Принцип как работает станков для гигабитной сетки. Локальная сеть своими руками: Выбор и обжим сетевого кабеля. Порядок обжима витой пары

Прочие модели 23.02.2019
Прочие модели

3. Трёхмерная графика .

Графики функций двух переменных представляют из себя куски поверхностей, нависающие над областями определения функций. Отсюда ясно, что изображение графиков функций двух переменных требует реализации "трёхмерной графики" на пл оском экране дисплея компьютера.

Высокоуровневая графическая подсистема MATLABа автоматически реализует трёхмерную графику без специальных усилий со стороны пользователя. Пусть в точке с координатами x1,y1 вычислено значение функции z=f(x,y) и оно равно z1. В некоторой другой точке (то есть при другом значении аргументов) x2,y2 вычисляют значение функции z2. Продолжая этот процесс, получают массив (набор) точек (x1,y1,z1), (x2,y2,z2), … (xN,yN,zN) в количестве N штук, расположенных в трёхмерном пространстве. Специальные функции системы MATLAB проводят через эти точки гладкие поверхности и отображают их проекции на плоский дисплей компбютера.

Чаще всего точки аргументов расположены в области определения функции регулярно в виде прямоугольной сетки (то есть матрицы). Такая сетка точек порождает две матрицы одной и той же структуры: первая матрица содержит значения первых координат этих точек (x - координат), а вторая матрица содержит значения вторых координат (y - координат). Обозначим первую матрицу как X, а вторую - как Y. Есть ещё и третья матрица - матрица значений функции z=f(x,y)при этих аргументах. Эту матрицу обозначим буквой Z.

Простейшей функцией построения графика функции двух переменных в системе MATLAB является функция

plot3(X , Y , Z)

где X, Y и Z - матрицы одинаковых размеров, смысл которых мы только что объяснили.

В системе MATLAB имеется специальная функция для получения двумерных массивов X и Y по одномерным массивам x, y.

P P> Пусть по оси x задан диапазон значений в виде вектора

u = -2: 0.1: 2

а по оси y этот диапазон есть

v = -1: 0.1: 1

Для получения матриц X и Y, представляющих первые и вторые координаты получающейся прямоугольной сетки точек используют специальную функцию системы MATLAB:

[ X , Y ] = meshgrid(u, v)

Как мы видим, эта функция получает на входе два одномерных массива (вектора), представляющие массивы точек на осях координат, и возвращает сразу два искомых двумерных массива. На прямоугольной сетке точек вычисляем значения функции, например функции exp:

Z = exp(- X.^2 - Y.^2)

Наконец, применяя описанную выше функцию plot3,получаем следующее изображение трёхмерного графика этой функции:

Из этого рисунка видно, что функция plot3 строит график в виде набора линий в пространстве, каждая из которых является сечением трёхмерной поверхности плоскостями, параллельными плоскости yOz. По-другому можно сказать, что каждая линия получается из отрезков прямых, соединяющих набор точек, координаты которых берутся из одинаковых столбцов матриц X, Y и Z. То есть, первая линия соответствует первым столбцам матриц X, Y Z; вторая линия - вторым столбцам этих матриц и так далее.

Для построения трёхмерных линий, задаваемых параметрически применяется другая форма вызова функции plot3:

plot3(x, y, z)

где x, y и z являются одномерными массивами координат точек, которые и нужно последовательно соединить отрезками прямых. Например, следующий фрагмент кода

t = 0: pi/50: 10*pi ;

x = sin(t);

y = cos(t);

plot3(x , y , t);

grid on

где применена известная по плоским графикам команда

grid on

для проставления сетки координатных значений в области построения графика (также допустимо использовать команды и функции по оформлению графиков, ранее рассмотренные для "плоского" случая), позволяет построить винтовую линию, изображение которой показано на следующем рисунке:

Помимо этой простейшей функции система MATLAB располагает ещё рядом функций, позволяющих добиваться большей реалистичности в изображении трёхмерных графиков. Это функции mesh, surf и surfl.

