Схема резерва постоянного напряжения. Схемы бесперебойного питания для устройств на микроконтроллерах

На iOS - iPhone, iPod touch 23.06.2019
На iOS - iPhone, iPod touch

Принципиальная схема показанная на рисунке автоматически подключает резервную батарею питания к нагрузке и отключает ее при подачи напряжения питания с сетевого источника питания. Схема основана на микросхеме LTC4412 от Linear Technology, которая управляет внешним MOSFET транзистором. Транзистор в схеме используется как идеальный диод, падение напряжение на котором не более 20 мВ. Падение напряжения на диоде Шоттки при его прямом включении составляет 0,2-0,4 вольт, а для обычных, например кремниевых диодов, это значение порядка 0,6-0,7 вольт.

Входное напряжение может быть в пределах от 3 до 28 В, напряжение батареи от 2,5 во 28 В. Максимальный ток нагрузки не более 2А. Ток потребления микросхемы LTC4412 не более 11 мкА.

  • Похожие статьи
  • 20.09.2014

    Радиоволны излучаемые антенной представляют собой электромагнитные и магнитные поля. Скорость распространения радиоволн в пространстве 300000 км/с. Длина волны λ (м) и частота f (МГц) связаны между собой соотношением:λ=300/f. Такое соотношение удобно для практики, поэтому радиовещательные станции работают в диапазонах: километровых — 30…300кГц гектаметровых — 300кГц…3МГц декаметровых — 3…30МГц метровых — …

  • 28.09.2014

    На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, …

  • 04.10.2014

    Свинцово-кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в их находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку …

  • Принципиальная схема устройства автоматического переключения, показанная здесь, построена на интегральной микросхеме LTC4412 от Linear Technologies. Эта схема может быть использована для автоматического переключения нагрузки между батареей и сетевым адаптером (блоком питания). Микросхема LTC4412 управляет внешним P-канальным MOSFET транзистором, чтобы создать подобие диода Шоттки, функционируещего как выключатель питания для распределения нагрузки. Это делает LT4412 идеальной заменой в источниках питания. Широкий спектр МОП полевых транзисторов может управляться с помощью интегральной микросхемы, и это дает большую гибкость в плане выбора тока нагрузки.

    Принципиальная схема переключателя питания

    LT4412 также имеет кучу хороших функций, таких как защита аккумулятора от переплюсовки, ручное управление, защита затвора в транзисторе и другие. Собственный ток потребления схемы составляет всего 11 мкA. Диод D1 предотвращает обратное протекание тока к сетевому адаптеру, когда нет питающей сети. Конденсатор С1 – конденсатор выходного фильтра. Вывод 4 интегральной микросхемы называется выводом состояния. Некоторых функций микросхемы не показано на схеме.

    Транзистор FDN306P не рекомендуется при использовании брать руками, полевые транзисторы очень часто выходят из строя именно по причине статического напряжения, которое есть на теле каждого человека. При пайке его на печатную плату было бы не плохо заземлить себя специальном браслетом, и заземлить сам паяльник, но если используете паяльную станцию, этого делать не надо. Основные параметры полевого транзистора таковы (из даташита):

    • 1) Максимальный долговременный ток-2.6А;
    • 2) Максимальное напряжение VDSS 12В;
    • 3) Быстрая скорость переключения;
    • 4) Высокая производительность технологии;

    Рабочая температура транзистора составляет от -55 до +150 градусов Цельсия. Рабочая температуры микросхемы от -40 до +80, температура при пайке составляет 300 градусов, в течении не более 10 секунд. Распиновку выводов можно увидеть в даташите по ссылке выше или на картинке.

    • 1) Схему собирайте на печатной плате высокого качества;
    • 2) Входное напряжение адаптера может быть от 3 до 28В;
    • 3) Напряжение батареи может лежать в пределах от 2.5V к 28V;
    • 4) Не подключайте нагрузку, которая потребляют более 2А;
    • 5) D1 (1N5819) -диод Шоттки, ращитаный на 1А;
    • 6) Q1 (FDN306P) – P-канальный MOSFET транзистор.

    Применение данной схемы – различные источники резервного питания, где нужна экономичность и стабильность.

