедева

">59. Какая из отечественных ЭВМ была лучшей в мире ЭВМ второго поколения? ;color:#000000;background:#ffff00">БЭСМ-6

">60. Первая ЭВМ в нашей стране появилась... "> ;color:#000000;background:#ffff00">МЭСМ

">61. Основной элементной базой ЭВМ четвертого поколения являются... ;background:#ffff00">СБИС

">62. Основной элементной базой ЭВМ третьего поколения являются... ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">интегральные микросхемы

">63. В каком поколении машин появились первые операционные системы ;color:#000000;background:#ffffff">в третьем поколении

;color:#000000;background:#ffffff">64. "> Для машин какого поколения потребовалась специальность "оператор ЭВМ" ;background:#ffff00">второе поколение

">65. В каком поколении машин появились первые программы? ;background:#ffff00">второе поколение

">66. Электронной базой ЭВМ второго поколения являются "> ;color:#000000;background:#ffffff">полупроводники

;color:#000000;background:#ffffff">67. "> Машины первого поколения были созданы на основе... ;color:#050505;background:#ffffff"> ;color:#050505;background:#ffffff">электровакуумные лампы

">68. Языки высокого уровня появились ;color:#000000;background:#ffffff">Конрадом Цузе между 1942 и 1946 годами для его компьютера «Z4»

">69. Первые ЭВМ были созданы ;background:#ffff00">в 40-годы

">70.Под термином "поколение ЭВМ" понимают ;color:#000000;background:#ffffff">все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах

;color:#000000;background:#ffffff">71. "> Основные принципы цифровых вычислительных машин были разработаны... ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">Чарльзом Беббиджем

"> ДЕ 2. Аппаратные реализации информационных процессов

">6. Понятие и принципы работы вычислительной системы

">72. В соответствии со своими функциями персональные компьютеры могут выступать в роли … ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">сервера, терминала, рабочей станции

;color:#000000;background:#ffffff">73.

;color:#000000;background:#ffffff">74. "> Какие критерии качества вычислительных систем являются обязательными ;color:#000000;background:#ffffff">надежность

;color:#000000;background:#ffffff">75. ;color:#000000;background:#fff1f5"> ">Этот принцип заключается в том, что программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности ;color:#000000;background:#fff1f5">Принцип программного управления

;color:#000000;background:#fff1f5">76. "> Совокупность ЭВМ и ее программного обеспечения называется ;color:#000000;background:#ffffff">вычислительным комплексом или Программно-аппаратный

;color:#000000;background:#ffffff">77. "> В любых приложениях связующими звеньями между компьютером и процессом служат ;color:#222222;background:#ffffff">датчики и исполнительные механизмы

;color:#222222;background:#ffffff">78. "> Этот принцип заключается в том, что программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными ;color:#000000;background:#fff1f5">Принцип однородности памяти

;color:#000000;background:#fff1f5">79. "> Этот принцип заключается в том, что структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка ;color:#000000;background:#fff1f5">Принцип адресности

;color:#000000;background:#fff1f5">80. "> Этот принцип заключается в том, что в ячейках памяти есть только двоичные цифры, но в зависимости от того, что (какой тип данных) хранится в ячейке, эти цифры будут разными ;color:#000000;background:#ffffff"> ;color:#000000;background:#ffffff">Принцип использования двоичной системы счисления

;color:#000000;background:#fff1f5">81. "> Согласно принципам фон Неймана в любом компьютере можно выделить следующие главные устройства

;color:#000000;background:#ffff00">Арифметически - логическое устройство, выполняющее арифметические и

;color:#000000;background:#ffff00">логические операции.

;color:#000000;background:#ffff00">Устройство управления, которое организует процесс выполнения программы.

;color:#000000;background:#ffff00">Запоминающее устройство, или память, для хранения программы и данных.