Функция mesh соединяет вычисленные соседние точки поверхности графика отрезками прямых и показывает в графическом окне системы MATLAB плоскую проекцию такого объёмного "каркасно-ребристого" (по-английски зовётся wireframe mesh) тела. Вместо ранее показанного при помощи функции plot3 графика функции

exp(- X.^2 - Y.^2)

можно получить вот такое изображение

Для лучшего восприятия "объёмности" изображения разные рёбра автоматически окрашиваются в разные цвета. Кроме того (в отличие от функции plot3) осуществляется удаление невидимых линий. Если вы считаете, что изображённое ребристое тело является прозрачным и не должно скрывать задних линий, то можно ввести команду hidden off , после чего такие линии появятся на изображении. Более плотного изображения поверхности можно добиться, если вместо

функции mesh применить функцию surf(X, Y, Z).

В результате получается следующее изображение представляющее плотную (непрозрачную) сетчатую поверхность, причём отдельные ячейки (грани) этой сетчатой поверхности (плоские четырёхугольники) автоматически окрашиваются в разные цвета.

С помощью функции surf получаются хотя и искусственно раскрашенные, но весьма наглядные изображения. Если же мы хотим добиться более естественных и объективных способов окрашивания поверхностей, то следует использовать функцию surfl.

Функция surfl трактует поверхность графика как материальную поверхность с определёнными физическими свойствами по отражению света. По умолчанию задаётся некоторый источник света, освещающий такую материальную поверхность, после чего рассчитываеются траектории отражённых лучей, попадающих в объектив условной камеры. Изображение в такой камере и показывается в графическом окне системы MATLAB.

Так как разные материалы по-разному отражают падающие лучи, то можно подобрать некоторый материал, чтобы получить наилучшее (с точки зрения пользователя) изображение. В частности, можно использовать функцию

colormap(copper)

с помощью которой для изображения графика выбирается набор цветов (по-английски - colormap), который характерен для света, отражающегося от медной поверхности (медь по-английски - copper). После этого применение функции

surfl(X, Y, Z)

вместо surf(X,Y,Z) приводит к получению очень реалистически выглядящего и очень наглядного графика:

Можно с такого графика убрать чёрные линии, изображающие рёбра, а также добиться ещё более плавного перехода освещения поверхности, если выполнить команду

shading interp

означающую, что теперь цвет (освещённость) будет меняться даже внутри отдельных граней (ячеек). В итоге будет получаться совсем уж реальное изображение некоторой объёмной фигуры. Лучше это или хуже для задачи изображения графиков функций двух переменных - судить конкретному пользователю.

2. Оформление графиков функций .

Сейчас рассмотрим ряд вопросов, связанных с внешним видом графиков функций - цветом и стилем линий, которым проведены сами графики, а также различными надписями в пределах графического окна.

Например, следущие команды

x = 0: 0.1: 3; y = sin(x);

plot(x, y, "r-", x, y, "ko")

позволяют придать графику вид красной сплошной линии, на которой в дискретных

вычисляемых точках проставляются чёрные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как "r-", что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Второй стиль, помеченный как "ko" означает проведение чёрным цветом (буква k) окружностей (буква o) на месте вычисляемых точек.

В общем случае, функция

plot(x1, y1, s1, x2, y2, s2, …)

позволяет объединить несколько графиков функций y1(x1), y2(x2),…, проведя их со стилями s1, s2, …

В случае функции вида

plot(x1, y1, s1, x1, y1, s2)

мы можем провести линию графика единственной функции y1(x1) одним цветом, а точки на нём (вычисляемые точки) - другим цветом.

Стили s1, s2,… задаются в виде набора трёх символьных маркеров, заключенных в одиночные кавычки. Первый (не обязательно по порядку) из этих маркеров задаёт тип линии:

Второй маркер задаёт цвет:

Последний маркер задаёт тип проставляемых "точек":

Можно указывать не все три маркера. Тогда используются необходимые маркеры, установленные "по умолчанию". Порядок, в котором указываются маркеры, не является существенным, то есть "r+-" и "-+r" приводят к одинаковому результату.

Если в строке стиля поставить маркер типа точки, но не проставить маркер на тип линии, то тогда отображаются только вычисляемые точки, а непрерывной линией они не соединяются.

Наиболее мощным способом оформления графиков функций (и выполнения других графических работ) является дескрипторный метод, полное изучение которого относится к так называемой низкоуровневой графике системы MATLAB и выходит за рамки настоящего пособия. Мы, однако, приведём сейчас (и позже) некоторые простые примеры.

