Работа эл тока обозначение. Работа и мощность тока: как мы платим за электроэнергию

Скачать на Телефон 26.06.2019
Скачать на Телефон

Работа тока

Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде

Закон Джоуля-Ленца

Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому

1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами

Q = I 2 Rt, (2)
Q = (U 2 /R)t. (3)

Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.

Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I 2 Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.
Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой

Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам

Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).

Формулу Q = I 2 Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом

Q 1 /Q 2 = R 1 /R 2 .

Формулу Q = (U 2 /R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).

Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом

Q 1 /Q 2 = R 2 /R 1 .

2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?

3. Имеются два проводника сопротивлением R 1 = 1 Ом и R 2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?

Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.

4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.

5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.

6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?

2. Мощность тока

Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:

Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).

7. Докажите, что мощность тока можно выразить формулами

P = IU, (5)
P = I 2 R, (6)
P = U 2 /R. (7)

Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.

8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?

9. Имеются проводники сопротивлением R 1 и R 2 . Объясните, почему при последовательном соединении этих проводников

P 1 /P 2 = R 1 /R 2 ,

а при параллельном

P 1 /P 2 = R 2 /R 1 .

10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?

Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.

Обычно мощность прибора указывают на самом приборе.

Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт

Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.

11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?

12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?

13. В электронагревателе имеются два нагревательных элемента сопротивлением R 1 и R 2 , причем R 1 > R 2 . Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R 1 /R 2 , если максимальная мощность в 4,5 раза больше минимальной?


Дополнительные вопросы и задания

14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь.

а) На каком резисторе напряжение самое большое? самое маленькое?
б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты?
г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)?
д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?

В каждой замкнутой цепи в обязательном порядке имеет место двойное преобразование энергии. В источнике тока совершается видоизменение какой-либо энергии (например, в генераторе - механической) в электрическую, а в цепи тока она опять превращается в равносильное количество энергии иного вида. Мера превращения в цепи тока электроэнергии в какие-либо иные виды энергии - величина работы тока.

Но мы понимаем, что работа и тока является работой электрических сил поля, перемещающих заряды; поэтому ее легко подсчитать.

Работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесенного заряда на величину разности потенциалов между точками в начале и конце переноса, т.е. на величину напряжения:

Очевидно, что это соотношение может быть применимо и для оценки таких понятий, как работа и тока. О величине заряда, протекшего в цепи, мы можем судить по току, текущему в цепи, и времени его протекания, так как q = It.

Используя такое соотношение, мы получаем формулу, выражающую величину работы тока на отдельном участке цепи, имеющем напряжение U:

Работа и мощность измеряются следующим образом: если измерять ток в амперах, время работы в секундах, а напряжение в вольтах, то работу - в джоулях (Дж).

Таким образом, 1 джоуль = 1 ампер х 1 вольт х 1 секунду.

Мощность измеряется ваттами (Вт):

1 ватт = 1 джоуль/1 секунда, или 1 ватт = 1 вольт х 1 ампер.

Вопрос о подсчете величины работы тока на этом участке совершенно не связан с вопросом о том, в какой вид энергии превратится на данном участке электрическая энергия. Эта работа является мерой электроэнергии, превращенной в другие виды.

Электрический ток, выполняя работу, может накалять нить электролампы, плавить металлы, вращать якорь электродвигателя, вызывать химические превращения и т.д. Во всех случаях работа и мощность электрического тока определяют уровень преобразования электроэнергии в иные формы - механическую энергию, энергию теплового движения и т.д.

Зная, что мощность P = A/t, можно получить формулу, с помощью которой рассчитывается мощность тока на отдельном участке цепи:

Работа и мощность могут быть вычислены при помощи этих формул, а также при помощи амперметра, вольтметра. На практике работу электрического поля измеряют специальным прибором - счетчиком. Проходя через счетчик, внутри него начинает совершать обороты легкий и его скорость вращения будет прямо пропорциональна силе тока и напряжению. Число оборотов, которое он сделает за определенное время, поможет сделать выводы о совершенной за это время работе. Счетчики электроэнергии можно увидеть в каждой квартире.

Мощность тока измеряют, используя специальный прибор - ваттметр. В устройстве этого прибора совмещаются принципы вольтметра и амперметра.

На многих электрических приборах и технических устройствах указывается их мощность. Например, мощность лампочки накаливания может быть 25 Вт, 75 Вт и др., или утюга около 1000 Вт, мощность электродвигателей может достигать очень больших значений - до нескольких тысяч киловатт. При этом имеют в виду мощность тока, который проходит через тот или иной прибор.

Работа и мощность переменного тока рассчитываются иначе. Так, для вычисления работы, совершаемой переменным током за определенный промежуток времени, можно воспользоваться формулой:

P = 1/2I₀U₀ cos φ. Зачастую эту формулу записывают в таком виде: P = IU cos φ, где I и U - значения напряжения и силы тока, которое в 2 раза меньше соответствующих амплитудных значений.

