Регулировка тока светодиода. Шим диммер для светодиодного освещения

Вайбер на компьютер 07.05.2019
Вайбер на компьютер

В некоторых случаях, например, в фонариках или домашних осветительных приборах, возникает необходимость регулировать яркость свечения. Казалось бы, чего уж проще: достаточно изменить ток через светодиод, увеличив или уменьшив . Но в этом случае на ограничительном резисторе будет расходоваться значительная часть энергии, что совсем недопустимо при автономном питании от батарей или аккумуляторов.

Кроме того, цвет свечения светодиодов будет изменяться: например, белый цвет при понижении тока меньше номинального (для большинства светодиодов 20мА) будет иметь несколько зеленоватый оттенок. Такое изменение цвета в ряде случаев совершенно ни к чему. Представьте себе, что эти светодиоды подсвечивают экран телевизора или компьютерного монитора.

В этих случаях применяется ШИМ - регулирование (широтно - импульсное) . Смысл его в том, что периодически зажигается и гаснет. При этом ток на протяжении всего времени вспышки остается номинальным, поэтому спектр свечения не искажается. Уж если светодиод белый, то зеленые оттенки появляться не будут.

К тому же при таком способе регулирования мощности потери энергии минимальны, КПД схем с ШИМ регулированием очень высок, достигает 90 с лишним процентов.

Принцип ШИМ - регулирования достаточно простой, и показан на рисунке 1. Различное соотношение времени зажженного и погашенного состояния на глаз воспринимается как : как в кино - отдельно показываемые поочередно кадры воспринимаются как движущееся изображение. Здесь все зависит от частоты проекции, о чем разговор будет чуть позже.

Рисунок 1. Принцип ШИМ - регулирования

На рисунке изображены диаграммы сигналов на выходе устройства управления ШИМ (или задающий генератор). Нулем и единицей обозначены : логическая единица (высокий уровень) вызывает свечение светодиода, логический нуль (низкий уровень), соответственно, погасание.

Хотя все может быть и наоборот, поскольку все зависит от схемотехники выходного ключа, - включение светодиода может осуществляться низким уровнем а выключение, как раз высоким. В этом случае физически логическая единица будет иметь низкий уровень напряжения, а логический нуль высокий.

Другими словами, логическая единица вызывает включение какого-то события или процесса (в нашем случае засвечивание светодиода), а логический нуль должен этот процесс отключить. То есть не всегда высокий уровень на выходе цифровой микросхемы является ЛОГИЧЕСКОЙ единицей, все зависит от того, как построена конкретная схема. Это так, для сведения. Но пока будем считать, что ключ управляется высоким уровнем, и по-другому просто быть не может.

Частота и ширина управляющих импульсов

Следует обратить внимание на то, что период следования импульсов (или частота) остается неизменным. Но, в общем, частота импульсов на яркость свечения влияния не оказывает, поэтому, к стабильности частоты особых требований не предъявляется. Меняется лишь длительность (ШИРИНА), в данном случае, положительного импульса, за счет чего и работает весь механизм широтно-импульсной модуляции.

Длительность управляющих импульсов на рисунке 1 выражена в %%. Это так называемый «коэффициент заполнения» или, по англоязычной терминологии, DUTY CYCLE. Выражается отношением длительности управляющего импульса к периоду следования импульсов.

В русскоязычной терминологии обычно используется «скважность» - отношение периода следования к времени импульс а. Таким образом если коэффициент заполнения 50%, то скважность будет равна 2. Принципиальной разницы тут нет, поэтому, пользоваться можно любой из этих величин, кому как удобней и понятней.

Здесь, конечно, можно было бы привести формулы для расчета скважности и DUTY CYCLE, но, чтобы не усложнять изложение, обойдемся без формул. В крайнем случае, закон Ома. Уж тут ничего не поделаешь: «Не знаешь закон Ома, сиди дома!». Если уж кого эти формулы заинтересуют, то их всегда можно найти на просторах Интернета.

Частота ШИМ для светорегулятора

Как было сказано чуть выше, особых требований к стабильности частоты импульсов ШИМ не предъявляется: ну, немного «плавает», да и ладно. Подобной нестабильностью частоты, кстати, достаточно большой, обладают ШИМ - регуляторы , что не мешает их применению во многих конструкциях. В данном случае важно лишь, чтобы эта частота не стала ниже некоторого значения.

А какая должна быть частота, и насколько она может быть нестабильна? Не забывайте, что речь идет о светорегуляторах. В кинотехнике существует термин «критическая частота мельканий». Это частота, при которой отдельные картинки, показываемые друг за другом, воспринимаются как движущееся изображение. Для человеческого глаза эта частота составляет 48Гц.