Выше мы оформляли график функции sin с помощью непрерывной красной линии и чёрных кружков. Теперь попробуем ограничиться лишь непрерывной линией, но очень толстой. Как это можно сделать? Вот простое решение на базе дескрипторной графики:

x = 0: 0.1: 3; y = sin(x);

hPlot = plot(x, y);

set(hPlot, "LineWidth", 7);

Функция plot через опорные (вычисленные) точки с координатами x, y проводит отрезки прямых линий. Прямые линии в системе MATLAB представляют собой графические объекты типа Line. Эти объекты имеют огромное число свойств и характеристик, которые можно менять. Доступ к этим объектам осуществляется по их описателям (дескрипторам; handles).

Описатель объекта Line, использованного для построения нашего графика, возвращается функцией plot. Мы его запоминаем для дальнейшего использования в переменной hPlot. Затем этот описатель предлагается функции set для опознания конкретного графического объекта. Именно для такого опознанного объекта функция set изменяет характеристики, которые указаны в других аргументах при вызове функции set. В нашем примере мы указали свойство "LineWidth" (толщина линии), для которого задали новое значение 7 (а по умолчанию - 0.5). В результате получается следующая картина:

Текущее значение любого параметра (атрибута; характеристики) графического объекта можно узнать с помощью функции get. Например, если после получения показанного на рисунке графика ввести и исполнить команду

width = get(hPlot, "LineWidth")

то для переменной width будет получено значение 7.

Теперь от оформления непосредственно линий перейдём к оформлению осей системы координат, к надписям на осях и так далее. MATLAB выбирает пределы на горизонтальной оси равными указанным для независимой переменной. Для зависимой переменной по вертикальной оси MATLAB вычисляет диапазон изменения значений функции. Затем этот вычисленный диапазон приписывается вертикальной оси системы координат, так что график функции оказывается как бы вписанным в прямоугольник.

Если мы хотим отказаться от этой особенности масштабирования при построении графиков в системе MATLAB, то мы должны явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции

axis([ xmin, xmax, ymin, ymax ])

причём команду на выполнение этой функции можно вводить с клавиатуры сколько угодно раз уже после построения графика функции, чтобы, глядя на получающиеся визуальные изображения, добиться наилучшего восприятия. Такое масштабирование позволяет получить подробные изображения тех частей графика, которые вызывают наибольший интерес в конкретном исследовании. Например, для ранее полученного графика функции sin, можно сузить пределы по осям координат

axis([ 1.5, 2.5, 0.5, 2 ])

чтобы получше разглядеть вершину синусоиды:

Чаще всего этот приём увеличения масштаба изображения применяют при графическом решении уравнений с тем, чтобы получить более высокую точность приближения к корню.

Теперь изменим количество числовых отметок на осях. Их может показаться недостаточно (на горизонтальной оси последнего рисунка их всего три - для значений 1.5 , 2 и 2.5).

Изменить отметки на осях координат можно с помощью функции set, обрабатывающей графический объект Axes. Это объект, который содержит оси координат и белый прямоугольник, внутри которого и проводится сам график функции. Для получения описателя такого объекта применяют функцию gca, которую вызывают без параметров.

В итоге, следующий фрагмент кода

hAxes = gca;

set(hAxes, "xtick", [ 1.5, 1.75, 2.0, 2.25, 2.5 ])

выполняющийся после построения графика, устанавливает новые метки на горизонтальной оси координат (пять штук).

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel предназначена для проставления названия горизонтальной оси, функция ylabel - то же для вертикальной оси (причём эти надписи ориентированы вдоль осей координат).

Если требуется разместить надпись в произвольном месте рисунка - применяем функцию text:

text(x, y, "some text")

Общий заголовок для графика проставляется функцией title. Кроме того, используя команду

grid on

можно нанести измерительную сетку на всю область построения графика. Применяя все эти средства

title("Function sin(x) graph");

xlabel("x coordinate"); ylabel("sin(x)");

text(2.1, 0.9, "\leftarrowsin(x)"); grid on;

придаём графику функции следующий вид:

Надпись функцией text помещается, начиная от точки с координатами, указанными первыми двумя аргументами. Специальные символы вводятся внутри текста после символа \ ("обратная косая черта"). В примере мы ввели таким образом специальный символ "стрелка влево". Обозначения для специальных символов совпадают с таковыми в системе подготовки научных текстов TeX.

