Схемы подключения трехфазного электродвигателя. Как подключить трехфазный электродвигатель

Помощь 24.08.2019
Помощь

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное - знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов - ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя - КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы - симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй - сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность - применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток - дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 - начала обмотки, а С4-С6 - ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов - пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты - МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй - с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному - провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется - пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому - обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Подключение трехфазного электродвигателя

Асинхронный трехфазный двигатель уверенно стоит в лидирующих позициях во всех сферах применения электродвигателей. В основном такие электродвигателя выпускаются с расчетом на два номинальных напряжения трехфазной сети 380/220. Подключение трехфазного электродвигателя к тому или иному напряжению возможно переключением обмоток со «звезды» (380 В) на «треугольник» (220В).

Для того чтобы понять как подключить электродвигатель нужно обратить внимание на колодку куда выходят концы с обмоток. Обязательно нужно обратить внимание как расположены перемычки в большинстве электродвигателей расположение перемычек указано на крышке борна (коробочка на двигателе куда выходят концы обмоток). Бывает что у электродвигателя отсутствует колодка тогда завод изготовитель выводит два пучка по три конца обмотки в каждом. То есть в первом пучке собраны концы начала обмоток, а во втором пучке собраны концы обмоток.

Подключение трехфазного электродвигателя в звезду – это соединение обмоток с нулевой точкой, то есть говоря проще у вас есть два пучка проводов. Как писалось выше один пучок начало обмоток, второй пучок конец обмоток. Берем любой из этих пучков и соединяем три конца вместе при помощи болтика с шайбами (это и есть нулевая точка). Или если есть колодочное соединение, то замыкаем три конца обмоток специальными перемычками, которые идут в комплекте электродвигателя. На оставшиеся три конца обмоток, подаем три фазы и в итоге мы получаем подключение электродвигателя звездой.

Если получилось неправильное вращение электродвигателя, то исправить это можно путем переброса фаз в том пучке, куда подается напряжение.

Подключение трехфазного электродвигателя в треугольник – это подключение обмоток электродвигателя последовательно. То есть конец одной обмотки это начало другой. Для того чтобы правильно подключить электродвигатель в треугольник, нужно определить концы каждой из обмоток разложить их попарно и исходя из схемы ниже правильно подключить.

Главное придерживайтесь правила « конец одной обмотки начало другой». Также как и в подключением в треугольник правильное вращение электродвигателя достигается путем переброса фаз.

Неправильное подключение электродвигателя это одна из причин неисправности электродвигателей.

На табличке электродвигателя предоставлена вся информация о возможном подключении его в трехфазную сеть, необходимо правильно использовать предоставленные данные чтобы избежать дорогостоящих поломок оборудования. В следующей статье рассмотрим

Довольно часто в промышленном и домашнем хозяйстве используются трехфазные асинхронные двигатели. Этот тип двигателей является достаточно распространенным, поэтому большинство привычных для нас устройств, работающих на двигательной тяге, работают именно на таких. Состоит данный двигатель всего из двух основных частей – подвижного ротора и статора (соответственно, неподвижного). В сердечнике статора укладываются обмотки под специальным угловым расстоянием, которое равно 120 электрическим градусам. Начала и концы этих обмоток выводятся в распределительную коробку, где закрепляются на специальных клеммах. Как правило, эти выводы обозначены буквой С – С1, С2 и до С6 соответственно. Обмотки могут, соединяются двумя типами электрических схем – «звезда» и «треугольник». В схеме звезда концы обмоток соединяются друг с другом, а начала обмоток подключаются к питающему напряжению. Схема треугольник заключается в последовательном соединении, то есть начало одной обмотки соединяется с концом каждой другой обмотки и так далее.

Так подключается трехфазный двигатель, согласно схеме треугольник


Внутренность распределительной коробки двигателя, с выставленным положением перемычек под соединение в треугольник

Обычно, в распределительной коробке, все выходы контактов и их клеммы располагаются в сдвинутом порядке напротив. То есть, напротив контакта С1 находиться С6, а напротив клеммы С2 располагается С4.

Вот по такой схеме располагаются контакты в распределительной коробке


Так подключается трехфазный двигатель, согласно схеме «звезда»


Вживую, распределительная коробка с подключением «звездой» выглядит таким вот образом

Подключая трехфазный двигатель, соответственно, к трехфазной сети, внутри обмоток статора в разные моменты времени начинает протекать электрический ток, который в свою очередь создает вращающее магнитное поле. Это вращающее магнитное поле посредством магнитной индукции приводит в движение ротор двигателя, вследствие чего он начинает вращаться. Если подключить трехфазный двигатель в однофазную сеть, в машине не возникнет достаточного вращающего момента, и он попросту не включится.

Естественно, он не запустится, если его запускать напрямую. Но, существуют способы, при помощи которых подключение «трехфазника» в сеть все-таки возможно. Одним из самых простых является подключение фазосдвигающего конденсатора в качестве третьего контакта.

Вот так подключается трехфазный двигатель в домашних условиях (однофазной сети)

Трехфазный двигатель, работающий в однофазной сети, имеет практически ту же частоту вращения, что и при работе в трехфазной. Но, при таком подключении мощность асинхронного двигателя в значительной степени уменьшается. Это обуславливается недостаточной мощностью в самой сети (в сравнении с трехфазной). Чтоб сказать, насколько точно теряется мощность при однофазном подключении, необходимо знать схему подключении, условия работы асинхронного двигателя, а также величину емкости конденсатора. Но, в среднем каждый трехфазный двигатель, подключенный в однофазную сеть, может потерять до 30-ти и даже 50% собственной мощности.

Заметим, что далеко не все трехфазные двигатели могут вести себя нормально в однофазной сети. Поэтому, если вы подключили его, и уверены в правильности подключения, но при этом он напрочь отказывается работать, не переживайте. С большой долей вероятности это значит что, что-то не в порядке с самим двигателем. Конечно, преимущественное большинство должно работать нормально, не учитывая потерю мощности. Поэтому, самыми надежными в работе с однофазной сетью, показали себя асинхронные двигатели с индексами «А» и «АОЛ», «АО2» и «АПН». Все они имеют короткозамкнутый ротор.

Как правило, трехфазные асинхронные двигатели имеют две категории по номинальному напряжению – это работа в сетях 220/127В и 380/220В. Двигатели на более низком напряжении используются при малых мощностях, поэтому распространение у них небольшое. Таким образом, именно категория 380/220В является более распространенной. Напряжение в 380В используется при соединении в «звезду», соответственно напряжение 220В используется при схеме «треугольник». В паспорте двигателя и на его бирке, обычно указывают все основные рабочие характеристики и величины, среди которых рабочее напряжение, частота сети, коэффициент мощности, а также приведены условными рисунками схема соединения обмоток и какая существует возможность ее изменения.

Так выглядят бирки на корпусах трехфазных электродвигателей

На рисунке «А» бирка свидетельствует о том, что обмотки могут соединяться в обе схемы, как говорилось выше. То есть, можно подключить как «треугольник» на напряжение 220В, так и «звезду» на 380В. Отметим, что подключая такой двигатель в однофазную сеть, используйте схему соединения «треугольник», так как при соединении в «звезду» потеря мощности будет в значительной степени выше.

На рисунке «Б» бирка говорит о том, что в двигателе применяется схема соединения «звезда». При этом ответствует возможность включение схемы «треугольник». Если вы видите такой значок, то знайте, что в распределительной коробке иметься лишь три вывода. Поэтому, чтоб выполнить соединение «треугольник», нужно будет проникнуть внутрь двигателя, найти и вывести остальные концы наружу. Сделать это не так уж просто, поэтому будьте предельно внимательными.

Важный момент! Если на бирке двигателя указано рабочее напряжение в виде 220/127В знайте, что при подключении к однофазной сети на рабочее напряжение 220В его можно лишь со схемой «звезда» и никак больше. При попытке подключить двигатель со схемой «треугольник» в сеть 220В, он попросту сгорит.

Как разобраться в началах и концах обмоток?

