Протокол управления ppp. VPN – Ошибки при подключении. Настройка аутентификации CHAP

Faq 19.03.2019
Faq

Периодически выпускаются обновления к программному обеспечению своего оборудования, исправляются ошибки в нем, а также улучшается работоспособность либо добавляются какие-нибудь новые функции.

Для того чтобы произвести обновление прошивки устройства, сначала необходимо скачать ее на персональный компьютер, а потом подключить ресивер к ПК и перезагрузить программу. Для соединения компьютера с приемником спутниковых сигналов используют нуль-модемный кабель. Если у вас нет такого интерфейса, его можно приобрести в компьютерных магазинах, правда, не всегда эта продукция там есть. В любом случае у вас есть выбор: искать готовое решение либо сделать нуль-модемный кабель самостоятельно. Последний вариант обойдется гораздо дешевле.

Как сделать нуль-модемный

Для его изготовления нам понадобится четырехжильный кабель (длину определяет пользователь) и два разъема типа RS 232 («мама»). Данные коннекторы можно найти в любом радиомагазине, они весьма популярны, так как присутствуют практически в каждом персональном компьютере в качестве СОМ-порта. Кабелем может послужить Для этого скручиваем вместе каждую из жил и получаем четыре проводника. Далее необходимо провести распайку разъемов. При этом необходимо не допустить случайного замыкания, так как это приведет к выходу из строя аппаратуры. Такой нуль-модемный кабельбудет стабильно работать при длине провода до 50 метров.

Данная инструкция не является обязательной, однако она проверена практикой:

2. Соединение корпусов коннекторов необходимо для снятия напряжения, т. к. корпус касается устройства. В противном случае присутствует риск сжечь СОМ-интерфейс на компьютере или ресивере. Данное соединение необязательно, если вся аппаратура заземлена.

3. Предпочтительно использовать так как он работает лучше.

4. Во всех сигнала используется только три контакта.

5. В некоторых приемных устройствах нет микросхемы МАХ232 (предполагается, что она будет находиться во внешнем переходнике). В таких приборах на СОМ-порте ресивера задействовано четыре вывода, однако на выходе переходника - те же три контакта. Поэтому прежде чем подключать нуль-модемный кабель, необходимо подробно изучить документацию на ваше устройство, возможно, сначала требуется присоединить переходник.

6. В некоторых тюнерах контакты 2 и 3 на разъеме меняют местами. В таком случае понадобится прямой кабель, а не перекрестный. Для того чтобы определить, какой тип коннектора стоит на вашем ресивере, следует изучить документацию к нему.

Распайка нуль-модемного кабеля RS232

В СОМ-интерфейсе следует спаять всего три контакта и корпус коннектора. В таком кабеле необходимо задействовать 2, 3 и 5 контакты. В прямом варианте нуль-модемного кабеля данные контакты припаиваются одинаково в обоих разъемах, а в перекрестном 2 и 3 меняются местами.

Про RS-232 (распайка кабелей, разъемов, краткое описание)