    В работе электроснабжения коттеджа или загородного дома нередко случаются перебои в электропитании, особенно при большом удалении от мегаполисов. Для обеспечения автономного резервного электроснабжения сегодня предлагается немало эффективных приборов и схем, которые защищают чувствительную к перепадам напряжения бытовую технику и высокотехнологичное оборудование. Несложно представить себе, как чувствуют себя в глубинке хозяева домов в холодное время года при отключении электричества, особенно если на нем работает система автономного отопления и все электроприборы. Чтобы решить эту проблему, стоит установить в доме резервное электроснабжение.

    Способы устранения перебоев в системе подачи электроэнергии

    Выключение линии электропередач несет немало неудобства, и чтобы предотвратить многие проблемы, связанные с отключением электричества, разработано немало вариантов. Специалисты рекомендуют не отказывать себе во всех благах цивилизации, тем более, что ничего не надо изобретать - приборы для резервного электроснабжения дома есть в продаже. Они призваны стать альтернативным источником, который будет обеспечивать электричеством в том объеме, который длительное время будет обеспечивать работу основных электроприборов:

    • охранных и противопожарных систем;
    • принудительную вентиляцию и кондиционирование;
    • запуск твердотопливного котла;
    • насосы для работы водоснабжения и канализации;
    • бытовые электроприборы и другое оборудование.

    Все они не могут работать без электросети, поэтому так важна эффективная схема резервного электроснабжения. У многих загородных построек не всегда гарантируется надежная работа централизованной подачи электричества. Из-за нестабильных характеристик напряжения в сети и частых неплановых отключений электроснабжения на несколько часов, а то и суток, такие системы или чувствительные электроприборы выходят из строя. Загородный дом не должен быть местом решения постоянных проблем, а отличным местом для отдыха. Бесперебойное автономное электроснабжение коттеджа или загородного домовладения должно функционировать стабильно - для работы всех систем жизнеобеспечения.

    Существует несколько вариантов решения проблемы с перебоями электропитания. Например, монтаж автономного резервного источника электроснабжения бесперебойного типа, который можно приобрести вместе с комплектом АКБ (аккумуляторных батарей). Они способны работать автономно некоторое время, в зависимости от их мощности и общей нагрузки.

    Аккумуляторы для резервной системы питания гарантирует бесперебойное снабжение электроэнергией потребителей при длительных отключениях сети или при отсутствии внешних электросетей в удаленных районах.

    Проект резервного электроснабжения

    В проект резервного электроснабжения входит вся документация, где учитывается суммарная мощность всех автономных источников. В систему резервного автономного энергоснабжения загородного дома могут входить и ультрасовременные мини-электростанции, и традиционные источники электричества. Чем больше предполагается источников питания сети, тем больше эффективность. Однако, в такой проект должны быть внесены все показатели мощности генераторов и емкости аккумуляторов.

    Проектная мощность автономного резервного электроснабжения, включая инвертор, рассчитывается так - суммарная мощность работающих устройств плюсуется и умножается на 3. Это вызвано тем, что при запуске техника тянет максимальное количество энергии. Данный показатель учитывается для того, чтобы автономная сеть справлялась с максимально возможной нагрузкой по проектной мощности. В расчеты входят потребности электропитания питаемых схемой приборов:

    • активные нагревательные (плита и электрочайник, лампочки накаливания);
    • индуктивные (холодильник, стиральная машина, телевизор, микроволновка и пр.)

    Их потребляемую мощность суммируют (по таблице или согласно прилагаемой инструкции) и добавляют 20-25% от максимальной величины, на тот случай, если все электроприборы будут работать одновременно. То есть, небольшая дача с минимальным освещением, телевизором и холодильником будет работать по схеме резервного электроснабжения загородного дома при мощности в 2 кВт. Если пользоваться электроинструментом и другими приборами, то прибавляем еще 5-6 кВт.

    Разновидности генераторов

    Сегодня наиболее распространенные автономные резервные источники электроснабжения:

    • станция бесперебойного питания;
    • дизельный генератор;
    • ветряной генератор;
    • бензиновый генератор;
    • инвертор.

    1. Бензиновый электрогенератор считается одним из наиболее эффективных, хотя экономичным его не назовешь. Но для его достаточно при потребляемой мощности порядка 6 кВт. Такие источники энергии уместны там, где нет другой альтернативы, а бензин можно транспортировать без проблем. Например, если загородный дом стоит где-то у трассы или недалеко от бензоколонки.

    Основные преимущества:

    • почти бесшумная работа;
    • хорошо запускается в зимний период;
    • может использоваться как резервный источник.