Одной из самых запутанных сложностей, при подключении трехфазного двигателя в бытовую сеть является неразбериха, возникающая с проводами, которые выходят в распределительную коробку. Более того, в некоторых случаях коробка может отсутствовать, и вам самостоятельно придется разбираться, где и какой провод.

Наиболее простым случаем является тот, в котором обмотки соединены в схему «треугольника» при рабочем напряжении двигателя 380/220В. Так, необходимо лишь подключить токопроводящие провода из сети, подсоединив рабочий и пусковой конденсаторы в распределительной коробке к клеммам, согласно пусковой схеме. Когда схема соединения двигателя замкнута на «звезду», но при этом есть возможность сделать переключение ее на «треугольник», необходимо воспользоваться этим, изменив схему используя контактные перемычки.

Теперь, что же касается определения начала и концов всех обмоток. Довольно трудно, когда в распределительной коробке попросту торчат 6 проводов без каких-либо обозначений. В таком случае сложно понять, какой из проводов обмоток является началом, а какой же все-таки концом. Поэтому придется несколько поднапрячься и решить эту задачу. Прежде чем производить какие-либо действия с двигателем, загляните в Интернет, указав марку двигателя. Быть может, в сети имеются какие-то документы, способны расшифровать имеющуюся проводку. Но, если никакой полезной информации так и не нашлось, действуем следующим образом

Определяем пары проводов, которые причастны к одной и той же обмотке;

И определяем, какой из выводов является началом, а какой концом.

Определение пар проводов производится «прозвонкой» при помощи тестера (устанавливается режим замера сопротивление). Если такого прибора под рукой нет, можно воспользоваться «дедовским» способом, и определить принадлежность концов обмоток с помощью лампочки и батарейки. Если же лампочка загорается (или прибор показывает наличие сопротивления), это значит, что два провода принадлежат одной и той же обмотке. Таким образом, определяются и остальные пары выводов обмоток (на рисунке ниже это показано на схеме).

Во второй задаче предстоит узнать, какой из выводов является началом, а который концом. Для этого нам потребуется взять батарейку и стрелочный вольтметр (электронный прибор для этого не подойдет). И затем, определяем начала и концы обмоток согласно схеме, приведенной ниже.

Итак, батарейка подключается к концам одной обмотки (пусть это будет А , как на рисунке), а к концам обмотки В подключим имеющийся вольтметр. При разрыве контактов проводом батарейки на обмотке А , стрелка вольтметра на В , должна отклониться в какую-либо из сторон. Запомните в какую, и проделайте то же действие на обмотке С , подключив к ней вольтметр. Теперь, добейтесь того чтоб стрелка вольтметра на обмотке С отклонялась в ту же сторону, что и на обмотке В . Это можно достичь путем изменения полярности (сменой концов С1 и С2 ). Аналогичным образом проверяется обмотка А . Тогда, батарейка будет подключена к С или В , а вольтметр, соответственно к А .

Таким образом, после «прозвонки» всех обмоток, вы должны получить некоторую закономерность. Разрывая контакты батарейки на какой-либо обмотке, остальные две должны показать отклонение стрелки вольтметра в одну и ту же сторону (это свидетельствует об одинаковой полярности). После чего, остается сделать отметки на выводах (начал) с одной стороны (А1, В1 и С1), и выводы (концы) с другой стороны А2, В2 и С2. На завершающем этапе, соединить концы в соответствующие схемы «звезда» или «треугольник».

Как извлечь недостающие концы обмотки?

Данный случай является, пожалуй, одним из самых трудных. Так, двигатель, соединенный в «звезду» не переключается в «треугольник». На практике же, открыв распределительную коробку, вы увидите лишь три вывода (С1, С2 и С3). Остальные три (С4, С5 иС6) придется доставать изнутри двигателя. На рисунке ниже наглядно показан именно такой случай.

Бирка электродвигателя с рассматриваемым случаем


А так будет выглядеть внутренность клеммной коробки

Во-первых, необходимо разобрать двигатель, чтоб получился свободный доступ к статору. Для этого нужно снять торцевую крышку двигателя, удерживающуюся на болтах, и извлечь его подвижную часть – ротор. Теперь, нужно отыскать место спайки остальных концов обмоток, и очистить его от изоляции. После, разъединить концы выводов и припаять к ним, заранее подготовленные, многожильные провода в гибкой изоляции. Место пайки изолировать дополнительно, и закрепить провода крепкой нитью на обмотках статора. В конечном итоге, дополнительно припаянные провода выводятся в распределительную коробку.

Теперь, нужно определить начала и концы обмоток вышеупомянутым способом, и обозначить все имеющиеся выводы С1, С2 и так далее. После идентификации всех проводов, можно смело выполнить соединение по схеме «треугольник». Отметим, что такие действия требуют определенного опыта и навыков. На словах, в этом нет ничего сложного, но на самом деле в спайках проводов внутри статора можно запутаться, и замкнуть обмотки накоротко (к примеру). Поэтому, если нет особой потребности в соединении треугольником, лучше оставить соединение как есть, то есть «звездой».

Статор трехфазного электродвигателя



Припайка дополнительных проводов



В такой способ провода крепко прикручиваются



Вывод проводников в распределительную коробку



Соединение проводников в схему «треугольник»


Схемы, которые используются при подключении трехфазного двигателя в бытовую сеть

Схема «треугольник».

Данная схема, является наиболее целесообразной и подходящей для бытовой сети, поскольку выходная мощность трехфазного двигателя в данном случае будет несколько большей, чем при других схемах. Так, мощность «треугольного» соединения может составлять 70% от ном. мощности двигателя. В распределительной коробке это выглядит следующим образом: два контакта подсоединяются в сеть, а третий подключается на рабочий конденсатор Ср, затем к любому из контактов сети.

Вот так изображается схема на бумаге

А таким образом это выглядит на практике


Осуществление пуска

Запуск трехфазного двигателя на холостом ходу возможно с использованием рабочего конденсатора. Но, в случае, если на нем будет хоть незначительная нагрузка, он может, не запустится, или же включиться и работать на малых, недостаточных оборотах. Поэтому, в таких случаях используется дополнительное оборудование, а именно пусковой конденсатор Сп. Расчеты по определения необходимой емкости конденсатора вы можете найти ниже. Для справки, такие конденсаторы (в других случаях это может быть группа конденсаторов), служат лишь для пуска двигателя. Следовательно, их время работы очень малое – как правило, миллисекунды, но может доходить и до 2х секунд. За такой короткий промежуток двигатель должен успеть набрать необходимую мощность.

Схема с пусковым конденсатором Сп

Для более удобного эксплуатирования двигателя, в схему пуска и работы можно добавить выключатель. Работает он по простому принципу, в котором одна пара контактов замыкается при нажатии на кнопку «Пуск». В таком режиме работает вся схема до тех самых пор, пока не нажмут кнопку «Стоп» и контакты разомкнутся.

Выключатель, сделанный в СССР

Применение реверса

Вращение ротора в ту или иную сторону зависит от того, к какой фазе подключена третья обмотка.

Реверсивная схема

Поэтому, подсоединив к третьей обмотке дополнительный конденсатор с переключателем (тумблером), который подключается к контактам первой и второй обмотки, мы сможем менять направление вращения ротора трехфазного электродвигателя. Ниже, наглядно продемонстрирована схема с применением всех трех вышеупомянутых способов, которая поможет сделать более удобным работу с трехфазным двигателем.

Включение со схемой «звезда»

Данная схема используется при подключении «трехфазников» в бытовую сеть, если их обмотки работают на напряжении 220/127В.

Подключение трехфазного электродвигателя «звездой»


Расчет необходимых емкостей конденсаторов. Итак, расчет емкости рабочих конденсаторов производится, исходи из схемы подключения двигателя и множества других параметров. В случае с соединением в «звезду» расчет проводится следующим образом:

Ср=2800∙ I/U;

Соединяя обмотки треугольником, рабочую емкость рассчитывайте так:

Cp=4800∙I/U;

Здесь, рабочая емкость конденсатора обозначается Ср и измеряется в мкФ, а I и U – ток и напряжение соответственно. При этом U =220В, а то рассчитываем по выражению:

I =P/(1,73∙U∙n∙cosϕ );

P – обозначает мощность двигателя;

N – КПД «трехфазника»;

Cosϕ – коэффициент мощности;

1,73 – показывает отношение между линейным и фазным током.