Формула вычисления мощности переменного тока будет такой же, как и для постоянного.

Единицы энергии и работы:

1 ватт-секунда = 1 Дж 1 ватт-час = 3600 Дж;

1 гектоватт-час = 360000 Дж;

1 киловатт-час = 3600000дж.

Единицы мощности:

1 ампер-вольт = 1 Вт;

1 гектоватт = 100 Вт;

1 киловатт = 1000 Вт.

Из курса физики известно, что одной из характеристик любого тела является его способность совершать работу, так как последняя представляет не что иное, как преобразование одного вида энергии в другой (например, потенциальной в кинетическую). При этом следует учитывать знаменитый закон сохранения энергии, сформулированный еще в XVIII веке М.В. Ломоносовым, согласно которому энергия никогда и никуда не исчезает, она лишь видоизменяется, принимает другую форму. Все вышесказанное в равной степени относится не только к твердым телам, но и к другим видам материи, в том числе и к электрическому току.

Как уже давно было доказано, - это Передвигаясь по определенному участку цепи, эти частицы формируют электрическое поле, которое совершает тока - это то количество энергии, которое необходимо затратить, чтобы перенести заряд по данной При этом далеко не вся работа тока полезна и эффективна. Достаточно заметная часть энергии тратится на то, чтобы электрический заряд преодолел сопротивление элементарных частиц, находящихся в проводнике и в источнике цепи.

Работа электрического тока, формула которой, как следует из выше приведенного текста, А = U.Q, является важнейшей характеристикой этого особого вида материи. В этой формуле U представляет собой на участке цепи, а Q - количественное выражение заряда, переносимого по данному участку.

Однако сама по себе работа электрического тока не представляла бы особого интереса, если бы не была найдена закономерность, связавшая эту работу и количество выделяемой при этом Эту закономерность практически одновременно открыли два известных физика - Ленц и Джоудь Прескотт, поэтому и закон в научном сообществе получил наименование «закона Джоуля-Ленца». Согласно этому закону, получается, что количество (или мощность) тепла, которое выделяется в определенном объеме при протекании через него заряженных частиц, находится в прямой зависимости от произведения напряженности поля на плотность протекающего через данный участок электрического тока. Данный закон имеет огромное значение для расчета потерь электроэнергии при ее передаче по проводам на большие расстояния.

Работа электрического тока самым непосредственным образом связана с другой важнейшей величиной - мощностью. Под в физике понимают количественную характеристику преобразования и скорости передачи электрической энергии. Мощность измеряется в киловатт-часах, в то время как работа электрического тока - в джоулях.

Для получения максимальной мощности тока от того или иного источника необходимо учитывать характеристики этого источника, а также то, что и внешней цепи должны быть сопоставимы друг с другом, в противном случае вся производимая работа уйдет на преодоление разности в сопротивлениях.

Работа электрического тока является важнейшей физической характеристикой, которую необходимо учитывать практически во всех отраслях промышленности, а также при производстве и передаче энергии на значительные расстояния.

Каждое тело способно производить работу, это называется энергией тела. Самый простой пример - поднятое на некоторую высоту тело. Оно обладает потенциальной энергией, если тело отпустить, оно начнёт высвобождать энергию, преобразовывая её в кинетическую энергию, в этот момент тело будет совершать работу.

Соответственно, чем выше будет высота тела, тем больше будет и его энергия. Энергия никогда не исчезает бесследно, она лишь преобразовывается в другую форму – это один из главных законов физики.

Также обстоит и с электрической энергией, она может быть преобразована в другой вид энергии – тепловую, кинетическую, механическую, химическую и т. д.

Поэтому, электроэнергия и стала так широко использоваться. Этот вид энергии, в отличие от любого другого, можно передавать на большие расстояния и хранить, практически, без потерь, а получить её можно достаточно просто.

Работа электрического тока

Когда ток протекает по определённому участку электрической цепи, электрическое поле совершает определённую работу. Это называется работой электрического тока. Для переноса заряда энергии по этой цепи нужно затратить некоторое количество энергии. Она сообщается приёмнику, часть энергии при этом затрачивается на преодоление сопротивления проводов и источников в электрической цепи.

Это говорит о том, что не вся затрачиваемая энергия распределяется эффективно и не вся она является полезной. Следовательно, совершаемая работа также не полностью эффективна. В данном случае формула будет выглядеть так: А = U·Q .

U – это напряжение на зажимах приёмника, а Q – это заряд, переносимый по участку цепи. В этом случае нужно учитывать закон Ома для участка цепи , тогда формула будет выглядеть следующим образом: R I2 Δt = U I Δt = ΔA .

По этой формуле можно проследить действие закона сохранения энергии, который применяется для однородного участка цепи.

