Проблемы распознавания образов и изображений. Проблемы и перспективы развития распознавания образов. Роль и место распознавания образов в автоматизации управления сложными системами

Viber OUT 17.03.2019
Viber OUT




ВЛИЯНИЕ НЕВЕСОМОСТИ НА ЧЕЛОВЕКА Сенсорные изменения проявляются в нарушении или зат­ руднении ориентации возникает ощущение крена, «перевернутости», головокружение и пр. Артериальное давление неустойчиво, чаще снижено. Дыхание, вна­чале несколько учащенное, быстро нормализуется, а в дальнейшем за­медляется. После длительного пребывания в невесомости значительно уменьшается _масса.тела, главным образом за счет потери воды (усиле­ние диуреза) Длительное состояние невесомости сопровождается усиленным вы­ведением кальция из организма точность движений может несколько снижаться. Чаще нарушаются тонкие координационные акты. Несколько уменьшается мышечная сила. увеличению мочеотделения, потере натрия, дегид­ратации и уменьшению объема циркулирующей крови.


1) лица, которые переносят невесомость без ухудшения общего самочувствия; 2) лица, испытывающие в состоянии невесомости иллюзорные ощущения положения тела в пространстве; 3) лица, у которых быстро развиваются симптомы воздушной болезни (слюнотечение, тошнота, рвота)


М ЕТОДЫ БОРЬБЫ С ПОСЛЕДСТВИЯМИ НЕВЕСОМОСТИ. интенсивные физические упражнения, профилактический костюм, имитирующий земное притяжение, нагружающий кости человека в продольном направлении, который приходится носить в течение 12 часов в сутки. тренировки на тренажере «бегущая дорожка» при тяге 60 кг. Все это по часу утром и вечером.

Ровно пятьдесят лет назад, 12 апреля 1961 года, Юрий Гагарин на космическом корабле «Восток» поднялся в космос. Его полет продолжался всего 108 - исторических - минут. С тех пор человечество осваивает околоземное пространство вот уже полвека. За это время в космосе побывали сотни космонавтов, и ученые накопили огромный массив данных о влиянии невесомости на организм человека.

На самом деле на орбите нет невесомости. Поднимаясь на высоту примерно триста пятьдесят километров, космонавты оказываются в условиях так называемой микрогравитации. Это означает, что все предметы на космической станции имеют вес, но вес в разы меньший, чем на Земле.

Все эффекты, которые микрогравитация оказывает на человека, можно разделить на две категории.

Первые наступают в первые часы полета. Это нарушения вестибулярного аппарата, приводящие к временной потере пространственной ориентации , расстройство всех форм зрительных движений (причем микрогравитация влияет как на скорость, так и на точность зрительной реакции и перераспределение жидкостей в организме : кровь, лимфа и свободная вода приливают к верхней части туловища). Иначе говоря, космонавтов мутит, у них кружится голова, они не в силах выполнять сложные действия, связанные с координацией движений. Подобные расстройства вестибулярного аппарата называются также «космической болезнью движения» и проявляются примерно у половины всех космонавтов спустя 24 часа после начала полета. Ученые до сих пор не в силах детально объяснить природу их происхождения. При этом четко известно: примерно через 72 часа пребывания на орбите эти неприятные симптомы проходят.

Интересно, что Гагарин во время своего полета подобных нарушений не заметил (потому что пробыл в космосе всего полтора часа). А вот полет второго космонавта, Германа Титова, продлился чуть больше суток, и он в полной мере испытал все «прелести» пребывания на орбите.

Однако для здоровья гораздо опаснее вторая категория эффектов воздействия микрогравитации, которые проявляются лишь спустя месяцы пребывания на орбите.

В первую очередь это нарушения опорно-двигательного аппарата: при длительном воздействии микрогравитации у космонавтов снижаются сократительная способность мышечных волокон и минеральная плотность костной ткани, из организма вымывается кальций и другие минералы, возникает риск образования камней в почках .

Исследования космонавтов во время космических полетов длительностью несколько месяцев показали, что они могут терять до 1,0% костной массы каждый месяц, даже если продолжают тренироваться. Спустя 4-5 месяцев полета минеральная плотность костей настолько уменьшается, что по возвращении на Землю у космонавтов возможны спонтанные переломы. Кости теряют кальций неравномерно. Сильнее всего он вымывается из участков кости, которые формируют суставы, то есть испытывают наибольшую нагрузку в земных условиях. Также замедляется и процесс ремоделирования - постоянного обновления костной ткани.

Страдают не только скелетные мышцы, однако с недостатком на борту орбитальных станций научились бороться. Есть и специальные «беговые» дорожки и нагрузочные костюмы, например, такие как российский «Пингвин» с силой притяга от 45 до 60 кг, который имитирует земное притяжение. Гораздо опаснее атрофия сердечной мышцы и общая анемия кроветворной системы. Дело в том, что сердечно-сосудистая система - самая гравитационно-чувствительная в организме человека, она рассчитана работу в условиях постоянной силы тяжести. И отсутствие гравитации приводит к уменьшению объема крови, мягкости вен, ослабленным барорецептивным рефлексам и сниженной ортостатической устойчивости.

Барорецепторы - это клетки, нервные окончания которых реагируют на давление крови. Барорецепторная система регулирует давление крови в верхней части тела, в каротидных артериях, которые снабжают мозг. Если давление снижается, именно барорецепторы включают систему поддержания давления. Но если давление падает слишком резко, барорецепторы не успевают сработать, и человек может потерять . А ортостатическая устойчивость - это способность сохранять вертикальное равновесие, ведь «ортостаз» в переводе с латинского означает «прямо стою». Например, у больного, который месяцами лежит в постели, развивается ортостатическая недостаточность: любая попытка даже сесть вызывает большие трудности.

Микрогравитация влияет и на мозг. Так, исследования показали, что в коре мозга крыс, находившихся в условиях невесомости, снижалась функциональная активность синапсов. Кроме того, у них обнаружена дегенерация отростков нервных клеток. А вот плотность сети кровеносных капилляров, наоборот, была повышена.

Причина большинства изменений в организме человека в условиях микрогравитации до конца не ясна. Однако уже сейчас понятно, что на воздействие «невесомости» откликаются все уровни организма, вплоть до клеточного. Особенно микрогравитация влияет на развивающиеся клетки: в них тормозиться процесс синтеза белка, формирования клеточной оболочки и цитоскелета, который помогает клеткам сохранять свою форму. Структурные элементы цитоскелета - актиновые нити, которые в норме равномерно заполняют объем клетки, сдвигаются к краям. При этом изменяется функционирование и рецепторов, и ионных каналов. Клетка как бы адаптирует свою жизнедеятельность под уменьшенную гравитацию.

Впрочем, практические все нарушения, вызванные воздействием микрогравитации, исчезают при возращении на Землю. Хотя процесс обратной адаптации к земным условиям может затянуться на годы.

У читателя может возникнуть вопрос: а зачем все эти исследования нужны обычному человеку? Очень просто - уже сегодня ряд технологий и методик, разработанных в помощь космонавтам, успешно используются при лечении. Так, с помощью нагрузочных костюмов (имитирующих земное тяготение на орбите) сейчас лечат детский церебральный паралич , инсульт, болезнь Паркинсона . Ученые ведут исследования по фармакологическому воздействию на водно-солевой обмен и изучают мышечных ферментов у космонавтов - их данные могут помочь в открытии новых способов лечения такого тяжелого заболевания, как миопатия. Так что космическая медицина только начинает служить человеку.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений - самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас - в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.



Рекомендуем почитать

Наверх