Величины КПД и коэффициента мощности можно посмотреть на бирке электродвигателя. Как правило, эти величины примерно колеблются в пределах 0,8-0,9.

Практика показывает, что величина емкости рабочих конденсаторов может рассчитываться по уравнению C =70∙ P н ; где в качестве Рн выступает номинальная мощность. Эта формула сообразна при подключении обмоток на «треугольник», и согласно ей, для каждых 100 Вт потребуется порядка 7 мкФ емкости. От того, насколько правильно подобран конденсатор, зависит стабильная работа электродвигателя. В случае если емкость подобрана несколько выше, чем нужно, двигатель будет испытывать перегрев. Если же пусковая емкость оказалась меньше чем это необходимо, мощность двигателя будет несколько заниженной. Конденсаторы можно выбирать методом подбора. Так, начиная с конденсаторов малой емкости, переходите к более мощным до оптимального выбора. Если же существует возможность измерить ток в сети и на рабочем конденсаторе, то есть вероятность подобрать наиболее точный конденсатор. Проводить данный замер нужно в рабочем режиме двигателя.

Пусковая емкость рассчитывается исходя из требования по созданию достаточного пускового момента. Не стоит путать емкость пускового конденсатора, с величиной пусковой емкости. К примеру, на схемах выше, пусковая емкость является суммой двух емкостей Ср и Сп.

Если же электродвигатель будет использоваться на холостом ходу, то за пусковую емкость можно принять рабочую, притом, что пусковой конденсатор уже не потребуется. В таких случаях схема во многом упрощается и удешевляется. Такие меры помогут отключить нагрузку, с возможностью быстрого и удобного изменения положения двигателя, к примеру, для ослабления ременной передачи, или же сделать прижимной ролик для нее.

Пример клиноременной передачи мотоблока

Запуск двигателя требует дополнительную емкость Сп, которая требуется только на пуск. Если же увеличить отключаемую емкость, это приведет к увеличению пускового момента, и при каком-то значении пусковой момент достигнет пикового значения. Но, с дальнейшим увеличением емкости пусковой момент будет лишь падать, и это нужно учесть.

Исходя из всех расчетов и условий запуска электродвигателя под нагрузкой, которая близка к номинальной, величина пусковой емкости должна превышать рабочую в 2 а то и 3 раз. К примеру, если емкость на рабочем конденсаторе равна 80 мкФ, то у пускового конденсатора эта емкость будет иметь 80-160 мкФ. Это в сумме даст пусковую емкость (которая как говорилось, является сумой Ср и Сп) в 160-240 мкФ. Однако, если же нагрузка во время запуска незначительна, емкость пускового конденсатора будет несколько меньшей, а то и вовсе отсутствовать. Конденсаторы, работающие на запуск двигателя, на самом деле работают миллисекунды, поэтому они долго эксплуатируются, и, как правило, вполне хватает бюджетных моделей.

Куда лучшим вариантом является применение не одного конденсатора, а группы, объединенной в конденсаторный мост. Это более удобно в том плане, что подключив группу, можно более точно настроить необходимую емкость, отключая или подключая конденсаторы. Мелкие конденсаторы, образующие мост, подключаются параллельно потому, что при таком соединении емкости слаживаются: Собщ=С 1 2 3 +…+С n .

Так выглядит параллельное соединение

В роли рабочих конденсаторов служат металлизированные бумажные, а также отлично подходят пленочные конденсаторы типа МБГО, К78-17, БГТ и т.д. Напряжение по допустимой величине должно превышать при работе электродвигателя напряжение сети не менее, чем в 1,5-2 раза.

Таким образом, подключение трехфазного двигателя к однофазной сети требует тщательного математического анализа и некоторого опыта работы с электротехническим оборудованием.

Еще кое-что об электрике:

Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения. Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов.

Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок? Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть 220 В.

Рассмотрим кратко принцип работы асинхронного двигателя в своих «родных» трехфазных сетях 380 В. Это очень поможет впоследствии адаптировать двигатель для работы в других, «не родных» условиях – однофазных сетях 220 В.

Устройство асинхронного двигателя

Большинство производимых в мире трехфазных двигателей – это асинхронные двигатели с короткозамкнутым ротором (АДКЗ), которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, – самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.

Рассмотрим устройство АДКЗ. Двигатель в разрезе показан на рисунке.

В литом корпусе (7) собран весь механизм электродвигателя, включающий две главные части – неподвижный статор и подвижный ротор. В статоре имеется сердечник (3), который набран из листов специальной электротехнической стали (сплава железа и кремния), которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны. Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.

В пазах сердечника уложена обмотка (2), выполненная из медного эмалированного провода. Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три – по одной на каждую фазу. Причем уложены это обмотки в пазы сердечника с определенным порядком – каждая расположена так, что находится под угловым расстоянием в 120° к другой. Концы обмоток выведены в клеммную коробку (на рисунке она расположена в нижней части двигателя).

Ротор помещен внутрь сердечника статора и свободно вращается на валу (1). Зазор между статором и ротором для повышения КПД стараются сделать минимальным – от полумиллиметра до 3 мм. Сердечник ротора (5) также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо (4), за что и получили свое название.

Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов (6). В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами.

Что такое трехфазный ток

Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места. Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых фаза (L), второй рабочий ноль (N), а третий защитный ноль (PE). Среднеквадратичное фазное напряжение в однофазной системе (напряжение между фазой и нулем) равно 220 В. Напряжение (а при подключении нагрузки и ток) в однофазных сетях изменяются по синусоидальному закону.

Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не 220 В, а 310 В. Чтобы у читателей не было никаких «непоняток» и сомнений, авторы считают своим долгом сообщить, что 220 В – это не амплитудное значение, а среднеквадратичное или действующее. Он равно U=U max /√2=310/1,414≈220 В. Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Можно сказать, что синусоидальное напряжение с амплитудным значением в 310 В за определенный промежуток времени произведет такую же работу, которое бы сделало постоянное напряжение 220 В за тот же промежуток времени.

Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле. Поэтому из трехфазной системы «выдергивается» один фазный и нулевой проводник и направляются к потребителям – квартирам или домам. Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям.

Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль (N) и защитный ноль (PE). Рассмотрим амплитудно-временную характеристику трехфазного напряжения.

Из графиков видно, что трехфазное напряжение – это совокупность трех однофазных, с амплитудой 310 В и среднеквадратичным значением фазного (между фазой и рабочим нулем) напряжения в 220 В, причем фазы смещены относительно друг друга с угловым расстоянием 2*π/3 или 120°. Разность потенциалов между двумя фазами называют линейным напряжением и оно равно 380 В, так как векторная сумма двух напряжений будет U л =2* U ф * sin(60°)=2*220* √3/2=220* √3=220*1,73=380,6 В , где U л – линейное напряжение между двумя фазами, а U ф – фазное напряжение между фазой и нулем.

Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ.

Как работает трехфазный асинхронный двигатель

Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Они, в свою очередь, вызовут магнитные потоки, также изменяющиеся по синусоидальному закону и также сдвинутые по фазе на 2*π/3=120°. Учитывая, что обмотки статора расположены в пространстве на таком же угловом расстоянии – 120°, внутри сердечника статора образуется вращающееся магнитное поле.

Это постоянно изменяющееся поле пересекает «беличье колесо» ротора и вызывает в нем ЭДС (электродвижущую силу), которая также будет пропорциональна скорости изменения магнитного потока, что на математическом языке означает производную от магнитного потока по времени. Так как магнитный поток изменяется по синусоидальному закону, значит, ЭДС будет изменяться по закону косинуса, ведь (sinx )’= cosx . Из школьного курса математики известно, что косинус «опережает» синус на π/2=90°, то есть, когда косинус достигает максимума, синус его достигнет через π/2 — через четверть периода.