В 1850 году английский физик Джоуль Прескотт, вложивший немалый вклад в изучение электричества, открыл новый закон. Суть его заключалась в определении путей, которыми работа электрического тока преобразовывается в тепловую энергию. В это же время другой физик – Ленц смог сделать аналогичное открытие и доказать закон, поэтому он получил название «закон Джоуля-Ленца», в честь обоих выдающихся физиков того времени.

Мощность электрического тока

Мощность – это другая характеристика, использующаяся при определении работы электрического тока. Это некая физическая величина, которая характеризует преобразование и скорость передачи энергии.

При определении мощности электрического тока нужно учитывать такой показатель, как мгновенную мощность. Она представляет собой соотношение мгновенных значений таких показателей как сила тока и напряжение в виде произведения. Это соотношение применяется к определённому участку цепи.

Такие показатели как работа и мощность электрического тока учитываются при создании любых электрических цепей. Наравне с другими законами они являются основными, их несоблюдение приведёт к серьёзным нарушениям.

Чтобы получит наибольшую мощность электрического тока, нужно учитывать и характеристики генератора, т. е. сопротивление во внешней цепи должно быть не больше и не меньше внутреннего сопротивления генератора.

Только в этом случае эффективность работы будет максимальной, потому что иначе вся энергия генератора будет затрачиваться на преодоление сопротивления, а вся работа будет неэкономичной. Естественно, такая схема работы может негативно повлиять на эффективность всей электрической цепи.

Электрическая энергия легко преобразуется в другие виды энергии - механическую, химическую, световую, внутреннюю энергию вещества, что широко применяется в промышленности и в быту.

Мерой изменения энергии электрического тока служит работа источника тока, создающего и поддерживающего электрическое поле в цепи.

Стационарное электрическое поле, перемещающее заряды по проводнику, совершает работу. Эту работу называют работой тока . Работа электрического тока на участке цепи, как следует из определения напряжения,

\(~A = qU ,\)

где q - электрический заряд, проходящий по участку цепи, а U - напряжение на участке.

Учитывая, что q = It , где I - сила тока в проводнике, а t - время прохождения электрического тока, для работы тока получим

\(~A = IUt .\)

Если R - сопротивление однородного участка цепи, то, используя закон Ома для участка цепи, можно получить формулу для расчета работы тока:

\(~A = I^2Rt = \frac{U^2}{R} t .\)

Если участок цепи не является однородным, то работу совершает не только стационарное электрическое поле, но и сторонние силы, и полная работа определяется по формуле

\(~A = I(\varphi_1 - \varphi_2 \pm \varepsilon) t .\)

Если в цепи есть электродвигатель, то энергия электрического тока, во-первых, расходуется на совершение механической работы - полезная работа A meh , во-вторых, затрачивается на нагревание обмоток электродвигателя и соединительных проводов - теряемая энергия. В этом случае коэффициент полезного действия можно рассчитать как

\(~A_0 = A_{meh} + Q ;\) \(~\eta = \frac{A_{meh}}{A_0} = \frac{A_{meh}}{A_{meh} + Q} .\)

Говоря о коэффициенте полезного действия источника тока, под полезной работой подразумевают работу, совершаемую во внешней цепи постоянного тока:

\(~A_p = IUt = I^2Rt .\)

Затраченная же работа источника тока равна работе сторонних сил:

\(~A_z = q \varepsilon = I \varepsilon t ,\)

где \(~\varepsilon = I (R + r)\).

Тогда \(~A_z = I^2 (R + r) t\) .

КПД источника \(~\eta = \frac{A_p}{A_z} = \frac{IUt}{I \varepsilon t} = \frac{U}{\varepsilon} = \frac{R}{R + r}\), где U - напряжение во внешней цепи (напряжение на полюсах источника тока). Графическая зависимость η = f (R ) при r = const приведена на рис. 1.

Единица работы электрического тока в СИ - джоуль (Дж). 1 Дж представляет работу тока, эквивалентную механической работе в 1 Дж.

1 Дж = Кл·В = А·В·с.

Измеряют работу электрического тока счетчиками.

Скорость совершения работы тока на данном участке цепи характеризует мощность тока. Мощность тока определяют по формуле \(~P = \frac At\) или P = IU .

Используя закон Ома для участка цепи, можно записать иначе формулу для мощности тока\[~P = I^2R = \frac{U^2}{R}\]. В этом случае речь идет о тепловой мощности.

Единица мощности тока - ватт: 1 Вт = Дж/с. Отсюда Дж = Вт·с.

Кроме того, применяют внесистемные единицы: киловатт-час или гектоватт-час: 1 кВт·ч = 3,6·10 6 Дж = 3,6 МДж; 1 гВт·ч = 3,6·10 5 Дж = 360 кДж.

Для измерения мощности тока существуют специальные приборы - ваттметры.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 267-270.



Рекомендуем почитать

Наверх