;color:#000000;background:#ffff00">Внешние устройства для ввода и вывода информации

">7. Состав и назначение основных элементов ПК

">82. К основным характеристикам процессора относятся

;color:#000000;background:#ffffff">Быстродействие, тактовая частота, разрядность процессора

1. Причины отставания отечественной вычислительной техники в прошлом веке
Ошибочная техническая политика
Слабое финансирование компьютерной отрасли
Отставание отечественной науки
Недооценка роли и значения информационных технологий на правительственном уровне

2. Для машин … поколения потребовалась специальность «оператор ЭВМ»
первого
второго
третьего
четвертого

3. Первая ЭВМ в нашей стране называлась …
Стрела
МЭСМ
IBM PC
БЭСМ

4. Творец первой в мире ЭВМ
С.А.Лебедев
Ч.Бэббидж
Дж. фон Нейман
Дж. Атанасов
В.М.Глушков
Дж.Моучли

5. Основные принципы цифровых вычислительных машин были разработаны …
Блезом Паскалем
Готфридом Вильгельмом Лейбницем
Чарльзом Беббиджем
Джоном фон Нейманом

6. Языки программирования названы в честь …
Н. Вирта
Б. Паскаля
А. Лавлейса
Д. Неймана

8. Вычислительные машины второго поколения ЭВМ
Стрела
Урал-1
Минск-32
БЭСМ-6

9. Элементная база компьютеров третьего поколения
Транзистор
ИС
Электронная лампа
БИС

10. Блез Паскаль изобрёл первую … машину – «Паскалину»
механическую
электромеханическую
электронно-вычислительную

11. Француз Жозеф Жаккар применил в своей ткацкой машине … для ввода информации
перфоленты
магнитные накопители
магнитные ленты
перфокарты

12. ЭВМ четвёртого поколения
Эльбрус-2
ENIAC
IBM PC AT
IBM-701

13. Первые программы появились … поколении ЭВМ
в первом
во втором
в третьем
в четвертом

14. Вычислительная машина третьего поколению ЭВМ
М-50
ЕС-1033
IBM-370
Электроника — 100/25

15. Основа элементной базы ЭВМ третьего поколения
БИС
СБИС
интегральные микросхемы
транзисторы

16. Языки высокого уровня появились …
в первой половине XX века
во второй половине XX века
в 1946 году
в 1951 году

17. ЭВМ первого поколения построены на …
шестерёнках
МИС
электронных лампах
магнитных элементах

18. … предложил концепцию хранимой программы
Д. Буль
К. Шеннон
А. Тьюринг
Д. Нейман

19. Элементная база компьютеров первого поколения
Транзистор
ИС
Электронная лампа
БИС

20. Двоичную систему счисления впервые в мире предложил …
Блез Паскаль
Готфрид Вильгельм Лейбниц
Чарльз Беббидж
Джордж Буль

21. Большая интегральная схема (БИС)
транзисторы, расположенные на одной плате
кристалл кремния, на котором размещаются от десятков до сотен логических элементов
набор программ для работы на ЭВМ
набор ламп, выполняющих различные функции

22. Cчетное устройство, состоящее из доски, линий, нанесенных на неё и нескольких камней
Паскалина
Эниак
Абак

23. Элементная база компьютеров второго поколения
Транзистор
ИС
Электронная лампа
БИС

24. … создал счётную машину – прототип арифмометра
Б. Паскаль
В. Шиккард
С. Патридж
Г. Лейбниц

25. Массовое производство персональных компьютеров началось в … годы
40-е
90-е
50-е
80-е

26. Электронная база ЭВМ второго поколения
электронные лампы
полупроводники
интегральные микросхемы
БИС, СБИС

27. Под термином «поколение ЭВМ» понимают …
все счетные машины
все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах
совокупность машин, предназначенных для обработки, хранения и передачи информации
все типы и модели ЭВМ, созданные в одной и той же стране

28. Отечественная ЭВМ, лучшая в мире ЭВМ второго поколения
МЭСМ
Минск-22
БЭСМ
БЭСМ-6

29. Особенность устройства Германа Холлерита
Была употреблена идея перфокарт
Впервые использовались микрочипы
Быстродействие машины составляло 330 тыс.оп/с
Впервые появилась возможность хранения результатов вычислений

30. Первая ЭВМ называлась …
МИНСК
БЭСМ
ЭНИАК
IВМ

31. Малая счётная электронная машина, созданная в СССР в 1952 году
МЭСМ
Минск-22
БЭСМ
БЭСМ-6

32. Основоположник отечественной вычислительной техники
Сергей Алексеевич Лебедев
Николай Иванович Лобачевский
Михаил Васильевич Ломоносов
Пафнутий Львович Чебышев

33. … разработал язык программирования «С»
Н. Вирт
А. Ляпунов
Д. Ритчи
Б. Гейтс

34. Предмет, оставленный древним человеком 30 тыс. до нашей эры, свидетельствующий о том, что уже тогда существовали зачатки счета
Счётный камень
Вестоницкая кость
Византийская кость
Камень с углублением

35. Первая ЭВМ в нашей стране появилась в …
ХIХ веке
60-х годах XX века
первой половине XX века
1951 году

36. … первым выдвинул идею создания программируемой счётной машины
А. Лавлейс
Ч. Бэббидж
Р. Биссакар
Э. Шугу

37. Первые ЭВМ были созданы в … годы 20 века
40-е
60-е
70-е
80-е

38. В настоящее время в мире ежегодно производится около … компьютеров
1 млн.
500 млн.
10 млн.
100 млн.