    2. В большом домовладении потребление энергии довольно больше, особенно если много осветительных приборов и нет другого отопления, кроме электрокаминов. При потребляемой мощности более 6 кВт специалисты рекомендуют приобрести дизельный генератор. Однако тут тоже не обойдется без значительных финансовых вложений. Зато он работает практические в любых условиях.

    3. Ветряной генератор, или в просторечии «ветряк», довольно эффективен, но он может быть установлен в местности, где всегда дуют довольно сильные ветра или тянут по гонному ущелью сезонные сквозняки.

    4. Среди резервных источников электроснабжения нового поколения также нередко используются импульсные конденсаторы (ИКЭ). Прекрасная альтернатива другим системам автономного электропитания, практически инновационное оборудование, которое можно приобрести в готовом виде. Эти портативные модели предлагают улучшенные характеристики бесперебойного питания, которые могут работать автономно или в системе резервного электроснабжения. Они предполагают такой комплект:

    • преобразователь напряжения;
    • реле переключения от сети к аккумулятору;
    • зарядное устройство.

    При подключении к схеме инвертора и автономных аккумуляторных батарей тоже получается мини-электростанция с достаточной мощностью.

    Инверторная система на основе солнечных панелей

    Во всем мире установка на крышу солнечных панелей - не новинка, а привычное дело. Правда стоит это дорого, но инвестиции через время окупаются. Энергия солнца легко преобразуется в переменный ток, однако не в каждом регионе ее достаточно для зарядки мощных батарей и полноценного обеспечения целого жилого дома.

    В летнее время для зарядки аккумулятора для резервного электроснабжения этого может быть вполне достаточно, чтобы накапливать его для работы электросети в вечернее время - в течение нескольких часов. С дрогой стороны, такие панели оправданы, когда есть второй источник автономного электроснабжения, такой как дизельный генератор или инвертор.

    Основное оборудование для работы по схеме получения энергии солнца и преобразования в электричество:

    • солнечные панели, монтируемые на крыше дома или в другом месте;
    • контроллер электрической зарядки;
    • автоматическая защита постоянного/переменного тока;
    • набор аккумуляторных батарей большой емкости;
    • инверторный блок требуемой мощности.

    Получается небольшая домашняя электростанция на территории удаленного больших городов коттеджа. Она может быть дополнена эффективной схемой инверторного типа, где источники энергии призваны эффективно дополнять друг друга.

    Система инверторного типа идеально подходит для обеспечения бесперебойного питания в комплексе с солнечными панелями. Генератор можно отключать, пока работает аккумулятор, заряжаемый от энергии солнца, существенно увеличивая срок его работы.

    Инвертор

    Инвертор - важная составляющая автономного электроснабжения загородного дома или коттеджа. Он дает возможность периодически отключать генератор, чтобы минимизировать расходы топлива. За рубежом, как альтернативная схема обеспечения электричеством, инверторы считаются неотъемлемой частью автономного электропитания. Они универсальны и в том случае, когда нет возможности использовать энергию ветра и солнца.

    Этот аппарат сверхнадежен, функционирует по схеме «включи и забудь». Современные инверторы гарантируют бесперебойное резервное питание не только объектов недвижимости, но и «мобильного» жилья типа вагончики, яхты и авто-трейлеры и пр.

    Для защиты от перебоев электропитания при отключении электричества хорошо справляется инвертор для резервного электроснабжения дома. При напряжении 220В он способен обеспечить снабжение электроэнергией, при минимальных затратах на обслуживание. При этом он предоставляет возможность подключать аккумуляторные батареи, дающие длительное резервное снабжение электричеством. Инверторы относят к линейке наиболее выносливых ИБП для использования домашних электроприборов и чувствительной к перепадам напряжения технике.

    Важные плюсы инвертора:

    • бесшумное функционирование;
    • возможность установки в любом помещении;
    • минимальный уход и обслуживание;
    • высокая надежность;
    • длительная гарантия производителя;
    • отменное качество;
    • стабильная подача электричества;
    • автоматический переход с подключением на схему резервного электроснабжения.

    Инвертор при отключении питания линии электропередач на улице или в поселке сроком до суток - вне конкуренции. Бесперебойное электроснабжение дачи или загородного участка с помощью инвертора при частом отключении выгоднее схемы работы с генератором.