Вот именно по этой причине частота съемки на кинопленке составляла 24кадр/сек (телевизионный стандарт 25кадр/сек). Для повышения этой частоты до критической в кинопроекторах применяется двухлопастной обтюратор (заслонка) дважды перекрывающий каждый показываемый кадр.

В любительских узкопленочных 8мм проекторах частота проекции составляла 16кадр/сек, поэтому обтюратор имел аж три лопасти. Тем же целям в телевидении служит тот факт, что изображение показывается полукадрами: сначала четные, а потом нечетные строки изображения. В результате получается частота мельканий 50Гц.

Работа светодиода в режиме ШИМ представляет собой отдельные вспышки регулируемой длительности. Чтобы эти вспышки воспринимались на глаз как непрерывное свечение, их частота должна быть никак не меньше критической. Выше сколько угодно, но ниже никак нельзя. Этот фактор следует учитывать при создании ШИМ - регуляторов для светильников .

Кстати, просто, как интересный факт: ученые каким-то образом определили, что критическая частота для глаза пчелы составляет 800Гц. Поэтому кинофильм на экране пчела увидит как последовательность отдельных изображений. Для того, чтобы она увидела движущееся изображение, частоту проекции потребуется увеличить до восьмисот полукадров в секунду!

Для управления собственно светодиодом используется . В последнее время наиболее широко для этой цели используются , позволяющие коммутировать значительную мощность (применение для этих целей обычных биполярных транзисторов считается просто неприличным).

Такая потребность, (мощный MOSFET - транзистор) возникает при большом количестве светодиодов, например, при , о которых будет рассказано чуть позже. Если же мощность невелика - при использовании одного - двух светодиодов, можно использовать ключи на маломощных , а при возможности подключать светодиоды непосредственно к выходам микросхем.

На рисунке 2 показана функциональная схема ШИМ - регулятора. В качестве элемента управления на схеме условно показан резистор R2. Вращением его ручки можно в необходимых пределах изменять скважность управляющих импульсов, а, следовательно, яркость светодиодов.

Рисунок 2. Функциональная схема ШИМ - регулятора

На рисунке показаны три цепочки последовательно соединенных светодиодов с ограничивающими резисторами. Примерно такое же соединение применяется в светодиодных лентах. Чем длиннее лента, тем больше светодиодов, тем больше потребляемый ток.

Именно в этих случаях потребуются мощные , допустимый ток стока которых должен быть чуть больше тока, потребляемого лентой. Последнее требование выполняется достаточно легко: например, у транзистора IRL2505 ток стока около 100А, напряжение стока 55В, при этом, его размеры и цена достаточно привлекательны для использования в различных конструкциях.

Задающие генераторы ШИМ

В качестве задающего ШИМ - генератора может использоваться микроконтроллер (в промышленных условиях чаще всего), или схема, выполненная на микросхемах малой степени интеграции. Если в домашних условиях предполагается изготовить незначительное количество ШИМ - регуляторов, а опыта создания микроконтроллерных устройств нет, то лучше сделать регулятор на том, что в настоящее время оказалось под рукой.

Это могут быть логические микросхемы серии К561, интегральный таймер , а также специализированные микросхемы, предназначенные для . В этой роли можно заставить работать даже , собрав на нем регулируемый генератор, но это уж, пожалуй, «из любви к искусству». Поэтому, далее будут рассмотрены только две схемы: самая распространенная на таймере 555, и на контроллере ИБП UC3843.

Схема задающего генератора на таймере 555

Рисунок 3. Схема задающего генератора

Эта схема представляет собой обычный генератор прямоугольных импульсов, частота которого задается конденсатором C1. Заряд конденсатора происходит по цепи «Выход - R2 - RP1- C1 - общий провод». При этом на выходе должно присутствовать напряжение высокого уровня, что равнозначно, что выход соединен с плюсовым полюсом источника питания.

Разряжается конденсатор по цепи «C1 - VD2 - R2 - Выход - общий провод» в то время, когда на выходе присутствует напряжение низкого уровня, - выход соединен с общим проводом. Вот эта разница в путях заряда - разряда времязадающего конденсатора и обеспечивает получение импульсов с регулируемой шириной.

Следует заметить, что диоды, даже одного типа, имеют разные параметры. В данном случае играет роль их электрическая емкость, которая изменяется под действием напряжения на диодах. Поэтому вместе с изменением скважности выходного сигнала меняется и его частота.

Главное, чтобы она не стала меньше критической частоты, о которой было упомянуто чуть выше. Иначе вместо равномерного свечения с различной яркостью будут видны отдельные вспышки.

Приблизительно (опять же виноваты диоды) частоту генератора можно определить по формуле, показанной ниже.

Частота генератора ШИМ на таймере 555.