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до. Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Рис. 3.1.

Функцию plot() можно записать и с одним аргументом x или y:

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

plot(x,y1,x,y2);

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а - plot(x); б - plot(y).


Рис. 3.3.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу


в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией plot(); % апострофы переводят вектор-строку % в вектор-столбец в виде двух графиков (рис. 3.4).


Рис. 3.4.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

x1 = 0:0.01:2*pi;

plot(x1, y1); % рисование первого графика

figure; % создание 2-го графического окна

plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического о...

Рис. 3.8.

В заключении данного параграфа рассмотрим возможности создания подписей графиков, осей и отображения сетки на графике. Для этого используются функции языка MatLab, перечисленные в табл. 3.4.

Таблица 3.4. Функции оформления графиков

Рассмотрим работу данных функций в следующем примере:

axis();

title("The graphic of sin(x) function");

xlabel("The coordinate of Ox");

ylabel("The coordinate of Oy");

text(3.05,0.16,"leftarrow sin(x)");

Из результата работы данной программы, представленного на рис. 3.9, видно каким образом работают функции создания подписей на графике, а также отображение сетки графика.

Таким образом, используя описанный набор функций и параметров, можно достичь желаемого способа оформления графиков в системе MatLab.

Рис. 3.9. Пример работы функций оформления графика

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

3.1. Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до . Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Рис. 3.1. Отображение функции синуса с помощью функции plot().

Функцию plot() можно записать и с одним аргументом x или y:

plot(x);
plot(y);

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

x = 0:0.01:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,x,y2);

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а – plot(x); б – plot(y).

Рис. 3.3. Отображение двух графиков в одних координатных осях.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

y1 = sin(x);
y2 = cos(x);

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу

в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией

plot(); % апострофы переводят вектор-строку
% в вектор-столбец

в виде двух графиков (рис. 3.4).

Рис. 3.4. Отображение двумерной матрицы в виде двух графиков.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);


figure; % создание 2-го графического окна
plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического окна, которое необходимо создать или сделать активным, если оно уже создано. Таким образом, вышеприведенную программу можно записать так.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1); %создание окна с номером 1
plot(x1, y1); % рисование первого графика
figure(2); % создание графического окна с номером 2
plot(x2, y2); % рисование 2-го графика во 2-м окне

При выполнении данной программы на экране всегда будут отображены только два графических окна с номерами 1 и 2, и в них показаны графики функций синуса и косинуса соответственно.

В некоторых случаях большего удобства представления информации можно достичь, отображая два графика в одном графическом окне. Это достигается путем использования функции subplot(), имеющая следующий синтаксис:

subplot(<число строк>, <число столбцов>, <номер координатной оси>)

Рассмотрим пример отображения двух графиков друг под другом вышеприведенных функций синуса и косинуса.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1);
subplot(2,1,1); % делим окно на 2 строки и один столбец
plot(x1,y1); % отображение первого графика
subplot(2,1,2); % строим 2-ю координатную ось
plot(x2,y2); % отображаем 2-й график в новых осях

Результат работы программы показан на рис. 3.5.

Аналогичным образом можно выводить два и более графиков в столбец, в виде таблицы и т.п. Кроме того, можно указывать точные координаты расположения графика в графическом окне. Для этого используется параметр position в функции subplot():

subplot(‘position’, );

где left – смещение от левой стороны окна; bottom – смещение от нижней стороны окна; width, height – ширина и высота графика в окне. Все эти переменные изменяются в пределах от 0 до 1.

Рис. 3.5. Пример работы функции subplot.

Ниже представлен фрагмент программы отображения графика функции синуса в центре графического окна. Результат работы показан на рис. 3.6.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

subplot(‘position’, );
plot(x1,y1);

В данном примере функция subplot() смещает график на треть от левой и нижней границ окна и рисует график с шириной и высотой в треть графического окна. В результате, получается эффект рисования функции синуса по центру основного окна.

Таким образом, используя параметр position можно произвольно размещать графические элементы в плоскости окна.

Рис. 3.6. Пример работы функции subplot с параметром position.



Рекомендуем почитать

Наверх