    Совет: Как вариант - генератор плюс инвертор. Тут суммируются их «плюсы» и нивелируются «минусы». Инвертор способен запустить генератор если разряжены аккумуляторы, а потом отключится без необходимости. Генератор шумит, поэтому целесообразно включать его днём, пока находиться на работе или вне дома, а вечером переходить на бесшумный инвертор.

    Особенности работы электрогенератора

    Электрические генераторы работают на разных источниках энергии и вырабатывают:

    • 1-фазный ток - для питания приборов на 220 Вт;
    • 3-фазный ток - на 380 Вт.

    Генератор для резервного электроснабжения очень эффективен, а его мощность может превышать 16 кВт, поэтому вполне подходит для полноценного автономного обеспечения загородного дома. Как вариант - для поддержки бесперебойного питания при частых отключениях электричества.

    Генератор открытого исполнения идет в комплекте с:

    • автоматической системой вентиляции;
    • щитом для обеспечения работы;
    • системой газоотведения выхлопов;
    • модулем автоматической топливной дозаправки;
    • системой автоматического тушения пламени (противопожарные меры).

    Минусы генератора:

    Без смены фильтров, свечей и масла генератор выходит из строя, а также ему требуется:

    • помещение с вентиляцией;
    • канистры для транспортировки дизельного топлива или качественной зимней солярки для работы в холодное время года;
    • фоновый шум и претензии соседей при несогласованных включениях;
    • запах перерабатываемого дизтоплива;
    • потребность в периодическом облуживании, заправке и контроле работы;
    • соблюдение графика замены расходных материалов.

    Хотя этих проблем не так много, чтобы отказаться от возможности его использования, но это нарушает покой и нормальный отдых в загородном доме. И хотя он гарантирует резервное электроснабжение и бесперебойное питание дома, его лучше использовать в комплексе с другими системами и в отсутствие хозяев дома.

    Именно по этой причине дизельные электрогенераторы чаще всего применяется как резервный источник обеспечения электричеством. Сегодня на отечественном рынке предлагается немало разновидностей дизель-генераторов, используемых для резервного электроснабжения загородных домов, а также для отопления и подачи воды. Современные дизельные электростанции идут в модульном и классическом (открытом) варианте.

    Довольно часто возникает необходимость обеспечить резервное питания вашего устройства, в данной статье рассматривается 4 способа как обеспечить это.

    Самый простой

    Самый простой способ перейти на резервное питание-2 диода

    Будет открыт только один из диодов, от того источника питания, напряжение на котором больше. Преимущества схемы-простота и дешевизна. Недостатки схемы очевидны, зависимость напряжения на нагрузке от тока, типа диода(шотки или обычный), температуры. Напряжение всегда будет ниже чем у источника на величину падения напряжения на диоде.

    Немного сложней

    Это схема немного сложнее, работает она следующим образом: когда напряжение VCC присутствует, и оно больше чем напряжение резервного источника(в данном случае это батарея BT2), то мосфет закрыт, потому что напряжение на затворе(Gate) выше чем на Истоке(Source), пропуск напряжения к нагрузке и Истоку обеспечивает открывшийся диод D3. Когда VCC пропадет, напряжение на Затворе пропадет вслед за ним, зато откроется диод внутри мосфета, обеспечив напряжение на Истоке, ну а поскольку на истоке теперь есть напряжение, а на Затворе нет, то транзистор полностью откроется, обеспечив коммутацию батареи без потери напряжения. Данный способ отлично подходит для коммутации питания для модуля GSM, внешнее напряжение выбираем 4,5в, тогда к модулю через диод D3 придет 4,2-4,3в а от батареи напряжение будет идти без потерь.

    Дорогой но без потерь

    Без потерь напряжения можно коммутировать источники с помощью специальных микрочхем, в частности LTC4412 скачать даташит Однако, эта микросхема бывает дефицитной и дорогой.

    Оптимальный без потерь

    Ну вот и подошли к оптимальному способу, причем без потерь. Для начала рассмотрим блок схему LTC4412

    Сразу понятно, что в ней нет ничего сложного, так почему бы не повторить её на дискретных элементах? Блок PowerSorceSelector-это матрица из двух диодов, обеспечивает питание остальной схемы, A1-это компаратор, AnalogController-непонятно что, однако можно предположить, что ничего особо важного он не делает, позже станет понятно почему.

    Попробуем изобразить это.