39. Первая машина, автоматически выполнявшая все 10 команд
машина Сергея Алексеевича Лебедева
Pentium
машина Чарльза Беббиджа
абак

40. … руководил разработкой машины БЭСМ-6
Г. Эйкен
Д. Бардин
С. Лебедев
Л. Канторович

41. Основа элементной базы ЭВМ четвёртого поколения
полупроводники
электромеханические схемы
электровакуумные лампы
СБИС

42. Основы современной организации ЭВМ описал …
Джон фон Нейман
Джордж Буль
Ада Лавлейс
Норберт Винер

43. Первую вычислительную машину изобрёл …
Джон фон Нейман
Джордж Буль
Норберт Винер
Чарльз Беббидж

44. … считается изобретателем компьютера
Чарльз Бэббидж
Герман Холлерит
Ада Августа Лавлейс
Блез Паскаль

45. Первая ЭВМ появилась в … году
1823
1946
1949
1951

46. Первая в мире программа была написана …
Чарльзом Бэббиджем
Адой Лавлейс
Говардом Айкеном
Полом Алленом

47. ЭВМ первого поколения были созданы на основе …
транзисторов
электронно-вакуумных ламп
зубчатых колес
реле

48. Общим свойством машины Бэббиджа, современного компьютера и человеческого мозга является способность обрабатывать… информацию
числовую
текстовую
звуковую
графическую

49. Элементная база компьютеров четвёртого поколения
Транзистор
ИС
Электронная лампа
БИС

50. Основы теории алгоритмов были впервые изложены в работе …
Чарльза Беббиджа
Блеза Паскаля
С.А. Лебедева
Алана Тьюринга

51. Первые операционные системы появились … поколении машин
в первом
во втором
в третьем
в четвертом

52. Машины … поколения позволяют нескольким пользователям работать с одной ЭВМ
первого
четвертого
второго
третьего

Решение тестов онлайн

На нашем сайте представлена лишь часть ответов из теста по дисциплине "Информатика".

Если у Вас нет времени на подготовку к тестированию или Вы по какой-то другой причине не можете сдать тест самостоятельно, то обращайтесь за помощью к нам. Мы поможем решить тесты любых учебных заведений правильно и быстро.

Для ознакомления с условиями выполнения тестов и оформления заказа, перейдите в раздел " ".

1 Эволюция ЭВМ

Механические вычислительные машины

Первая счетная машина с хранимой программой была построена французским ученым Блезом Паскалем в 1642 г. Она была механической с ручным приводом и могла выполнять операции сложения и вычитания.

В 1672 г. Готфрид Лейбниц построил механическую машину, которая могла делать также операции умножения и деления.

Впервые машину, работающую по программе, разработал в 1834 г. английский ученый Чарльз Беббидж. Она содержала запоминающее устройство, вычислительное устройство, устройство ввода с перфокарты и печатающее устройство. Все устройства машины Беббиджа, включая память, были механическими и содержали тысячи шестеренок, при изготовлении которых требовалась точность недоступная в XIX в. Машина реализовывала любые программы, записанные на перфокарте, поэтому впервые для написания таких программ потребовался программист. Первым программистом была англичанка Ада Ловлейс, в честь которой уже в наше время был назван язык программирования Ada.

В начале XIXвека компьютером называлась профессия человека занимающегося расчетами, вычислениями.

Электронные вычислительные машины

В развитии ЭВМ выделяют пять поколений.

Под поколением понимают все типы и модели ЭВМ, разработанные различными конструкторско-техническими коллективами, но построенных на одних и тех же научных и технических принципах.

Появление каждого нового поколения определялось тем, что появлялись новые базовые элементы , технология изготовления которых принципиально отличалась от предыдущего поколения.