Под воздействием ЭДС в роторе, а, точнее, в беличьем колесе возникнут большие токи, учитывая, что проводники замкнуты накоротко и имеют низкое электрическое сопротивление. Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться.

Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток. Рассчитывается частота по следующей формуле:

n 1 = f 1 *60/ p, где

  • f 1 – частота переменного тока.
  • p – число пар полюсов обмоток статора.

С частотой переменного тока все понятно – она в наших сетях электроснабжения составляет 50 Гц. Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если к каждой фазе подключается одна обмотка, отстоящая на 120° от других, то число пар полюсов будет равно единице. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками. Например, при числе пар полюсов равным двум, в статоре размещается обмотка фазы A, которая занимает сектор не 120°, а 60°. Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора.

Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц. Тогда магнитное поле статора будет вращаться с частотой n 1 =50*60/1=3000 об/мин. Если увеличить количество пар полюсов – во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту переменного тока, питающего обмотки. Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках

Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным. Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Тогда беличье колесо не будет «пронизывать» переменное магнитное поле, а оно будет для ротора постоянным. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Именно поэтому ротор находится «в постоянном стремлении» догнать статор, но никогда не догонит, так как исчезнет энергия, заставляющая вращаться вал двигателя.

Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:

n= n 1 -n 2 , где

  • n1 – частота вращения магнитного поля статора.
  • n2 – частота вращения ротора.

Скольжением называется отношение частоты скольжения к частоте вращения магнитного поля статора, оно рассчитывается по формуле: S=∆ n/ n 1 =(n 1 — n 2)/ n 1 .

Способы подключения обмоток асинхронных двигателей

Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V–V1 и V2, а обмотка W – W1 и W2.

Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, о концы C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая C2 и C5, а третья C3 и C6. Соответствие старых и новых систем обозначений представлено на рисунке.

Рассмотрим, как могут соединяться обмотки в АДКЗ.

Соединение звездой

При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы. На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название.

При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в 220 В, а к двум обмоткам, соединенных последовательно линейное напряжение 380 В. Главное преимущество такого способа подключения – это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной. Это позволяет двигателю «мягко» стартовать, но мощность его будет ограничена, так как протекающие токи в обмотках будут меньше, чем при другом способе подключения.

Соединение треугольником

При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей – и так по кругу. Если линейное напряжение в трехфазной сети 380 В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше.

При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7-8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс – запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.

Как определить, по какой схеме подключены обмотки двигателя?

Прежде чем подключать трехфазный двигатель к однофазной сети 220 В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. Для этого необходимо изучить табличку с техническими характеристиками – «шильдик», который должен быть на каждом двигателе.

На такой табличке — «шильдике», можно узнать много полезной информации

На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. На представленном шильдике видно, что двигатель имеет мощность 0,25 кВт и количество оборотов 1370 об/мин, что говорит о наличии двух пар полюсов обмоток. Значок ∆/Y означает, что обмотки можно соединить как треугольником, так и звездой, причем следующий показатель 220/380 В свидетельствует о том, что при соединении треугольником напряжение питающей сети должно быть 220 В, а при соединении звездой – 380 В. Если такой двигатель подключить в сеть 380 В треугольником, то обмотки его сгорят.

На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть 380 В. Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети 220 В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию. Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети 220 В, тем более что большинство современных АДКЗ могут подключаться по-разному.

На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху. В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки.

Как говорят электрики и паталогоанатомы: «Вскрытие покажет»

Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки. Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки.

Вскрытие клеммной коробки показало, что у «пациента» очевидная «звездная болезнь»

На фото «вскрытой» коробки видно, что провода, ведущие к обмоткам подписаны и перемычками соединены в одну точку концы всех обмоток – V2, U2, W2. Это свидетельствует о том, что имеет место соединение звездой. С первого взгляда может показаться, что концы обмоток расположены в логичном порядке V2, U2, W2, а начала «перепутаны» - W1, V1, U1. Однако, это сделано с определенной целью. Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник.

На рисунке видно, что положение перемычек меняется – соединяются начала и концы обмоток, причем клеммы расположены так, что те же перемычки используются для перекоммутации. Тогда становится понятно почему «перепутаны» клеммы – так легче перебрасывать перемычки. На фотографии видно, что клеммы W2 и U1 соединены отрезком провода, но в базовой комплектации новых двигателей всегда присутствуют именно три перемычки.

Если после «вскрытия» клеммной коробки обнаруживается такая картина, как на фотографии, то это означает, что двигатель предназначен для звезды и трехфазной сети 380 В.

Такому двигателю лучше возвращаться в свою «родную стихию» — в цепи трехфазного переменного тока

Видео: Отличный фильм про трехфазные синхронные двигатели, который еще не успели раскрасить

Подключить трехфазный двигатель в однофазную сеть 220 В можно, но при этом надо быть готовым пожертвовать значительным снижением его мощности – в лучшем случае она составит 70% от паспортной, но для большинства целей это вполне приемлемо.

Основной проблемой подключения является создание вращающегося магнитного поля, которое наводит ЭДС в короткозамкнутом роторе. В трехфазных сетях реализовать это просто. При генерации трехфазной электроэнергии в обмотках статора наводится ЭДС из-за того, что внутри сердечника вращается намагниченный ротор, который приводится в движение энергией падающей воды на ГЭС или паровой турбиной на ГЭС и АЭС. Он создает вращающееся магнитное поле. В двигателях происходит обратное преобразование – изменяющееся магнитное поле приводит во вращение ротор.

В однофазных сетях получить вращающееся магнитное поле сложнее - надо прибегнуть к некоторым «хитростям». Для этого надо сдвинуть фазы в обмотках по отношению друг к другу. В идеальном случае нужно сделать так, что фазы будут сдвинуты по отношению друг к другу на 120°, но на практике это трудно реализовать, так как такие устройства имеют сложные схемы, стоят достаточно дорого и их изготовление и настройка требуют определенной квалификации. Поэтому в большинстве случаев применяют простые схемы, при этом несколько жертвуя мощностью.

Сдвиг фаз при помощи конденсаторов

Электрический конденсатор известен своим уникальным свойством не пропускать постоянный ток, но пропускать переменный. Зависимость токов, протекающих через конденсатор, от приложенного напряжения показана на графике.

Ток в конденсаторе всегда будет «лидировать» на четверть периода

Как только к конденсатору прикладывают возрастающее по синусоиде напряжение, он сразу «накидывается» на него и начинает заряжаться, так как изначально был разряжен. Ток в этот момент будет максимальным, но по мере заряда он будет уменьшаться и достигнет минимума в тот момент, когда напряжение достигнет своего пика.

Как только напряжение будет уменьшаться, конденсатор среагирует на это и будет начинать разряжаться, но ток при этом будет идти в обратном направлении, по мере разряда он будет увеличиваться (со знаком минус) до тех пор, пока уменьшается напряжение. К моменту, когда напряжение равно нулю ток достигает своего максимума.

Когда напряжение начинает расти со знаком минус, то идет перезаряд конденсатора и ток постепенно приближается от своего отрицательного максимума к нулю. По мере уменьшения отрицательного напряжения и стремлении его к нулю идет разряд конденсатора с увеличением тока через него. Далее, цикл повторяется заново.

Из графика видно, что за один период переменного синусоидального напряжения, конденсатор два раза заряжается и два раза разряжается. Ток, протекающий через конденсатор, опережает напряжение на четверть периода, то есть — 2* π/4= π/2=90° . Вот таким простым путем можно получить фазовый сдвиг в обмотках асинхронного двигателя. Сдвиг фаз в 90° не является идеальным в 120°, но вполне достаточен для того, чтобы на роторе появился необходимый вращательный момент.

Сдвиг фаз также можно получить, применив катушку индуктивности. В этом случае все произойдет наоборот – напряжение будет опережать ток на 90°. Но на практике применяют больше емкостной сдвиг фаз из-за более простой реализации и меньших потерь.

Схемы подключения трехфазных двигателей в однофазную сеть

Существует очень много вариантов подключения АДКЗ, но мы рассмотрим только наиболее часто используемые и наиболее просто реализуемые. Как было рассмотрено ранее, для сдвига фазы достаточно подключить параллельно какой-либо из обмоток конденсатор. Обозначение C р говорит о том, что это рабочий конденсатор.