Если в формулу емкость конденсатора подставить в фарадах, сопротивление в Омах, то результат должен получиться в герцах Гц: от системы СИ никуда не денешься! При этом подразумевается, что движок переменного резистора RP1 находится в среднем положении (в формуле RP1/2), что соответствует выходному сигналу формы меандр. На рисунке 2 это как раз та часть, где указана длительность импульса 50%, что равнозначно сигналу со скважностью 2.

Задающий генератор ШИМ на микросхеме UC3843

Его схема показана на рисунке 4.

Рисунок 4. Схема задающего генератора ШИМ на микросхеме UC3843

Микросхема UC3843 является управляющим ШИМ - контроллером для импульсных блоков питания и применяется, например, в компьютерных источниках формата ATX. В данном случае типовая схема ее включения несколько изменена в сторону упрощения. Для управления шириной выходного импульса на вход схемы подается регулирующее напряжение положительной полярности, то на выходе получается импульсный сигнал ШИМ.

В простейшем случае регулирующее напряжение можно подать с помощью переменного резистора сопротивлением 22…100КОм. При необходимости можно управляющее напряжение получать, например, с аналогового датчика освещенности, выполненного на фоторезисторе: чем темнее за окном, тем светлее в комнате.

Регулирующее напряжение воздействует на выход ШИМ, таким образом, что при его снижении ширина выходного импульса увеличивается, что вовсе не удивительно. Ведь исходное назначение микросхемы UC3843 - стабилизация напряжения блока питания: если выходное напряжение падает, а вместе с ним и регулирующее напряжение, то надо принимать меры (увеличивать ширину выходного импульса) для некоторого повышения выходного напряжения.

Регулирующее напряжение в блоках питания вырабатывается, как правило, с помощью стабилитронов. Чаще всего это или им подобные.

При указанных на схеме номиналах деталей частота генератора около 1КГц, и в отличие от генератора на таймере 555, она при изменении скважности выходного сигнала не «плавает» - забота о постоянстве частоты импульсных блоков питания.

Чтобы регулировать значительную мощность, например, светодиодная лента, к выходу следует подключить ключевой каскад на транзисторе MOSFET, как было показано на рисунке 2.

Можно было бы и побольше рассказать о ШИМ - регуляторах, но пока остановимся на этом, а в следующей статье рассмотрим различные способы подключения светодиодов. Ведь не все способы одинаково хороши, есть такие, которых следует избегать, да и просто ошибок при подключении светодиодов случается предостаточно.

Светодиоды больше и больше входят в нашу повседневную жизнь. Мы меняем лампы накаливания в квартире или доме, галогенные в машине на светодиодные. Для того чтобы регулировать яркость лампочки Эддисона обычно применяют диммер - эта такая штука с помощью которой можно ограничивать переменный ток, тем самым меняя яркость свечения на нужную вам, зачем же платить больше, да еще и чувствовать дискомфорт из-за чрезмерно яркого света? Регулятор мощности вообще может использоваться для многих потребителей (паяльник, болгарка, пылесос, дрель...) от переменного напряжения сети, построены они, как правило, на основе симистора.

Светодиоды питаются от постоянного и стабилизированного тока, так что тут применить стандартный диммер не удастся. Если просто изменять напряжение, подаваемое на него то яркость будет изменяться очень резко, для них важен ток, но вместо регулятора тока мы сделаем нечто другое, а именно ШИМ (Широко Импульсный Модулятор), он будет на некоторое определенное время отключать источник питания от светодиода, яркость уменьшится, но мигание замечать мы не будем, так как частота такая, что глаз человека этого не заметит. Тут не используетсямикроконтроллеры, ведь их наличие может стать препятствием к сборке устройства, нужно иметь программатор, определенное программное обеспечение... Поэтому в этой простой схеме используется только простые и общедоступные радиокомпоненты.

Вот такую штуку возможно использовать для любых инерционных нагрузок, то есть тех, которые могут запасать энергию, ведь, если, к примеру, отключить DC моторчик от источника питания то вращаться он перестанет никак не моментально.

Схему, как я считаю, условно можно разделить на две части, а именно это генератор, выполненный на мега-популярном таймере NE555 (аналог -КР1006ВИ1) и мощный открывающийся/закрывающийся транзистор, с помощью которого подается питание для нагрузки (здесь 555 работает в режиме астабильного мультивибратора). У нас используется мощный биполярный транзистор NPNструктуры (я взял TIP122), но возможно заменить его полевым (MOSFET)транзистором. Частота импульсного генератора, период, длительность импульса при этом выставляется двумя резисторами (R3,R2) и конденсаторами (C1,C2), а изменять ее мы сможем резистором с регулировкой сопротивления.