    DA3-это компаратор. Он сравнивает напряжения на двух источниках. Питается через диод D4 или D5. Когда напряжение на VCC больше чем на батарее, на выходе компаратора устанавливается высокий уровень, это закрывает VT2, и открывает VT3, потому что он подключен на выход через инвертор. Таким образом, VCC проходит на нагрузку без потерь. В случае, когда VCC будет меньше батареи, низкий уровень на выходе компаратора закроет VT3 и откроет VT2.

    Надо сказать пару слов о выборе деталей. DA3, DD1 должны иметь потребление, которое допустимо в данной системе, выбор очень широк, от единиц миллиампер, до сотен наноампер (например MCP6541UT-E/OT и 74LVC1G02). Диоды обязательно шотки, если падение на диоде будет выше порога открытия транзистора(а у IRLML6402TR он может быть -0,4в), то он не сможет полностью закрыться.

  • Электроника для начинающих
  • Пролог

    В была рассмотрена постановка задачи на разработку маломощного резервного источника питания на мощность 60 Вт с синусом на выходе для циркуляционного насоса системы отопления. Была выбрана концепция реализации данного устройства. В этой статье пойдет речь о разработке электрической схемы устройства, с необходимыми расчетами для выбора номиналов компонентов, входящие в состав устройства.

    Вооружившись САПРами и учебниками черновиками, карандашом и GOOGLE приступим к проектированию. Начнем с простого – система питания устройства.

    Организация питания

    Для питания элементов схемы нам понадобится три типа шины постоянного напряжения в 12, 5 и 3,3 Вольта.

    Двенадцати вольтная шина – основная. Она является питанием моста, осуществляющего закачку тока в низковольтную обмотку линейного сетевого трансформатора. С нее же питаем драйвера транзисторов, входящих в мост. Коммутирующие сеть реле тоже будут питаться с данной шины.

    Пяти вольтная шина необходима для питания токовой микросхемы ACS712, микросхемы логики, символьного ЖКИ и т.д.

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Лирическое отступление

    Для наглядности куски схемы рисовались в Proteuse v 7.7. В его библиотеках есть не все использованные компоненты, так что некоторые компоненты заменены на аналоги. Окончательная, полная схема будет в формате САПРа Dip Trace. Со всеми утвержденными компонентами. Но это уже в следующей статье.


    Родилась вот такая схема:

    Картинка кликабельна.

    Формирователи шины 5 и 3,3 Вольта организованы на 1 % LDO стабилизаторах типа NCP1117STхх. Аналоговое питание модуля АЦП берется с шины 3,3 Вольта через индуктивность, сглаживающие и блокировочные конденсаторы. Аналоговую землю тоже стоило бы разделить. Но в данной схеме этого нет, так как измерения не критичные, и погрешность в пару разрядов не приведет к «расстройству» устройства. Применим программный фильтр – скользящее среднее и может даже погрешности в один разряд добьёмся.

    Измерение тока и защита от перегрузки

    Датчик тока ACS712ELCTR-05B-T представляет собой интегральную микросхему. Детектирование тока происходит на эффекте Холла. Данный датчик позволяет МК измерять как прямой, так и обратный ток. С остальными характеристиками можно ознакомиться из его pdf . Выход датчика аналоговый. Средняя точка, соответствующая нулевому току = 2,5 В. Усиление 185мВ на 1 Ампер. Хотя датчик регистрирует и большие токи, только линейность искажается, и при определенном токе входит в насыщение. Так что для согласования выхода датчика с МК, поставим делитель напряжения. И поделим шкалу пополам. Разрядности АЦП МК хватит для приемлемой точности.

    Для быстродействующей защиты от перегрузки или короткого замыкания в низковольтной обмотке линейного трансформатора, установим токовый шунт. Сигнал с шунта усилим на ОУ и на компараторе соберем схему сравнения с защелкой. Данные о перегрузке будем загонять в МК, а также по этому сигналу будем закрывать ВСЕ ключи моста.

    Небольшое видео, симуляции работы токовой защиты, представлено ниже.

    Силовая часть

    Силовая часть РИПа представлена на рисунке.


    Картинка кликабельна.

    Мост транзисторов «опирается» на токовый шунт, для обеспечения быстродействующей защиты. Выход моста через LC фильтр, рассчитанный на частоту среза в ~ 1 кГц, подается на низковольтную обмотку трансформатора. О фильтре и трансформаторе стоит поговорить более подробно.