Следует отметить, что соединение обмоток в треугольник предпочтительней, так как с такого АДКЗ можно «снять» полезной мощности больше, чем со звезды. Но существуют двигатели, предназначенные для работы в сетях с напряжением 127/220 В. О чем обязательно должна быть информация на шильдике.

Если читателям встретится такой двигатель, то - это можно считать удачей, так как его можно включать в сеть 220 В по схеме звезда, а это обеспечит и плавный пуск, и до 90% от паспортной номинальной мощности. Промышленностью выпускаются АДКЗ специально предназначенные для работы в сетях 220 В, которые могут называть конденсаторными двигателями.

Как двигатель не называй — он все равно асинхронный с короткозамкнутым ротором

Следует обратить внимание, что на шильдике указано рабочее напряжение 220 В и параметры рабочего конденсатора 90 мкФ (микрофарад, 1 мкФ=10 -6 Ф) и напряжение 250 В. Можно с уверенностью сказать, что этот двигатель фактически является трехфазным, но адаптированный для однофазного напряжения.

Для облегчения пуска мощных АДКЗ в сетях 220 В кроме рабочего применяют еще и пусковой конденсатор, который включается на непродолжительное время. После старта и набора номинальных оборотов пусковой конденсатор отключают, и вращение ротора поддерживает только рабочий конденсатор.

Пусковой конденсатор «дает пинка» при старте двигателя

Пусковой конденсатор – C п, подключают параллельно рабочему C р. Из электротехники известно, что при параллельном соединении емкости конденсаторов складываются. Для его «активации» применяют кнопочный выключатель SB, удерживаемый несколько секунд. Емкость пускового конденсатора обычно минимум в два с половиной раза выше, чем рабочего, причем сохранять заряд он может достаточно долго. При случайном прикосновении к его выводам можно получить довольно сильно ощутимый разряд через тело. Для того чтобы разрядить C п применяют резистор, подключенный параллельно. Тогда после отключения пускового конденсатора от сети, будет происходить его разряд через резистор. Его выбирают с достаточно большим сопротивлением 300 кОм-1 мОм и рассеиваемой мощностью не менее 2 Вт.

Расчет емкости рабочего и пускового конденсатора

Для уверенного запуска и устойчивой работы АДКЗ в сетях 220 В следует наиболее точно подобрать емкости рабочего и пускового конденсаторов. При недостаточной емкости C р на роторе будет создаваться недостаточный момент для подключения какой-либо механической нагрузки, а избыточная емкость может привести к протеканию слишком высоких токов, что в результате может привести к межвитковому замыканию обмоток, которое «лечится» только очень дорогостоящей перемоткой.

Схема Что рассчитывается Формула Что необходимо для расчетов
Емкость рабочего конденсатора для подключения обмоток звездой – Cр, мкФ Cр=2800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(2800/√3)*P/(U^2*n* cosϕ)=1616,6*P/(U^2*n* cosϕ)
Для всех:
I – ток в амперах, A;
U – напряжение в сети, В;
P – мощность электродвигателя;
η – КПД двигателя выраженное в величинах от 0 до 1 (если на шильдике двигателя оно указано в процентах, то этот показатель надо разделить на 100);
cosϕ – коэффициент мощности (косинус угла между вектором напряжения и тока), он всегда указывается в паспорте и на шильдике.
Емкость пускового конденсатора для подключения обмоток звездой – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр
Емкость рабочего конденсатора для подключения обмоток треугольником – Cр, мкФ Cр=4800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(4800/√3)*P/(U^2*n* cosϕ)=2771,3*P/(U^2*n* cosϕ)
Емкость пускового конденсатора для подключения обмоток треугольником – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр

Приведенных формул в таблице вполне достаточно для того, чтобы рассчитать необходимую емкость конденсаторов. В паспортах и на шильдиках может указываться КПД или рабочий ток. В зависимости от этого можно вычислить необходимые параметры. В любом случае тех данных будет достаточно. Для удобства наших читателей, можно воспользоваться калькулятором, который быстро рассчитает необходимую рабочую и пусковую емкость.

Калькулятор: Расчет емкости рабочего и пускового конденсатора для асинхронных двигателей с короткозамкнутым ротором

Расчет емкости рабочего и пускового конденсатора

Внимание! При введении в поля десятичных дробей в качестве разделителя использовать точку.

Способ соединения обмоток электродвигателя (Y/∆)

Звезда (Y) Треугольник (∆)

Мощность двигателя, Вт

Напряжение в сети, В

Коэффициент мощности, cosϕ

КПД асинхронного двигателя, значение от 0 до 1

Рассчитанную емкость конденсатора лучше не увеличивать, так как это может привести к перегреву обмоток двигателя. После того как двигатель будет запущен под рассчитанной нагрузкой, можно измерить рабочий ток и скорректировать емкость, рассчитав ее по зависимости ее от напряжения и тока. Скорее всего, она окажется ниже. На электродвигателях мощностью менее 500 Вт пусковой конденсатор может вообще не понадобиться, все зависит от того есть ли механическая нагрузка на валу ротора. Например, запуск циркулярной пилы, электрофуганка, наждака, - происходит без нагрузки, а погружного насоса – сразу под нагрузкой.

При выборе конденсаторов необходимо учитывать, что в момент запуска на них может воздействовать более высокое напряжение, чем номинальное. Поэтому, если двигатель будет работать в сети 220 В, то конденсатор должен быть с номинальным напряжением не менее, чем 1,5*220=360 В, а лучше 400-450 В. Также необходимо учитывать то, что рабочий конденсатор задействован во все время работы двигателя, а пусковой – только во время запуска. В чем отличие и сходство пусковых и рабочих конденсаторов показано в следующей таблице.

Рабочий конденсатор
Изображение
Применение В электрических схемах асинхронных двигателей
Как подключается Последовательно с одной из обмоток трехфазного двигателя или со вспомогательной обмоткой однофазного двигателя Параллельно рабочему конденсатору
Используется в качестве Элемента, сдвигающего фазу в одной из обмоток трёхфазного двигателя, подключенного к однофазной сети Элемента, сдвигающего фазу в обмотке трехфазного двигателя
Назначение Получение вращающегося магнитного поля, необходимого для вращения ротора двигателя Получение вращающегося магнитного поля, создающего повышенный момент вращения, необходимого для запуска ротора двигателя
На какое время подключается На все время работы электродвигателя На момент старта и набора номинальных оборотов

Емкости рабочих конденсаторов обычно составляют десятки, а то и сотни микрофарад. Естественно, что чем больше емкость и выше рабочее напряжение, тем объемнее будет конденсатор. Рассмотрим в следующей таблице, какие конденсаторы могут применяться в качестве рабочих и пусковых.

Металлобумажные конденсаторы МБГО, МБГТ, МГБЧ, МГБП Полипропиленовые пленочные конденсаторы CBB60 (аналог К78-17), CBB65 Пусковые конденсаторы CD60
Изображение
Технология изготовления Нанесение металлизированной пленки на конденсаторную бумагу, являющуюся диэлектриком Нанесение металлизированной пленки на тонкую полипропиленовую ленту Алюминиевая фольга и электролит. В качестве диэлектрика используется диоксид алюминия
Рабочее напряжение, В 160, 200, 300, 400, 600, 1000 В 450, 630 В 220-450 В
Диапазон емкостей, мкФ 0,1-20 мкФ 1-150 мкФ 50-1500 мкФ
Материал и форма корпуса Металлический прямоугольный герметичный корпус Пластиковый цилиндрический корпус, у CBB65 металлический цилиндрический взрывозащищенный корпус Цилиндрический металлический взрывозащищенный корпус, покрытый пленкой из термостойкого поливинилхлорида
Где применяются В качестве рабочих конденсаторов асинхронных двигателей В качестве рабочих и пусковых конденсаторов асинхронных двигателей В качестве пусковых конденсаторов.
Достоинства Небольшая цена Небольшие габариты, малый разброс характеристик, долговечность Высокая емкость при небольших габаритных размерах
Недостатки Большие габариты, высокие потери, быстрое старение при повышенных температурах Цена выше, чем у металлобумажных конденсаторов Не рекомендуется применять в качестве рабочих конденсаторов

Бывает такая необходимость, когда под рукой нет емкости с нужным номиналом. Чаще всего ее не хватает и, «как назло», есть россыпь конденсаторов другой емкости. Выход из этой ситуации очень простой – если соединить конденсаторы параллельно, то результирующая емкость будет равна сумме все емкостей конденсаторов. Следует отметить, что при таком соединении все конденсаторы желательно использовать с одним рабочим напряжением, так как напряжение на их электродах будет одинаковым. Например, надо собрать конденсаторную батарею 50 мкФ с напряжением 400 В. Для этого можно подобрать 5 конденсаторов по 10 мкФ типа МГБО и все они должны иметь такое же напряжение. Если хотя бы один из конденсаторов будет иметь напряжение ниже, например 160 В, то он через непродолжительное время выйдет из строя.