Компоненты-схемы

Существует куча программ для расчета аналогового таймера 555, можете поэкспериментировать с номиналами компонентов, которые и влияют на частоту генератора - это все легко просчитается с помощью многих программ, таких как эта. Номиналы можно немного менять, все будет работать и так. Импульсные диоды 4148 без проблем заменяются отечественными КД222. Конденсаторы 0,1 мкФ и 0,01 мкФ дисковые керамические. Переменным резистором устанавливаем частоту, для хорошей и плавной регулировки его максимальное сопротивление 50 кОм.

Все собрано на дискретных элементах, плата имеет размеры 50-25 мм.

Как работает схема?

Устройство работает как переключатель между двумя режимами: ток подается на нагрузку и ток не подается на нагрузку . Переключение происходит настолько быстро что наши глаза не видят этого мигания. Так вот, это устройство регулирует мощность путем изменения интервала между временем, когда питание подается и когда оно отключено.Думаю, вы поняли суть ШИМа. Вот так вот это выглядит на экране осциллографа.

Первая картинка отображает слабое свечение, потому что во время периода Tдлинна импульса t1 занимает только 20% (это так называемый коэффициент заполнения), а все остальные 80% у нас наблюдается логический 0 (отсутствует напряжение).

Вторая картинка показывает нам сигнал, который называется меандр, тогда у нас t1=0.5*T, то бишь скважность и Коэф. Заполнения равны 50%.

В третьем случае мы имеем D=90%. Светодиод светит почти на полную яркость.

Представим что T=1 секунде, тогда в первом случае

§ 1)в течении 0,2с будет идти ток на светодиод, а 0,8с нет

§ 2)0,5с подается ток 0,5с нет

Кстати, сделав три платки ШИМ регуляторов по схеме и подключив их к одной RGB ленте появляется возможность выставлять нужную гамму свечения. Каждая из плат управляет своими светодиодами (красными, зелеными и синими) и смешивая их в определенной последовательности вы добиваетесь нужного свечения.

Какие же потери энергии у этого устройства?

Во-первых, это жалкие несколько миллиампер, которые потребляют импульсный генератор на микросхеме, а далее идет силовой транзистор, на котором рассеивается мощность равная примерно P=0.6V*I потреблениянагрузки . Базовым резистором можно пренебречь. В целом потере на ШИМе минимальны ведь система регулирования по ширине импульса очень эффективна, так как в пустую тратится очень мало энергии (и, следовательно, выделяется мало тепла).

Итог

В итоге мы получили прекрасный и простой ШИМ. Им оказалось очень удобно настраивать для себя приятную силу свечения. Такое устройство всегда пригодится в быту.

  • Вперёд >

ШИМ-регулятор яркости на МК ATmega8, с батарейным питанием, и индикацией заряда.

Статья предназначена для лиц, обладающих некоторыми знаниями по радиоэлектронике, а именно:

  • что такое микроконтроллер и как его прошить,
  • что такое ШИМ-регулирование,
  • что такое светодиодный драйвер.

Проект придумывался для установки на велосипед. С чего всё начиналось. Мы с друзьями частенько участвовали в ночных вело-покатушках, поэтому нужна была фара на велосипед. Ну а обычный фонарик ставить не хотелось… нужно было что-нибудь по функциональней. Например, с регулировкой яркости «маленькая / средняя / максимальная», а так как в качестве питания планировалось использовать литий-ионный аккумулятор, то нужен был ещё и индикатор уровня заряда. В интернете я видел много подобных проектов, но они чем-то меня не устраивали. Например, мне встречались проекты ШИМ-регуляторов яркости, но у них либо отсутствовал индикатор уровня заряда, либо индикатор уровня заряда был на 1…3 светодиодах, а мне не нравилась такая маленькая информативность. Ну что ж, делать так делать, и я взялся за сборку своего проекта. Итак, в качестве индикатора заряда я беру 10 светодиодов, а вернее, беру светодиодный «столбик», вот такой:

Данный светодиодный «столбик» я заказал в интернет-магазине (в нашем городе отсутствуют радиомагазины), поэтому он приедет только через пару недель. Вместо него я временно поставил 10 обычных светодиодов.

В качестве управляющего микроконтроллера я использовал ATmega8 (либо ATmega328), так как у данного МК имеется АЦП, при помощи которого я организовал измерение уровня заряда аккумулятора. Также у данного МК имеется достаточное количество выводов (а мы ведь хотим подключить аж 10 светодиодов). Данный микроконтроллер распространён в радиомагазинах, и стоит отностиельно дёшево – в пределах 50…100 рублей, в зависимости от жадности магазина и типа корпуса.

Чтобы понять, как работает устройство, посмотрим на блок-схему:

В данной статье описывается только то, что касается ШИМ-регулятора (левая часть блок-схемы), а драйвер светодиода и сам светодиод Вы выбираете на свой вкус, тот который Вам больше подходит. Мне подходит драйвер ZXSC400, поэтому его я буду рассматривать как пример.