    Расчет фильтра производился в программе «Калькулятор РЛ» ссылку на так называемый офф. сайт уже не найду. Поэтому архив с калькулятором выложил сюда . Вот скрин расчета.

    Полученная индуктивность в 10 миллигенри довольна внушительна. Но и емкость получилась приличная. Так как у нас на выходе с фильтра переменка, то полярным конденсатором не обойдешься. В схему заложил два керамических конденсатора в параллель - 4.7 мкФ, X7R, 25В (1206).

    Расчет дросселя по полученным данным производил в программе Coil32. Вот ссылка на архив с программой. Ферритовое кольцо для такого дросселя выбрал со следующими параметрами: Кольцо N87 R25x15x10. Вот скрин расчета в программе.

    Получилось 70 витков провода диаметром 1 мм, для обеспечения нужной индуктивности. Вполне приемлемо для ручной намотки.

    Выбор трансформатора пал на тороидальный трансформатор типа ТТП-60, со вторичным напряжение в 9 Вольт. Расчет прост. Переменное напряжение в 9 Вольт дает в амплитуде 12,7 Вольт. Напряжение заряженного АКБ порядка 13 Вольт. Так что сможем более менее на выходе получить 220 вольт. Для заряда АКБ конечно маловато. Поэтому есть предложение, домотать вторичку витков на 5-6. То есть получилась низковольтная обмотка с отводом. С крайних выводов обмотки снимаем повышенное напряжение для заряда АКБ, во время работы от сети. А на крайний и средний вывод подаем напряжение с моста, когда работаем от АКБ. По напряжению, снимаемому с крайних выводов обмотки, судим о напряжении в высоковольтной обмотке во время работы от АКБ, обратная связь для регулировки.

    Транзисторы моста управляются от МК через драйверы полумостов IRS2101S. Управление верхними ключами осуществляется по бутстрепной схеме. Управление P-канальным зарядным транзистором осуществляется обычным биполярником. Сглаживающий зарядный дроссель имеет те же габариты и расчетные величины, что и дроссель в LC фильтре после моста.

    Детектирование наличия сети и коммутация

    Для детектирование сети применятся конденсаторная схема питания. Напряжение заводится на оптопару. Выход оптопары загоняем в МК для контроля наличия сети. Схема показана ниже.


    Картинка кликабельна.

    Сетевое напряжение через гасящий конденсатор, диоды, стабилитрон, сглаживающие конденсаторы, токоограничивающий резистор подается на светодиод оптопары. Выход идет в МК.

    Управление реле, коммутирующие сеть на нагрузку, осуществляется от МК.

    Токовая защита реализована на ОУ и компараторе. Выход компаратора расходится на два транзистора. Один для ввода сигнала в МК, второй для закрывания всех транзисторов моста.

    На рисунке ниже представлены схемы включения драйверов для моста.


    Картинка кликабельна.

    Все типовое, согласно даташиту на драйвер IRS2101S.

    Схема формирование импульсов моста

    Чтоб не нагружать МК бесполезной работой, формирование сигналов импульсов моста собрано на логике И. От МК требуется три сигнала. Один синусоидальный ШИМ за период, а также два дискретных сигнала, первая полуволна и вторая. Реализация такого подхода изображена на рисунке.


    Картинка кликабельна.

    Перегрузка по току, заведена в МК и продублирована светодиодом. Управление зарядным P-канальным транзистором организованно на биполярном NPN транзисторе.

    Логика работы моста будет заключаться в следующем. 20 кГц ШИМ будет модулироваться таблицей синуса в количестве 400 значений. Передача значений в регистр ШИМ будет организованна через ДМА. После загрузки половины буфера, то есть 200 значений, одного полупериода, ДМА вызовет прерывание, где сигналы MCU_P_1 и MCU_P_2 будут взаимно инвертироваться. После загрузки всего буфера, в прерывании от ДМА будет происходить обратное инвертирование сигналов MCU_P_1 и MCU_P_2. И далее в циклическом режиме. Постоянный уровень полуволны, будет подаваться на верхний транзистор плеча, а синусоидальный ШИМ на нижний ключ противоположного плеча. Следующий полупериод – это другая пара транзисторов.

    Во время перегрузки по току, NPN транзистор Q7 обеспечит на входе логики низкий уровень, что в свою очередь приведет к низкому уровню на выходе логике и как следствие – запиранию ВСЕХ транзисторов моста.