Параллельное соединение делают наиболее часто. Раньше, когда были недоступны металлополипропиленовые конденсаторы использовались металлобумажные, которые соединяли параллельно и помещали в специальные ящики. На мощных станках такие батареи были довольно внушительных размеров. Современные конденсаторы позволяют обойтись без громоздких ящиков и могут размещаться прямо на корпусе электродвигателя.

При последовательном соединении результирующая емкость не будет являться суммой, а будет вычисляться по формуле: C= C 1 * C 2 /(C 1 + C 2) , где C 1, C 2 – емкости конденсаторов, подключенных последовательно. Очевидно, что результирующая емкость будет всегда меньше самой наименьшей из всех, подключенных последовательно, так как если умножить обе части выражения 1/С=1/С 1 +1/С 2 +…+1/С i на C 1 , то получим C 1 / C=1+ C 1 / C 2 +… C 1 / C i , что красноречиво свидетельствует о том, что отношение любой из емкости к общей будет всегда больше единицы. На языке математики это означает, что любая из емкостей больше результирующей.

С первого взгляда может показаться, что последовательное соединение конденсаторов ничего по своей сути не дает, ведь каждый микрофарад емкости стоит денег и в лучшем случае, если подключить две емкости по 40 мкФ, то результирующая будет всего-то 20 мкФ. Но, как видно из вышеприведенной схемы, приложенное напряжение распределяется по конденсаторам, поэтому если, например, подключить каждый из них с рабочим напряжением 250 В, то к ним смело можно прикладывать 500 В. А чем выше номинальное рабочее напряжение конденсатора, тем дороже он стоит. Поэтому последовательное соединение конденсаторов тоже иногда может принести практическую пользу.

Для удобства предлагаем читателям нашего портала воспользоваться калькулятором, который рассчитывает емкость двух последовательно соединенных конденсаторов.

Калькулятор: Расчет результирующей емкости двух последовательно соединенных конденсаторов

Выберите из списка емкость первого конденсатора, а затем второго, подключаемого последовательно. Нажмите кнопку «Рассчитать». В списке приведен ряд номиналов конденсаторов серии CBB60

Емкость первого конденсатора

Емкость второго конденсатора

CBB60 1 мкФ, 450 В CBB60 1.5 мкФ, 450 В CBB60 2 мкФ, 450 В CBB60 3 мкФ, 450 В CBB60 4 мкФ, 450 В CBB60 5 мкФ, 450 В CBB60 6 мкФ, 450 В CBB60 8 мкФ, 450 В CBB60 10 мкФ, 450 В CBB60 12 мкФ, 450 В CBB60 14 мкФ, 450 В CBB60 16 мкФ, 450 В CBB60 20 мкФ, 450 В CBB60 25 мкФ, 450 В CBB60 30 мкФ, 450 В CBB60 35 мкФ, 450 В CBB60 40 мкФ, 450 В CBB60 45 мкФ, 450 В CBB60 50 мкФ, 450 В CBB60 60 мкФ, 450 В CBB60 70 мкФ, 450 В CBB60 80 мкФ, 450 В CBB60 100 мкФ, 450 В CBB60 120 мкФ, 450 В CBB60 150 мкФ, 450 В

Применение электролитических конденсаторов в качестве пусковых

В электротехнике и электронике широко применяются электролитические конденсаторы, которые специалисты называю «электролиты». Их главной особенностью является то, что в качестве одного из электродов используется электролит (кислота или щелочь), которым пропитана специальная бумага. Другой электрод представляет собой алюминиевую фольгу, на которой есть тонкий слой диоксида алюминия Al 2 O3. Благодаря этому емкость электролитических конденсаторов при равных габаритах гораздо выше, чем у других.

Оборотной стороной медали электролитических конденсаторов является обеспечение условия полярности их подключения в цепях постоянного или пульсирующего тока. При неправильном подключении или появлении на электродах электролитического конденсатора переменного напряжения начинается ускоренный процесс деградации, повышение токов утечки, что приводит к сильному нагреву. В итоге давление внутри конденсатора растет и это может привести к взрыву. Не зря в верхней части корпуса электролита имеются специальные насечки – так называемый клапан, который при сильном повышении давления просто разрывается, но это будет контролируемый взрыв.

Описанные ранее в таблице пусковые конденсаторы CD60 являются электролитическими, но неполярными, которые способны работать в цепях переменного тока. Это достигается тем, что в них используется два электрода из алюминиевой фольги, покрытые оксидной пленкой, а бумага с электролитом находится посередине между ними. Естественно, что габариты (как и цена) таких конденсаторов в 1,5-2 раза выше, чем у обычных электролитов, но зато их можно включать в цепь переменного тока.

Неполярный электролитический конденсатор можно получить из двух полярных, только необходимо их последовательно и встречно соединить между собой положительными электродами, а отрицательными подключать в сеть. Тогда результирующая емкость будет рассчитываться по калькулятору. Например, если необходимо получить неполярный электролит емкостью в 100 мкФ и напряжением 500 В, то надо встречно подключить два конденсатора по 200 мкФ и напряжением не менее 250 В. Вот как раз здесь последовательное соединение конденсаторов может помочь.

На практике часто применяют подключение электролитических конденсаторов через диоды. Принципиальная схема такого подключения представлена на рисунке.

Диоды не позволяют конденсаторам потреблять «запретные плоды»

Известно, что диод пропускает электрический ток только в одном направлении – от анода к катоду. Получается, что положительные полупериоды будут пропускаться только к плюсу конденсатора, а отрицательные только к минусу. Это обеспечит работу конденсатора в штатном режиме. Для разряда пусковых конденсаторов параллельно им подключены резисторы мощностью не менее 2 Вт. После пуска и разгона двигателя пусковые конденсаторы отключаются и быстро разряжаются через резисторы. В такой схеме есть существенный недостаток – если «пробивает» диод, то конденсатор начинает работать как кипятильник электролита. Поэтому рекомендуется убирать конденсаторы в безопасное место или помещать в коробку или контейнер.

Видео: Неполярные электролитические конденсаторы

Выбор принципиальной схемы подключения

Одних пусковых и рабочих конденсаторов для подключения трехфазного электродвигателя к сети 220 В будет недостаточно. Вначале надо определиться по какой схеме будет подключаться двигатель, и какие коммутационные аппараты будут нужны для правильного пуска и остановки.

Вариантов подключения трехфазных двигателей в сеть 220 В существует очень много, но в рамках статьи предлагается рассмотреть только два наиболее часто используемых и надежных. Принципиальные схемы представлены на рисунке.

Принципиальная схема, изображенная справа, показывает подключение АДКЗ по схеме звезда. Как уже отмечалось ранее, такой вид подключения целесообразно использовать в однофазных сетях 220 В только для тех двигателей, которые предназначены для рабочих напряжений 127/220 В при схемах ∆/Y. Левая схема показывает подключение асинхронного двигателя по схеме треугольник. В этой схеме применены для пуска электролитические конденсаторы C1 и C2, подключенные совместно с диодами VD1 и VD2. Объясним назначение всех элементов схем.