ШИМ-регулятор должен быть подключен к светодиодному драйверу, у которого есть функция регулировки яркости (DIM, PWM, и т. п.), например, ZXSC400. Можно использовать любой другой подходящий драйвер, главное чтобы он поддерживал ШИМ-регулировку яркости, и питался от того же аккумулятора, которым питается ШИМ-регулятор. Для тех, кто не знает что такое светодиодный драйвер – поясню: драйвер нужен для того, чтобы светодиод светился одинаково ярко как при заряженном аккумуляторе, так и при севшем аккумуляторе. Иными словами – драйвер светодиода поддерживает стабильный ток через светодиод.

Типовая схема включения светодиодного драйвера ZXSC400:

Питание этой схемы нужно соединить с питанием нашего ШИМ-регулятора, а ШИМ-выход с регулятора нужно подключить ко входу «STDN» драйвера ZXSC400. Вывод «STDN» как раз служит для регулировки яркости при помощи ШИМ сигнала. Аналогичным способом можно подключить ШИМ-регулятор ко многим другим светодиодным драйверам, но это уже отдельная тема.

Алгоритм работы устройства. При подаче питания, МК на 1 секунду отображает уровень заряда аккумулятора (на светодиодной шкале из 10 светодиодов), затем светодиодная шкала гаснет, МК переходит в режим энергосбережения, и ждёт команд управления. Всё управление я сделал на одной кнопке, чтобы на велосипеде тянуть меньше проводов. При удерживании кнопки более 1 секунды, ШИМ-регулятор включается, на ШИМ-выход подаётся сигнал со скважностью 30% (1/3 яркости светодиода). При повторном удерживании кнопки более 1 секунды, ШИМ-регулятор выключается, на ШИМ-выход не подаётся сигнал (скважность 0%). При кратковременном нажатии на кнопку, происходит переключение яркости 30% - 60% - 100%, а также на 1 секунду отображается заряд аккумулятора. Таким образом, однократное нажатие изменяет яркость светодиода, а долгое нажатие включает/выключает светодиод. Для проверки работоспособности ШИМ-регулятора, я подключил к его выходу обычный светодиод, но ещё раз повторюсь – исключительно в целях проверки работоспособности. В дальнейшем я подключу ШИМ-регулятор к драйверу ZXSC400. Более подробно и наглядно работа устройства показывается на видео (ссылка в конце статьи).

Также процесс регулировки яркости показывает следующая схема:

Что делать, если не устраивают данные значения яркости? Например, хочется чтобы было так: 1 %, затем 5 %, затем 100 %. Я предусмотрел и такой вариант. Теперь пользователь может сам установить эти три значения яркости, какие ему хочется! Для этого я написал небольшую программку, которая на основе желаемых значений генерирует файл для прошивки EEPROM. Прошив в микроконтроллер данный файл, яркости соответственно поменяются на желаемые. Прилагаю скриншот окна программы:

Если не прошивать файл EEPROM, то значения яркости останутся «по умолчанию» - 30 %, 60 %, 100 %. Правильно собранное устройство не нуждается в настройке. При желании можно лишь настроить минимальную, среднюю, и максимальную яркость по своему усмотрению. Программка и инструкция по использованию находятся в конце статьи.

Выбор используемого аккумулятора. Я использовал Li-ion аккумулятор ввиду его распространённости и дешевизны. Но в схеме я предусмотрел перемычку J1, при помощи которой можно выбрать, что мы используем в качестве питания.

Если перемычка J1 находится в положении «1», то используется один Li-ion аккумулятор. Если перемычка J1 находится в положении «2», то используются три обычные батарейки типа AAA/AA/C/D, соединённые последовательно. Перемычка J1 необходима для правильного отображения уровня заряда аккумулятора, так как у Li-ion аккумулятора рабочее напряжение находится примерно в диапазоне 3,3…4,2в, а у обычных батареек рабочее напряжение примерно равно 3,0…4,5в. Таблицы соответствия напряжений аккумулятора с показаниями индикатора я приложил внизу статьи.

Индикаторные светодиоды. Светодиоды, отображающие уровень заряда аккумулятора, могут быть любыми. Подстроить их яркость в небольших пределах можно при помощи изменения номинала токоограничивающего резистора R1. Для отображения уровня заряда используется динамическая индикация, благодаря которой достигается экономия энергии, так как в один момент времени светится только один светодиод. Про индикацию уровня заряда аккумулятора также можно посмотреть на видео (ссылка в конце статьи).