Контакты RS-232C

Распайка "модемного" кабеля интерфейса RS-232C

Обмен данными и интерфейс RS-232

Устранение неполадок при связи через RS-232

Контакты RS-232C

Контакты разъема DB-9 интерфейса RS-232C

Распайка "модемного" кабеля интерфейса RS-232C

Распайка "нуль-модемного" кабеля интерфейса RS-232C

Распайка кабеля RS-232C для коммутаторов Kramer

Обмен данными и интерфейс RS-232

При работе в потенциально зашумлённых условиях нам нужны надёжные средства для передачи данных. Самым распространённым стандартом всё ещё остаётся архаичный RS-232C (Recommended Standard 232 Version С), принятый ассоциацией электронной промышленности EIA (Electronic Industries Association) в августе 1969 г.
Достоинства RS-232:
Популярность - все компьютеры РС (но не Mac) оборудованы по крайней мере одним портом RS-232
Лёгкость приобретения готовых кабелей
Возможность применения аппаратного управления процессом передачи (зачастую не используется!)
Недостатки RS-232:
Связь типа «точка-точка» (DTE? DCE)
Низкая, по современным меркам, скорость (обычно 9600 бод [бит в секунду])
Работает только на небольших расстояниях (до 10 м)
Состав линий связи между устройствами DTE и DCE точно не определён. Стандарт описывает функции до 25 соединительных линий, но не указывает, должна или не должна использоваться та или иная линия. Лучше (технологически) обстоят дела в стандарте RS-422. По этому стандарту связь осуществляется по двум парам проводов, а передаваемый сигнал может приниматься более чем одним устройством. Согласно стандарту RS-485 (улучшенный RS-422) используется одна пара проводов, которая используется для передачи или приёма многими устройствами.
Характеристики и преимущества RS-422 / RS-485:
Может использоваться для многоточечных соединений
Является стандартном де-факто для значительной части вещательной видео индустрии!
Может использоваться на расстояниях до 1,2 км
Высокая помехоустойчивость за счёт использования дифференциальных (балансных) линий связи
Удлинитель линии связи KRAMER VP-43 Range Extender:
Предназначен для преодоления ограничений по расстоянию для наших продуктов, имеющих управление через RS-232.
Осуществляет преобразование в интерфейс RS-422, а затем назад, в RS-232, что позволяет использовать в качестве физического носителя две пары проводов.
Может быть использован для увеличения расстояния связи для любого нуль-модемного соединения RS-232.
Также может быть использован для управления нашими изделиями через RS-422, либо к качестве преобразователя общего назначения из RS-232 в RS-422 и обратно.
Расширитель портов KRAMER VP-14 Port Extender:
Предназначен для преодоления ограничения интерфейса RS-232, который может осуществлять только соединения типа «точка-точка». Позволяет осуществлять связь между несколькими устройствами с интерфейсами RS-232.
Данные, которые поступают на любой из портов устройства, пересылаются на остальные 3 порта.
Может быть использован для управления коммутатором от 3 устройств DTE (например, компьютеров).
Работает во всех режимах связи (число битов, скорость, чётность и т. д.) и не требует настройки этих параметров.