  • И одна и другая схема подключается к сети 220 В через разъемы XP1 и XP
  • Для защиты от сильных перегрузок по току или от токов короткого замыкания в схемах применены плавкие предохранители FU1 и FU Они могут быть заменены на двухполюсный автоматический выключатель с номиналом 10 или 16 Ампер, в зависимости от мощности АДКЗ. Автомат лучше брать с характеристикой срабатывания C или на мощных станках даже D.
  • SA1 – это переключатель, который служит для реверса двигателя. Меняя его положение можно изменять направление вращения. В некоторых механизмах, например, подъемных, эта очень может пригодиться. В двигателях мощностью до 1 кВт можно вполне применять переключатель тумблерный типа ТВ-1-2 или клавишный на ток до 5 А.
  • SB1, SB1.2, SB1.3 – это контакты пускателя нажимного кнопочного ПНВС-10У2. Этот аппарат имеет три пары контактов: SB1.1 и SB1.3 – это контакты, которые при нажатии на кнопку «Пуск» фиксируются во включенном положении (они на корпусе пускателя находятся слева и справа), а контакт SB1.2, находящийся в центре, замыкается только при нажатии на кнопку «Пуск». Это очень удобно при запуске и разгоне двигателя, удерживая кнопку 1-3 секунды, двигатель стартует и набирает обороты при помощи пусковых конденсаторов, а затем кнопка отпускается, и двигатель продолжает работать без них. Для двигателей до 0,6 кВт применяют пускатели ПНВС-10, а для более мощных ПНВС-12.
  • KM и KM1 на схеме слева – это реле тока и его контакты соответственно. Оно также может применяться в схемах подключения АДКЗ. При возрастании тока до величин, превышающих номинальные, срабатывает реле KM и замыкает контакты KM1.1, подключающие пусковые конденсаторы C1 и C2. При убывании тока до номинальных величин реле KM отключается и размыкает контакты KM1.1. Возрастание рабочего тока происходит чаще всего тогда, когда резко возрастает механическая нагрузка на валу ротора АДКЗ. В качестве реле тока можно использовать модульное РТ-40У.
  • На левой схеме конденсатор C3 рабочий, а C1 и C2 – пусковые. На правой схеме C1 – пусковой, а C2 – рабочий. Резисторы R1 мощностью 2 Вт нужны для разряда пусковых конденсаторов.

Предлагаемые схемы успешно работают уже не один десяток лет и доказали свою жизнеспособность, поэтому и рекомендованы читателям нашего портала к использованию.

Необходимые инструменты и комплектующие

Для того, чтобы подключить электродвигатель потребуется не такой уж и большой набор электротехнического и монтажного инструмента.

Изображение Наименование Назначение
Набор изолированных отверток различных размеров и типов шлицев Для электромонтажных и монтажных работ.
Пассатижи различных размеров Для электромонтажных работ.
Кусачки Для резки проводов.
Стриппер Для снятия изоляции с проводов, а также резки проводов или обжима клемм (зависит от модели стриппера).
Отвертка-индикатор Для контроля наличия фазы в цепи.
Мультиметр Для измерения напряжения, силы тока, проверки конденсаторов и резисторов, контроля целостности обмоток электродвигателя.
Токовые клещи Для измерения силы тока у работающего АДКЗ. Помогает при подборе рабочего и пускового конденсатора. Применение необязательно, но желательно.
Набор диэлектрических ключей Для монтажа проводов и перемычек в клеммных коробках двигателей.
Электродрель с набором сверел по дереву и металлу Для монтажных работ
Молоток слесарный Для монтажных работ
Кернер Для кернения отверстий под сверление.
Заклепочник ручной Для крепления рабочих и пусковых конденсаторов к корпусу АДКЗ. Применение необязательно, так как можно крепить и на винты, но заклепки предпочтительнее из-за возможности самораскручивания винтов при вибрации двигателя.
Паяльник 60 Вт Для пайки на клеммах конденсаторов.
Кримпер ручной Для обжима наконечников и клемм.

Прежде всего, перед монтажными работами нужно подумать о том, где будет смонтирован асинхронный двигатель. В зависимости от возложенных задач основание может быть металлическим, текстолитовым, деревянным и другим. Также на этом основании должны будут смонтированы нажимной пускатель, рабочие и пусковые емкости, при необходимости токовые реле и другие аппараты коммутации контроля и защиты.

Электролитические конденсаторы необходимо убрать в отдельный ящик, чтобы при возможном их взрыве брызги электролита не поразили людей. Если оборудование будет смонтировано на столе или верстаке, то можно конденсаторы «спрятать», закрепив их на нижней поверхности столешницы.

Один изспособов спрятать конденсаторы «от греха подальше»

Для монтажа асинхронного двигателя и подключения его в сеть 220 В понадобятся следующие комплектующие:

Изображение Наименование Описание
Пластиковый бокс на 4 места наружного монтажа Для размещения автоматического выключателя и токового реле АДКЗ.
Металлическая перфорированная монтажная лента Для крепления оборудования к основанию
Саморезы по дереву и металлу Для крепления оборудования
Заклепки вытяжные 3*6 или 3*8 Для крепления рабочих конденсаторов к корпусу электродвигателя
Автоматический выключатель C10 или C16 При мощности АДКЗ до 2 кВт применяют автомат на 10 А (C10). При мощности более 2 кВт – на 16 А (C16).
Модульное токовое реле РТ-40У Для контроля тока в фазосдвигающей обмотке двигателя. РТ-40У имеет три диапазона измерения тока (0,1-1 А, 0,5-5 А, 3-30 А), регулируемый порог срабатывания (10-100%), регулируемое время задержки срабатывания (0,2-20 с) и может коммутировать силовую нагрузку до 16 А, 250 В. Применяется опционально.
Кнопочный выключатель (пост кнопочный) нажимного действия ПНВС-10 или ПНВС-12 Для включения асинхронного двигателя в сеть и его отключения, а также для обеспечения запуска. Для двигателей до 6 кВт номинальной мощности применяют ПНВС-10, а для АДКЗ с P=0,6-2,2 кВт – ПНВС-12.
Переключатель тумблерного типа ТВ-1-1 или ТВ-1-2 Для обеспечения реверса электродвигателя. Номинальный ток переключателя должен соответствовать мощности АДКЗ.
Провод монтажный ПВ-3 (ПУгВ) площадью поперечного сечения 1,5 или 2,5 кв. мм Для подключения оборудования. При мощности АДКЗ до 2,2 кВт достаточно ПВ-3 1,5 в, мм, а для большей – 2,5 кв. мм.
Наконечники штыревые втулочные изолированные НШВИ для проводов 1,5 и 2,5 кв. мм. Для оконцевания опрессовкой монтажного провода ПВ-3 при подключении в клеммы автоматических выключателей или токовых реле.
Виброустойчивые кольцевые изолированные наконечники ВНКИ Для оконцевания опрессовкой монтажных или питающих проводов при подключении в клеммы оборудования с винтами или шпильками. В зависимости от диаметра винтов или шпилек подбираются ВНКИ 2,5-4, ВНКИ 2,5-5, ВНКИ 2,5-6.
Виброустойчивые плоские разъёмы типа «мама» с ПВХ-манжетой ВРПИ-М Для оконцевания опрессовкой монтажных проводов при подключении рабочих или пусковых конденсаторов, имеющих соответствующие разъемы типа «папа». Наконечник ВРПИ-М-2,5 подходит для одключения провода1,5 и 2,5 кв. мм.
Трубка термоусадочная Для изоляции клемм конденсаторов после подключения

Подключение трехфазного двигателя в однофазную сеть 220 В

После подготовки всех необходимых комплектующих необходимо убедиться в том, что работа будет производиться только при снятом напряжении. Должна только быть возможность для подключения освещения и электроинструментов. На рабочем месте надо приготовить все инструменты и подготовить коробку или ведро, куда будет сбрасываться мусор.