    Аппаратная платформа

    Трех вольтная шина будет питать «мозги» устройства – МК STM32F100C8T6B.

    Как уже упоминалось выше, МК будет от ST семейства STM32. Чем обуславливается такой выбор?
    • МК имеет невысокую стоимость. Аналоги по возможностям от ATMEL или PIC имеют даже более высокие цены, при разрядности в 8 бит.
    • Наличие на борту 12 битного АЦП, ЦАП, контроллера ДМА.
    • 32 бит разрядность ядра.
    • Увеличенную емкость память программ и данных.
    Одним словом выигрывает по многим позициям.

    Для индикации работы устройства и вывода необходимых данных в схеме будет использоваться знакосинтезирующий ЖКИ с управляющим контролером KS0066 (HD44780). Библиотек для работы с таким дисплеем в рунете полно.

    Схема подключения дисплея к контроллеру выглядит следующим образом.


    Картинка кликабельна.

    Подключение происходит напрямую. Порты МК непосредственно подключены к дисплею. Сопряжение 3 вольтовой и 5 вольтовой логики не производилось. Здесь возможно появятся проблемы, и придется выводы МК настроить как выходы с открытым коллектором, и подтянуть линии к 5 вольтам, а сами выходы МК использовать толерантные к 5 вольтам. Как говорится жизнь покажет, но при разработке печатной платы, необходимо заложить данный «апдейт».

    Пользовательские кнопки необходимы для организации навигации по меню и параметрам, отображаемым на дисплее.

    Дополнительные расчеты

    Для расчета бутстрепного конденсатора воспользуемся методом, предложенным в данной статье . В конце описания есть пример расчета необходимой емкости бутстрепного конденсатора. Возьмем его за основу и пересчитаем для наших реалий.

    Определимся с параметрами схемы:

    • V IN,MAX = 15V максимальное входное напряжение,
    • V DRV = 12V напряжения питания драйвера и амплитуда управляющего сигнала,
    • dV BST = 0.5V пульсация напряжения на конденсаторе C BST в установившемся режиме,
    • dV BST,MAX = 3V максимальное падение напряжения на C BST перед тем как сработает схема защиты от пониженного напряжения или амплитуда управляющего сигнала станет недостаточной,
    • f DRV = 100 Hz частота преобразования, так как наш конденсатор работает в промежутке 10 мс,
    • D MAX = 1 максимальный коэффициент заполнения при минимальном входном напряжении.
    Характеристики применяемых компонентов:
    • Q G = 24 nC общий заряд переключения IRLZ44ZS при V DRV = 5V и V DS = 44V,
    • R GS = 10К величина резистора R GS ,
    • I R = 10uA ток утечки диода D BST при максимальном входном напряжении и температуре его перехода TJ = 80°C,
    • V F = 0.6V падение напряжения на диоде D BST при токе 0.1A и температуре перехода TJ = 80°C,
    • I LK = 0.13mA ток утечки схемы сдвига уровня при максимальном входном напряжении и температуре кристалла TJ = 100°C,
    • I QBS = 1mA ток, потребляемый драйвером верхнего уровня.

    Рассчитанное значение подберем из стандартного ряда. Тип конденсатора возьмем танталовый, для уменьшения тока утечки самого конденсатора. Итого получается 47 мкФ x 25 В, тип D.

    Рассчитаем ток заряда конденсатора, тем самым подберем диод.

    Так что диод рассчитанный на прямой ток в 1 А, справится с этой задачей.

    Заключение

    В этой статье разработали электрическую схему РИПа. Теперь все куски схемы соберем воедино. И на основе уже утвержденной схемы разработаем топологию печатной платы. Разводку печатной платы и обобщенную электрическую схему со спецификацией по компонентам представлю в следующей статье.

    Программную реализацию функционала устройства распишу в отдельной статье. Есть задумка реализовать в программе много интересных решений, например, ПИД регулирование выходного напряжения при работе от АКБ.

    Эпилог

    Этой статьей, хотел вынести на суд общественности и опытных радиолюбителей и не любителей тоже, схематические решения. Быть может, внимательный читатель найдет какие-либо критические ошибки в схемотехники или предложит более правильное исполнение отдельных узлов. Найдется какое-нибудь более простое решение узлов или для повышения надежности внести дополнительные схемотехнические решения.

    Рекомендуем почитать

    Наверх