Устранение неполадок при связи через RS-232

Ниже приведены меры, которые могут помочь разрешить проблемы, возникающие при связи с устройствами Kramer через интерфейс RS-232.
1. Убедитесь, что между устройством (коммутатором, маршрутизатором) и управляющим компьютером (РС) установлено нуль-модемное соединение.
Проще всего (при использовании 25-контактного порта на РС) использовать нуль-модемный адаптер, прилагаемый к устройству. Подключите такой переходник 25-контактным разъёмом к последовательному порту РС, после чего прямым кабелем - т. е. с распайкой один к одному - соедините 9-контактный разъём адаптера с последовательным портом на устройстве. (Если адаптер используется с неполным кабелем, то необходимо, как минимум, соединить на 9-контактных разъёмах с обоих концов: контакт 2 с контактом 2, 3 - с 3 и 5 - с 5.)
При непосредственном подключении 25-контактного порта на РС к 9-контактному разъёму на устройстве (т. е. без нуль-модемного адаптера) соедините следующее:
Контакт 2 на 25-контактном разъёме - с контактом 2 на 9-контактном
Контакт 3 на 25-контактном разъёме - с контактом 3 на 9-контактном
Контакт 7 на 25-контактном разъёме - с контактом 5 на 9-контактном
Закоротите вместе контакты 6 и 20 на 25-контактном разъёме
Закоротите вместе контакты 4, 5 и 8 на 25-контактном разъёме
При непосредственном подключении 9-контактного порта на РС к 9-контактному разъёму на устройстве соедините следующее:
Контакт 2 на разъёме РС - с контактом 3 на разъёме устройства
Контакт 3 на разъёме РС - с контактом 2 на разъёме устройства
Контакт 5 на разъёме РС - с контактом 5 на разъёме устройства
Закоротите вместе контакты 4 и 6 на разъёме РС
Закоротите вместе контакты 1, 7 и 8 на разъёме РС
2. Убедитесь, что на устройстве правильно выставлены все DIP-переключатели.
3. Убедитесь, что установки для скорости передачи данных на РС и на устройстве совпадают, а на РС выбран правильный com-порт.
4. Если несколько устройств используются одновременно, убедитесь, что все они включены. Если в системе, работающей по схеме «ведущий/ведомый» (master/slave), какое-либо из устройств выключено, обмен в такой системе не будет надёжным.
5. Если в устройстве имеется функция «DISABLE TXD» (Отключить TXD), убедитесь, что эта функция выключена; аналогично, если для «отключения ответа» используется DIP-переключатель, убедитесь, что ответ разрешён.
6. Контакт 3 на разъёме RS-232 устройства используется для отправки данных в РС (это TXD устройства и RXD на РС). Контакт 2 на разъёме устройства используется для приёма данных от РС (это RXD устройства и TXD на РС). Может оказаться полезным с помощью цифрового запоминающего осциллографа убедиться в том, что устройство передаёт/принимает данные на указанных контактах.
7. В большинстве устройств используется «двунаправленный» протокол обмена. Это значит, что один и тот же код используется как для передачи в устройство команды на выполнение определённого действия, так и в качестве ответа от устройства (в РС) при нажатии кнопки на его передней панели для выполнения аналогичного действия. Например, если пользователь нажал кнопки и скоммутировал вход 4 на выход 5, устройство посылает в компьютер шестнадцатеричный код 7В; в то же время при получении устройством кода 7В оно также отработает подключение входа 4 на выход 5. Для такого протокола может оказаться полезным анализировать коды, посылаемые устройством при нажатии кнопок на его передней панели с тем, чтобы разобраться в протоколе обмена.
8. При устранении неполадок может оказаться полезным применять коммуникационную программу вроде Procomm или Viewcom чтобы вначале проанализировать коды, посылаемые устройством. Затем можно попробовать посылать такие коды назад (см. пункт 7), проверяя, что устройство правильно на них реагирует. Наконец, можно послать код, по которому устройство вернёт своё состояние.
9. Если должна использоваться написанная пользователем программа, по возможности вначале с помощью фирменной программы убедитесь в том, что связь между РС и устройством работает нормально.
10. Для оборудования, в котором управление через RS-232 предусмотрено в качестве опции и вводится установкой дополнительной аппаратной платы, проверьте, что такая плата правильно установлена (как описано в руководстве). В частности, для серии коммутаторов Х02 проверьте прямой кабель, подключаемый к модулю, и убедитесь, что на разъёмах нет замятых контактов.
11. Некоторые устройства могут получать управление от других элементов оборудования и могут настраиваться на работу через RS-232 с таким оборудованием, а не с компьютером. В этом случае необходимо правильно настроить устройство. Например, модели BC-2216 и BC-2616 (матричные коммутаторы звуковых сигналов 16X16) настраиваются на заводе (по умолчанию) на работу с BC-2516 (матричным коммутатором видео 16X16). В этом случае звуковая матрица получает управление от РС через видеоматрицу. Если звуковой матрицей надо управлять независимо, её следует соответственно перенастроить (на работу в режиме устройства, переключающего «только звук»).
12. Если необходимо выслать несколько команд, то перед отправкой дополнительной команды следует убедиться в том, что устройство отработало предыдущую команду. Для этого дождитесь получения ответа на предыдущую команду перед отправкой следующей.
13. Убедитесь в том, что для связи с устройством используется настоящий интерфейс RS-232! Некоторое оборудование (например, стандартный последовательный порт Macintosh), хотя и аналогичен RS-232, использует иные режимы обмена данными.
14. При использовании РС с операционной системой Windows NT4.0 (и ниже) следует принять дополнительные меры. Эта система не имеет функции «plug and play» и поэтому настройка портов компьютера в ней - непростая задача. Обратитесь к документации на Windows NT! Даже если Ваша программа работает на компьютере с иной операционной системой, возможно, что под Windows NT порт не будет правильно инициализироваться.
15. Учтите, что рабочее расстояние для RS-232 (по определению) не превышает 10 метров! Если требуется большая длина связи, следует использовать наш «удлинитель линии связи» VP-43.
16. По определению, интерфейс RS-232 предназначен для осуществления обмена между 2 портами (в нашем случае это РС и коммутатор). Если надо соединить вместе несколько устройств с интерфейсами RS-232, можно использовать VP-14 (например, если коммутатором надо управлять от 2-х компьютеров и контроллера BC-2000).
(ПРИМЕЧАНИЕ: Для некоторых изделий из нашей линейки допускается управление несколькими такими устройствами при их последовательном соединении прямыми кабелями - что кажется неправильным в свете вышесказанного! На самом деле мы настраиваем устройства в режимы «ведущий/ведомый» (master/slave), при этом с компьютером через RS-232 связано только одно, ведущее устройство. При таком включении ведущее устройство передаёт информацию на и от РС к ведомым устройствам, а интерфейсом RS-232 порты оказываются связанными попарно.)

Установка нового программного обеспечения в спутниковый ресивер возможно только через нуль модемный кабель. По простому это называется прошивка спутникового ресивера. Для ресиверов оснащенных разъемом RS-232, обновление программного софта, ключей, снятие дампа, восстановление работоспособности ресивера в большинстве случаев используется только с помощью нуль модемный кабель. Для соединения ресивера вам понадобится компьютер, или ноутбук с (переходником USB-COM) или COM-порт. Операционная система для согласования компьютер ресивер можно использовать Windows 98, Windows XP, Windows 7. Внимание! Проводить соединение и отключение кабеля от ресивера, только тогда, когда он отключен от сети 220 вольт. Во время обновления прошивки никогда непрерывайте процесс обновления программного обеспечения. Все это может повлечь за собой выход из строя спутникового ресивера.