Микроконтроллер может быть как ATmega8, так и ATmega328. Оба этих микроконтроллера совместимы по расположению контактов, и различаются лишь содержанием «прошивки». Я использовал ATmega328, так как этот МК был у меня в наличии. В целях снижения энергопотребления, микроконтроллер работает от внутреннего RC-генератора на 1 МГц. Программа микроконтроллера написана в среде 4.3.6.61 (или 4.3.9.65).

В схеме применена микросхема-источник опорного напряжения TL431. С её помощью достигается неплохая точность измерения напряжения аккумулятора. Питание на TL431 подаётся с вывода PC1 микроконтроллера через резистор R3. Подача напряжения питания на TL431 происходит только во время индикации уровня заряда. После того, как светодиоды индикации гаснут, подача питающего напряжения прекращается, обеспечивая экономию энергии аккумулятора. Микросхему TL431 можно найти в негодных блоках питания от компьютеров, в сломанных зарядных устройствах от сотовых телефонов, в импульсных блоках питания от ноутбуков и различной радиоэлектронной техники. Я применил TL431 в корпусе SOIC-8 (smd вариант), но TL431 больше распространена в корпусе TO-92, поэтому я сделал несколько вариантов печатных плат.

Об эмуляции в программе " ". Проект в Proteus работает некорректно. Ввиду того, что модель ATmega8 не выходит из спящего режима, а также с тормозами отображается динамическая индикация. Если после запуска проекта, сразу удерживать кнопку, чтобы ШИМ-регулятор включился, то всё работает. Но стОит повторным удерживанием кнопки выключить ШИМ-регулятор, как МК погрузится в сон, и больше не проснётся (до перезапуска проекта). Проект в Proteus не прилагаю. Кто хочет поиграться – пишите, вышлю проект в Proteus.

Основные технические характеристики:

  • Напряжение питания, при котором гарантируется работоспособность: 2,8 ... 5 вольт
  • Частота ШИМ сигнала: 244 Гц
  • Частота динамической индикации шкалы из 10 светодиодов: 488 Гц (на 10 светодиодов) или 48,8 Гц (на каждый светодиод)
  • Количество режимов яркости, переключаемых по циклу: 3 режима
  • Возможность изменения пользователем яркости каждого из режимов: Имеется

Ниже вы можете скачать прошивки для МК ATmega8 и ATmega328

Шутов Максим, г.Вельск

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATmega8-16PU

1 В блокнот
U2 ИС источника опорного напряжения

TL431ILP

1 В блокнот
Резисторы
R1, R2 Резистор постоянный SMD 1206

330 Ом

2 В блокнот
R3 Резистор постоянный SMD 1206

1 кОм

1 В блокнот
R4 Резистор постоянный SMD 1206

10 кОм

1 В блокнот
R5 Резистор постоянный SMD 1206

47 кОм

1 В блокнот
Резистор постоянный SMD 1206

Rich Rosen, National Semiconductor

Введение

Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов. Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом. Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов. Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко. Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд). Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.

На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (I F) график исключительно линеен. Нелинейность начинает проявляться при увеличении I F . При выходе тока за пределы линейного участка эффективность светодиода уменьшается.

Рисунок 1.

При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.

Цветовая температура светодиодов

Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора. Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными». Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.

Способы управления яркостью свечения светодиодов

Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.

На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение V IN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе R SNS . Ток дросселя целиком протекает через светодиод и резистор R SNS , и регулируется напряжением, подаваемым с резистора на вывод CS. Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и R SNS увеличивается, вследствие чего увеличивается средний ток светодиода.

Аналоговое диммирование

Аналоговое диммирование - это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне. Аналоговое диммирование выполняется либо регулировкой резистора датчика тока R SNS , либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов. Оба примера аналогового управления показаны на Рисунке 2.

Аналоговое диммирование регулировкой R SNS

Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины R SNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.

Аналоговое диммирование с помощью управления напряжением питания через вывод CS

Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS. Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2). Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.

Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.

Диммирование с помощью ШИМ

Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.

Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:

I DIM-LED = D DIM × I LED

I DIM-LED - средний ток через светодиод,
D DIM - коэффициент заполнения импульсов ШИМ,
I LED - номинальный ток светодиода, устанавливаемый выбором величины сопротивления R SNS (см. Рисунок 3).


Рисунок 3.

Модуляция драйвера светодиодов

Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд. Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы. С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.

Двухпроводное ШИМ-диммирование

Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.

Быстрое ШИМ-диммирование с шунтирующим устройством

Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения. Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).


а)

б)
Рисунок 4. Быстрое ШИМ диммирование (а), формы токов и напряжений (б).

Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора. На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406 , а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу). В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа .

При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора. В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов. Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.

Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала R DS-ON .