Первое поколение . (1946 – середина 50-х гг.).В 1943 г. профессор Гарвардского университета Эйкен создал вычислительную перфорационную машину «Марк -1» на электромагнитных реле. В 1946 г. была создана ламповая вычислительная машина учеными Пенсильванского университета под руководством Джона Моучли ENIAC (Electronic Numeral Integrator And Computer – электронный числовой интегратор и компьютер), которая содержала 18 900 ламп, потребляла 150 кВт электроэнергии и выполняла 5 тыс. операций сложения в секунду. Так появились компьютеры первого поколения.

Особенности:

Элементная база электронно-вакуумные лампы;

Габариты – в виде шкафов и занимали машинные залы;

Программирование осуществлялось в машинных командах, а отладка за пультом управления;

Данные вводились с помощью перфокарт и магнитных лент с хранимыми программами;

Быстродействие – 10 – 100 тыс. оп./с.;

Они были очень громоздки и применялись в основном в крупных научных центрах.

Основоположником отечественной вычислительной техники стал электротехник Сергей Лебедев. Под его руководством в 1950 г. была создана самая быстродействующая малая электронная машина.

Второе поколение (средина 50 – середина 60 г.г.). В 1949 г. американские физики Уолтер Браттейн и Джон Бардин изобрели транзистор, а в 1954 г. Гордон Тил применил кремний для изготовления транзистора. Транзисторы заменили электронные лампы и с 1955 г. стали выпускаться компьютеры на транзисторах, это стали компьютеры второго поколения.

Особенности:

    элементная база – транзисторы;

    быстродействие – сотни тысяч – 1 млн. оп./с;

    понижено энергопотребление;

    повысилась надежность;

    появилась память на магнитных дисках;

    появились первые операционные системы;

    программирование осуществлялось с использованием языков высокого уровня (фортран, бейсик, алгол и д.р.);

    структура эвм – микропрограммный способ управления;

    эксплуатация – упростилась.

Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение (60 – 70 г.г.). В 1958 г. Джек Килби изобрел первую интегральную схему, а Роберт Нойс – первую промышленную интегральную схему (Chip).

ИС - это кремниевый кристалл, площадь которого примерно 10 мм 2 . Одна интегральная система способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Особенности:

    элементная база – интегральные схемы, большие интегральные схемы (ИС, БИС);

    габариты – однотипные стойки, требующие машинный зал;

    единая архитектура, то есть программно совместимые;

    быстродействие – сотни тысяч – миллионы оп./с;

    эксплуатация – оперативно производится ремонт;

    программирование – подобен II поколению;

    обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ;

    структура ЭВМ – принцип модульности и магистральности;

    появились дисплеи, магнитные диски;

    задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов. В конце 60-х появились мини-компьютеры.

Четвертое поколение (70 – по н/в)В 1971 г. был создан первый микропроцессор Intel 4004. Он состоял из 2300 транзисторов на площади 15 мм кв. и с тактовой частотой 108 КГц мог выполнять 45 различных команд и обладал такой вычислительной мощью как первый электронный компьютер, занимавший целую комнату.

В середине 70-х гг. были разработаны компьютеры четвертого поколения на больших и сверх больших ИС (до миллиона компонентов на кристалл). Также появились первые персональные компьютеры. В 1974 г. на основе процессора Intel 8080 был создан первый такой компьютер MITS Altair 8800. В 1977 г. компания Apple выпустила свой компьютер Apple II с графическими возможностями, цветным монитором и звуком. И наконец, 1981 г. появился компьютер IBM PC. Он был на базе процессора Intel 8088 c тактовой частотой 4,77 МГц, работающий под управлением операционной системы PC Dos 1.0, лицензия на которую принадлежала Биллу Гейтсу. Базовая цена 1565 долларов. Удачная конструкция этого компьютера стала использоваться в качестве стандарта ПК в конце XX века.

Быстродействие таких машин составляет тысячи миллионов операций в секунду. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Пятое поколение . В настоящее время ведутся работы по созданию ЭВМ пятого поколения. Программа разработки, таких ЭВМ была принята в Японии в 1982 г.

Разработка новых поколений компьютеров производится на основе БИС повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текстов, человеческого голоса, с бланков, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний.

Архитектура компьютера будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок так называемый интеллектуальный интерфейс. Эго задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещенных на одном кристалле полупроводника. Обработка знаний - использование и обработка компьютером знаний, которыми владеет человек для решения проблем и принятия решений.



Рекомендуем почитать

Наверх