Коротко о нуль модемном кабеле. Схема несложная, и руководствуясь фотографиями ниже не составит труда изготовить в домашних условиях самому. В крайнем случае купит на радио рынке или в компьютерном магазине. Чтобы изготовить нуль модемный кабель своими руками, вам понадобится 2 разъема RS-232 (тип разъема "мама"), кабель с тремя жилами и экраном, очень важно, чтобы он был экранированный, что даст стабильность при работе с ним. Не стоит делать это также большой длины! Все это нужно будет спаять по ниже приведенной схеме, руководствуясь фото смотрите ниже.

Схема нуль модемного кабеля спутникового ресивера

Общий вид нуль модемного кабеля. Общая длина может составлять до 10 метров. Рекомендуется использовать экранированный 3-х жильный провод. Экран паять на землю.

фото 1

Ниже на фотографии нуль модемный кабель для спутникового ресивера без разъемов. Задействовано 3 провода и экран.


фото 2

Схематическое изображение нуль модемного кабеля для ресивера.


фото 3


В современном ноутбуке или нетбуке отсутствует порт RS-232. Только USB 2.0 или USB 3.0 Поэтому для прошивки спутникового ресивера нужно использовать переходник типа USB-RS232 (смотрите на фото ниже). Такой переходник можно приобрести в компьютерном магазине. Стоит недорого. В комплекте с переходником идет диск с программным обеспечением - драйвер. Драйвер необходимо установит на ноутбук, нетбук. Обратите внимание переходник USB-RS232 используется вместе с нуль модемным кабелем. Без нуль модемного кабеля Вы не сможете прошить спутниковый ресивер, так как не совпадут разъемы. Схему нуль модемного кабеля смотрите выше.

PPP (сетевой протокол)

PPP (англ. Point-to-Point Protocol ) - двухточечный протокол канального уровня (Data Link) сетевой модели OSI . Обычно используется для установления прямой связи между двумя узлами сети, причем он может обеспечить аутентификацию соединения, шифрование (с использованием ECP, RFC 1968) и сжатие данных. Используется на многих типах физических сетей: нуль-модемный кабель, телефонная линия, сотовая связь и т. д.

Часто встречаются подвиды протокола PPP такие, как Point-to-Point Protocol over Ethernet (PPPoE), используемый для подключения по Ethernet, и иногда через DSL; и Point-to-Point Protocol over ATM (PPPoA), который используется для подключения по ATM Adaptation Layer 5 (AAL5), который является основной альтернативой PPPoE для DSL .

PPP представляет собой целое семейство протоколов: протокол управления линией связи (LCP), протокол управления сетью (NCP), протоколы аутентификации (PAP , CHAP), многоканальный протокол PPP (MLPPP).

Основные характеристики

PPP протокол был разработан на основе HDLC и дополнен некоторыми возможностями, которые до этого встречались только в проприетарных протоколах.

Автоматическая настройка

После того, как соединение было установлено, поверх него может быть настроена дополнительная сеть. Обычно, используется Internet Protocol Control Protocol (IPCP), хотя Internetwork Packet Exchange Control Protocol (IPXCP) и AppleTalk Control Protocol (ATCP) были когда-то популярны. Internet Protocol Version 6 Control Protocol (IPv6CP) получит большее распространение в будущем, когда IPv6 заменит IPv4 как основной протокол сетевого уровня.

Многопротокольная поддержка

PPP позволяет работать нескольким протоколам сетевого уровня на одном канале связи. Другими словами, внутри одного PPP-соединения могут передаваться потоки данных различных сетевых протоколов ( , Novell IPX и т. д.), а также данные протоколов канального уровня локальной сети. Для каждого сетевого протокола используется Network Control Protocol (NCP) который его конфигурирует (согласовывает некоторые параметры протокола).

Обнаружение закольцованных связей

PPP обнаруживает закольцованные связи, используя особенность, включающую magic numbers. Когда узел отправляет PPP LCP сообщения, они могут включать в себя магическое число. Если линия закольцована, узел получает сообщение LCP с его собственным магическим числом вместо получения сообщения с магическим числом клиента.

Наиболее важные особенности

  • Link Control Protocol устанавливает и завершает соединения, позволяя узлам определять настройки соединения. Также он поддерживает и байто-, и бито-ориентированные кодировки.
  • Network Control Protocol используется для определения настроек сетевого уровня, таких как сетевой адрес или настройки сжатия, после того как соединение было установлено.