Основные этапы работ по подключению АДКЗ представим в виде таблицы:

Изображение Описание этапов монтажа
Прежде всего надо проверить целостность обмоток двигателя. Для этого снимается крышка клеммной коробки, убираются все перемычки, мультиметр ставится на измерение сопротивления в омах. Должны прозваниваться только начала и концы каждой из обмоток в отдельности. Никаких электрических связей между разными обмотками и между обмотками и корпусом двигателя быть не должно.
Мультиметром проверяется целостность пусковых и рабочих конденсаторов. Перед проверкой необходимо разрядить конденсатор, закоротив его выводы. Мультиметр для измерения конденсаторов ставится на измерение в мегаомах, которое должно быть не менее 2 Мом по прошествии некоторого времени, пока емкость заряжается. Если прибор имеет функцию измерения емкости, то задача упрощается.
Проверяется целостность диодов и резисторов, если они используются в схемах пусковых конденсаторов. Диоды должны пропускать постоянный ток только в одном направлении, а резисторы в обоих. Выставив нужный предел, можно измерить сопротивление резисторов.
Трехфазный асинхронный двигатель крепится к основанию. Следует учесть, что такие двигатели имеют немалый вес и при работе могут вибрировать., поэтому основание должно быть прочным, массивным и устойчивым. Крепление может быть болтами или гайками с шайбами на шпильках через виброгасящие прокладки или стойки.
Закрепляется в намеченных местах оборудование коммутации и защиты – бокс для автоматического выключателя и токового реле, кнопочный пускатель ПНВС-10 или ПНВС-12, тумблер реверса двигателя.
Для крепления тумблера реверса ТВ-1-2 иногда целесообразно использовать крышку клеммной коробки двигателя. Для этого необходимо вначале примерить тумблер в коробке, чтоб он не мешал подключению клемм. После этого дрелью сверлится отверстие диаметром 12,1 мм и тумблер закрепляется на крышке гайкой.
Рабочие конденсаторы могут крепиться отдельно от электродвигателя в коробках, боксах, ящиках – все зависит от требуемой емкости. Но современные металлопропиленовые конденсаторы могут крепиться непосредственно к ребрам корпуса АДКЗ при помощи металлической монтажной ленты. Для этого оборачивают конденсатор лентой и отрезают нужный размер, оставляя ушки для крепления.
Затем сверлят (при необходимости) отверстие в хомуте из металлической ленты. На корпусе асинхронного электродвигателя могут быть монтажные отверстия, но если их нет, то их можно просверлить, предварительно выполнив кернение.
Крепление конденсатора металлической полосой к корпусу двигателя предпочтительней делать заклепками, учитывая вибрацию при работе.
Хорошим решением является крепление рабочего и пускового конденсаторов в безопасном месте: под столом, верстаком. При этом впоследствии все равно желательно прикрыть конденсаторы защитным кожухом.
После закрепления всех деталей начинается коммутация, руководствуясь принципиальной схемой. Перемычки в клеммной коробке ставятся в положении звезда – для двигателей с рабочим напряжением 127/220 В.
Для двигателей с рабочим напряжением 380/220 В и схемами подключения Y/∆, перемычки переставляются для схемы треугольник.
Рабочие и пусковые конденсаторы могут иметь выводы в виде проводов, клемм под пайку и плоских клемм «папа» под разъемы. Металлобумажные конденсаторы имеют всегда соединение под пайку, металлополипропиленовые и неполярные электролитические – в виде проводов или плоских клемм. Предпочтительней всего выбирать конденсаторы с плоскими клеммами «папа» - это сильно облегчает монтаж и демонтаж при замене.
Отмеряются и обрезаются нужные отрезки провода с учетом трасс их совместной или одиночной прокладки. Концы очищаются от изоляции стриппером на длину 10-11 мм.
Для подключения к клеммнику двигателя провода окоцовываются и обжимаются наконечниками ВНКИ соответствующего размера под клемму и провод при помощи кримпера.
Все провода, идущие на клеммник АДКЗ оконцовываются, затем продеваются через кабельный ввод и накидываются на клеммы. На шпильки клемм накидываются шайбы и гайки, но пока не затягиваются. Никакой из проводов не должен идти в натяг, а должна быть предусмотрена возможность повторной оконцовки. Если кабельный ввод снабжен зажимным сальником, то после протяжки проводов его можно зажать.
Для подключения клемм конденсаторов, концы проводов оконцовываются клеммами ВРПИ-М при помощи кримпера.
После подключения клеммы ВРПИ-М к конденсатору, контакт изолируют при помощи термоусадочной трубки соответствующего диаметра, которая надевается на провод перед подключением. Также можно использовать изолированные клеммы.
К тумблеру реверса ТВ-1-2 провода припаиваются и изолируются термоусадочными трубками. Аналогично провода припаиваются и к металлобумажным конденсаторам, если они используются.
Для подключения ПНВС-10 или ПНВС-12 можно использовать либо наконечники НШВИ (НШВИ (2)), либо НВИ, которые очень удобно подключать под винтовые клеммы без их разборки. Применение подобных наконечников в клеммных коробках двигателя недопустимо.
Для подключения автоматических модульных выключателей или токовых реле наиболее целесообразно использовать наконечники НШВИ (НШВИ (2)), которые также обжимаются кримпером.
К болту заземления на двигателе обязательно подключается оконцованный наконечником ВНКИ провод защитного нуля (PE) желто-зеленого цвета. Этот болт может находиться как в клеммной коробке, так и снаружи на корпусе. Он обозначается специальным знаком.
После проверки всех соединений и сверки с принципиальной электрической схемой, затягиваются клеммы асинхронного двигателя при помощи диэлектрического ключа. Также затягиваются винтовые клеммы автоматического выключателя, токового реле и пускателя ПНВС-10 или ПНВС-12. На вход автоматического выключателя подключается провод со штепсельной вилкой.
На вход схемы подается напряжение. При помощи кнопки «Пуск» на ПНВС делается первый пробный запуск двигателя. Если все расчеты корректны и монтаж сделан правильно, то двигатель сразу должен запуститься.

Если двигатель уверенно запустился, то - это вовсе не означает, что он будет уверенно работать и дальше, поэтому следует его вначале проверить в режиме холостого хода, а потом под нагрузкой.

  • Если даже в режиме холостого хода двигатель начинает сильно нагреваться, то надо попробовать уменьшить емкость рабочего конденсатора.
  • Если двигатель при нажатии кнопки «Пуск» гудит, но не стартует, то надо попробовать ему помочь это сделать, крутанув вал. Если такая мера помогла ротору начать вращаться, то можно попробовать увеличить немного емкость пускового конденсатора.
  • Если под планируемой штатной нагрузкой двигатель останавливается, то увеличивают емкость рабочего конденсатора или применяют реле тока, которое подключает «на помощь» пусковые конденсаторы. Однако, следует помнить, что двигатель не сможет выдать мощности больше, чем паспортная.

Самым корректным способом подбора емкости пускового конденсатора будет измерение рабочего тока под нагрузкой и вычисление ее по зависимости от напряжения и тока. Ранее эта формула была приведена в таблице. После того как двигатель полностью настроен, еще раз подтягивают все клеммы и закрывают все места подключения крышками. Провода, если они идут группой, можно проложить совместно в гофротрубе или поместить их в термоусадочную трубку.

Заключение

Подводя итоги статьи, авторы еще раз напоминают читателям, что подключение трехфазного двигателя в сеть 220 В вполне осуществимо, причем собственными силами. И, хотя приходится жертвовать потерей мощности, но открываются безграничные возможности использования различных полезных механизмов. Трехфазные асинхронные двигатели обладают исключительной надежностью, до сих пор работают «ветераны», выпущенные еще в 50-х годах XX века.

Авторы статьи рекомендуют читателям портала перед первым пуском не производить окончательный монтаж всех узлов, а собрать схему на стенде. Если испытания пройдут успешно, то можно уже смонтировать все так, как задумано. И не стоит пренебрегать теми советами, которые были даны в этой статье, так как в ней учтен многолетний опыт и применен научный подход.

Удачных вам запусков электродвигателей и побольше полезных механизмов!

Видео: Как подключить электродвигатель на 220 В

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.




Рекомендуем почитать

Наверх