Многорежимный диммер LM3409

  • Глаз "инструмент" хороший, но без "численных" значений. Только спектрометр может что-то конкретное показать. Ссылку плиз. И Вы серьёзно верите, что что-то делается за пределами "Китая" (азиатские страны)?
  • Ссылочку, пожалуйста.
  • =Влад-Перм;111436]Владимир_007 "Что бы продлить срок службы, рядом с ним ставят (в притык) еще несколько светодиодов,"? - У меня много светодиодов стоит рядом, чтобы увеличить суммарную яркость........... Я извиняюсь, чисто случайно попал на эту ветку повторно. Номеров 6 - 8 назад в радиолоцмане была статья, где так же вставлял свою реплику. За качество изделий на светодиодах упоминать не скромно, пару журнало назад у автомобилиста была статья на фары - о перегреве светодиода. Так 6 - 8 номеров назад в статье была схемка драйвера, представляющая собой переключатель гирлянд на 4 канала. "благодаря драйверу, увеличиваем срок службы светодиода в 4 раза за счет того, что он работает в 4 раза реже, так же 2_й +, продолжительность работы кристалла диода с графиком по экспоненте увеличивает срок службы за счет уменьшения температуры кристалла" - примерно дословно на память. Что касается фотографирования фар - светодиод, это стробоскоп для человеческого глаза, но с очень большой скоростью переключения и пока ни кто не похвастался увеличением (послесвечения) светодиода после пропадания напряжения.
  • Уважаемый Владимир_666, здравствуйте. С чего Вы это решили? При питании светодиода постоянным током формируется непрерывный поток светового излучения. При питании импульсным током - формируются световые импульсы. Светодиод безынерционен. Это его замечательное свойство широко используется при передаче цифровой информации по оптическому волокну со скоростью десятки Гигабайт в секунду и более. Для него и люминофор нужен соответствующий, не создающий послесвечения. Полагаю, Вы это прекрасно понимаете. Говоря про стробоскоп Вы, очевидно, имеете ввиду отдельные кванты света. Но их пока не научились использовать по отдельности. Непонятно, кто и за что поставил "минус"?
  • САТИР, Вы отчасти травы в том, что Светодиод безинерционен. Это справедливо для светодиодов с "голым" кристаллом. Белые светодиоды разрабатываемые для освещения имеют слой люминофора. А он имеет некоторое время послесвечения (несколько миллисекунд), что вполне достаточно при питании импульсами с частотой в килогерцы. Кроме того, в драйверах устанавливается фильтрующий конденсатор.
  • Уважаемый lllll, здравствуйте. Совершенно с Вами, абсолютно. Согласитесь, ведь люминофор лишь принадлежность самого светодиода для придания ему нужных свойств.
  • Добрый день. Под словом стробоскоп с большой частотой - я подразумевал именно стробоскоп. Если взять свечение обычной лампочки у которой максимальное напряжение 220В и минимальное 0 и это с частотой 50 Гц - температура нити при 220В - 2200 градусов, но когда напряжение падает до 0 и опять поднимается до 220В, температура нити не падает до 0, а опускается до 1500 - 1800 градусов, что мы и видим "не вооружонным глазом". Что касается светодиода - у них принцип работы - стробоскоп, с большой скоростью переключения, который не видно человеческим глазом, но это не говорит о не влиянии на зрение. Что касается передачи данных гигпбайты в секунду - обычно передачу данных передают (азбукой морзе, мигающей лампочкой), я понимаю, что бы человеку поставить (-), можно быть и тупым, если Вы по отзывам людей считаете себя так же умным - определитесь сами где у Вас постоянно горящая лампочка и кому из нас нужно ставить -.
  • Ну как-бы 50 Гц. это две полу синусоиды и реально моргают 100 Гц. и напряжение амплитудное около 300 В. Кто Вам такое сказал? Или где Вы это прочитали? О принципе работы почитайте в "Вике", а тема вроде о питании светодиодов. Нормальный драйвер питает светодиод постоянным таком. ШИМ регуляторы применяются только если надо ДЁШЕВО уменьшить яркость свечения. Хороший драйвер, опять же, умеет уменьшать ток на светодиод без использования ШИМ. ШИМ применяют в фонариках многорежимных - и если драйвер хоть немного адекватный частота ШИМ от нескольких кГц. Совсем незаметно при любом использовании. Ага, у меня тоже, когда винчестер данные передаёт, "лампочка" (светодиод) мигает, быстро так мигает! Это она данные передаёт!
  • Не трогайте Владимира666. Не понимает он как работает светодиод. И, очевидно, не поймет. Придумал для себя объяснение неправильное и толкает его всем налево и на право.
  • Всё выше сказанное - с точностью "до наоборот"
  • ctc655 я думаю я Вам в понятной форме расписал, что постоянно горящая лампочка не может передавать информацию, если Вы пытаетесь своими действиями не профессиональными защитить производителей светодиодов со своей минусовкой