Конфигурационные опции PPP

Так как в PPP входит LCP протокол, то можно управлять следующими LCP параметрами:

  • Аутентификация . RFC 1994 описывает Challenge Handshake Authentication Protocol (CHAP), который является предпочтительным для проведения аутентификации в PPP, хотя Password Authentication Protocol (PAP) иногда еще используется. Другим вариантом для аутентификации является Extensible Authentication Protocol (EAP).
  • Сжатие . Эффективно увеличивает пропускную способность PPP соединения, за счет сжатия данных в кадре. Наиболее известными алгоритмами сжатия PPP кадров являются Stacker и Predictor.
  • Обнаружение ошибок . Включает Quality-Protocol и помогает выявить петли обратной связи посредством Magic Numbers RFC 1661 .
  • Многоканальность . Multilink PPP (MLPPP, MPPP, MLP) предоставляет методы для распространения трафика через несколько физических каналов, имея одно логическое соединение. Этот вариант позволяет расширить пропускную способность и обеспечивает балансировку нагрузки.

PPP кадр

Каждый кадр PPP всегда начинается и завершается флагом 0x7E. Затем следует байт адреса и байт управления, которые тоже всегда равны 0xFF и 0x03 соответственно. В связи с вероятностью совпадения байтов внутри блока данных с зарезервированными флагами, существует система автоматической корректировки «проблемных» данных с последующим восстановлением.

Поля «Флаг», «Адрес» и «Управление» (заголовок кадра HDLC) могут быть опущены и не передаваться, но это если PPP в процессе конфигурирования (используя LCP), договорится об этом. Если PPP инкапсулирован в L2TP -пакеты, то поле «Флаг» не передается.

Тип кадра данных в PPP

Поле «Данные», PPP кадра, в свою очередь разбиты ещё на два поля: флаг протокола (который определяет тип данных до конца кадра), и сами данные.

  • Флаги протокола от 0x0XXX до 0x3XXX идентифицируют протоколы сетевого уровня. Например, популярному протоколу соответствует флаг 0x0021, а Novell IPX - 002B.
  • Флаги протокола от 0x4XXX до 0x7XXX идентифицируют протоколы с низким уровнем трафика.
  • Флаги протокола от 0x8XXX до 0xBXXX идентифицируют протокол управления сетью (NCP).
  • Флаги протокола от 0xCXXX до 0xEXXX идентифицируют управляющие протоколы. Например, 0xC021 обозначает, что кадр содержит данные протокола управления соединением LCP .

Активации канала PPP и его фазы

Фазы PPP по RFC 1661 указаны ниже:

  • Link Dead . Эта фаза наступает, когда связь нарушена, либо одна из сторон указала не подключаться (например, пользователь завершил модемное соединение.)
  • Link Establishment Phase . В данной фазе проводится настройка Link Control. Если настройка была успешной, управление переходит в фазу аутентификации, либо в фазу Network-Layer Protocol, в зависимости от того, требуется ли аутентификация.
  • Authentication Phase . Данная фаза является необязательной. Она позволяет сторонам проверить друг друга перед установкой соединения. Если проверка успешна, управление переходит в фазу Network-Layer Protocol.
  • Network-Layer Protocol Phase . В данной фазе вызывается NCP для желаемого протокола. Например, IPCP используется для установки IP сервисов. Передача данных по всем успешно установленным протоколам также проходит в этой фазе. Закрытие сетевых протоколов тоже включается в данную фазу.
  • Link Termination Phase . Эта фаза закрывает соединение. Она вызывается в случае ошибок аутентификации, если было настолько много ошибок контрольных сумм, что обе стороны решили закрыть соединение, если соединение неожиданно оборвалось, либо если пользователь отключился. Данная фаза пытается закрыть все настолько аккуратно, насколько возможно в данных обстоятельствах.

Документы RFC

Протокол PPP определен в RFC 1661 (The Point-to-Point Protocol, июль 1994). Ряд соответствующих RFC, были написаны чтобы определить, как различные сетевые протоколы, включая TCP/IP , DECnet, AppleTalk , IPX и другие, работают с PPP.

  • RFC 1661 , Standard 51, Протокол точка-точка (PPP)
  • RFC 1662 , Standard 51, Использование HDLC в разработке PPP
  • RFC 5072 , IPv6 и PPP

Примечания

См. также

  • PLIP (англ.) русск.


Рекомендуем почитать

Наверх