  • Спасибо Владимир666. Мое мнение о вас не улучшилось. Увы. Еще в детстве, лет 38 назад делали светотелефон на ЛАМПОЧКЕ. Запитана была от постоянного тока. Работало. Информацию передавал. Другое дело с какой скоростью, если можно так сказать. А вот ваше представление о работе светодиода - бред. То он у вас разрядник, то стробоскоп. Молодеж почитает и потом начнет говорить чушь. Если тяжело понять, не лезьте. За это и получили -1. Это оценка информативности сообщения. ВАаши сообщения не только не несут информативности, но еще и дают ошибочное представление о теме. Там где нет такой большой ахинеи, я ничего не ставлю.
  • Просмотрите тему на этом же сате, что бы было понятно почему повторно! http://www....007#post199007 Обсуждение: Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы Мне так же не 10 и не 30 лет, но Вам почитать будет полезно. Увеличить знания кроме высокотехнологичного прибора с р-п переходом. Интересно, как же Вы 30 лет назад лампочкой горящей на постоянном токе инфорсацию передавали? Все световые приборы, не важно - оптрон, оптотиристор и т.д. все работают за счет прерываний светового потока. Наверно специально патент для этого создали?
  • Обоснуйте или подтвердите. Я "электронщик" - можете не ограничиваться в терминологии. То, что драйвер (питание от 220 В.) работает по схеме АС (220 В.) -- DC (300 В.) -- AC ШИМ -- DC (стабильный нужный ток СС) -- СС на светодиод, не делает его ШИМ регулятором. (это можно назвать и просто выпрямителем напряжения!) ШИМ с обратной связью это просто один из способов выдерживать стабильную яркость (ток) светодиода. А вот регулировать яркость можно двумя способами: в указанной цепочке в "АС ШИМ" дополнительно ввести регулировку "заполнения" (светодиод будет питаться регулируемым стабильным током) или регулировать ШИМ-ом уже непосредственно средний ток на светик. В первом случае питается стабильным током (пульсации нет!) во втором случае светодиод питается "импульсами" и их в принципе видно. (не обязательно глазами - в фонариках встречал частоту и 200 Гц. и 9 кГц.) Азбукой "Морзе" - это что-ли не передача информации?
  • Честно говоря я не знаю зачем подтверждать известную истину. Может, конечно, есть какие то нюансы в разработке регулируемых драйверов(а они должны быть). Я не занимался пока этим. Поэтому предложенные вами методы регулирования имеют право на жизнь. Вот только применяются каждый по своему. По поводу азбуки Морзе. Да, это передача информации, но с перерывом светового потока. А тот светотелефон работал на изменении яркости лампочки без погасания. При отсутствии речи светил постоянно. Схему не нашел. Делали в кружке и еще не было привычки зарисовывать схемы. Также некоторые закрытые оптопары, резисторная например, может работать без прерывания светового потока.
  • Уважаемый ctc655, здравствуйте. Вы абсолютно правы. Подобный метод передачи звука применяется до сих пор в кино. По краю плёнки есть световая дорожка, модулирующая световой поток, который преобразуется в электрический сигнал. Метод существует со времени изобретения звукового кино! Именно он погубил тапёров.
  • Про это как то и забыл. Хотя может сейчас по другому. Честно давно не интересовался кино.
  • Я не спорю, что без погасания лампочки и схемы могут быть разные, от обычной логики до 554СА..(3) компараторов, можно и просто свечение лампочки и перед лампочкой "флажком" дергать, но передача сигнала всегда работала по изменению "1" и "0".
  • В цифровых устройствах - да. А датчики уровня освещённости что, тоже работают по погасанию лампочки или солнца? Причём уровень освещённости регулируется......
  • Предыдущая тема или спор, если Вы читали - была о передаче данных "якобы постонно горящей лампочкой" от источника постоянного тока, то есть аккумулятор или стабилизированный источник питания. (Не хочу поднимать тему - где же заканчивается переменное напряжение и начинается постоянное, так как на эту тему сейчас в нете куча споров, начиная с самого аккумулятора.....) Что касается уровня освещенности, Вы о датчиках движения или о ночном освещении допустим вокруг витрин магазинов? Кажется во 1_х свет в обычном понятии - немного не соответствует теме, а вот принцип практически тот же!

Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

Есть два варианта:

  • Регулирование ШИМ
  • Аналоговое

Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Виды ШИМ-регулирования

  • Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
  • Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.

Параметры импульсов при ШИМ

Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.

Частота импульсов

Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.

Как работает регулятор ШИМ

Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
Это необходимо при использовании светодиодных лент или мощных светодиодах.
Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Недостатки использования ШИМ

  • Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
  • При постоянном ярком освещении (например, свете солнца) изображение может расплываться.


Рекомендуем почитать

Наверх