Примеры применение таймера NE555. Двадцать таймерят

Прочие модели 03.09.2019
Прочие модели

Микросхема NE555 представляет собой аналоговую интегральную схему, являющуюся универсальным таймером, то есть устройством, предназначенным для формирования (генерирования) одиночных или повторяющихся импульсов со стабильными характеристиками во времени. Микросхема NE555 широко применима в технологиях построения реле времени, генераторов, модуляторов, пороговых устройств и других функциональных узлов электронной техники. На основании данной микросхемы были построены устройства широтно-импульсного регулирования, приборы восстановления искаженного цифрового сигнала, импульсные преобразователи напряжения и др.
Микросхема впервые была выпущена в 1971 году компанией Signetics. Сдвоенная версия NE555 производится с обозначением 556, а счетверенная - 558.

Топология микросхемы NE555 состоит из 2 диодов, 23 транзисторов и 16 резисторов. Выходной ток микросхемы равен 200 мА , в то время как ток ее потребления всего на 3 мА больше. Питается микросхема напряжением в диапазоне от 4,5 до 18 вольт . Однако, на точность таймера NE555, изменение напряжения питания не влияет. Погрешность составляет всего около 1% от расчетного значения.

Блок-схема микросхемы NE555

Назначение выводов микросхемы NE555

№ вывода

Обозначение

Альтер-
нативное
обозначение

Назначение

Описание

Общий провод, минус питания

В том случае, если напряжение на этом выходе достигает уровня ниже 1/2 от CTRL, на выходе микросхемы (вывод 3) появляется напряжение высокого уровня и начинается отсчёт времени.

Q или без
обозначения

На этом выводе формируется одно из двух напряжений, примерно соответствующих низкому уровню - 0.25В и высокому уровню V CC - 1,7В, в зависимости от состояния таймера. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Сброс (разрешение запуска)

При подаче на этот вход напряжения менее 0,7 В выход микросхемы принудительно переходит в состояние низкого уровня (переключается на GND). Это происходит независимо от состояния других входов, то есть данный вход имеет наивысший приоритет. Другими словами, высокий уровень напряжения на данном входе (более 0,7 В) разрешает запуск таймера, в противном случае запуск запрещён.

Управление (контроль делителя)

Подключен напрямую к внутреннему делителю напряжения. При отсутствии внешнего сигнала имеет напряжение 2/3 от V CC. Определяет пороги останова и запуска.

Когда напряжение на этом выводе превышает напряжение на выводе CTRL, на выходе устанавливается напряжение низкого уровня, интервал заканчивается. Останов возможен, если на вход TRIG не поступает сигнал запуска, так как вход TRIG имеет приоритет над THR (исключение - микросхема КР1006ВИ1).

? или ¤<

Выход типа «открытый коллектор», обычно используется для разрядки времязадающего конденсатора между интервалами. Состояния этого выхода повторяют состояния основного выхода OUT, поэтому возможно их параллельное соединение для увеличения нагрузочной способности таймера по втекающему току.

Плюс питания.

Режимы работы микросхемы NE555

Моностабильный генератор


Входной сигнал низкого уровня на входе INPUT (вывод 2) производит переключение таймера микросхемы в режим отсчёта времени, при этом на выходе микросхемы (OUTPUT – вывод 3) наблюдается высокий уровень сигнала. Данное положение таймера длится заданный промежуток времени, который равен t=1,1*R*C . Далее таймер возвращается в стабильное состояние, определяющее низкий уровень сигнала на выходе микросхемы (OUTPUT – вывод 3).

Астабильный генератор

Напряжение на выходе микросхемы (OUTPUT – вывод 3) периодически изменяется. Таким образом, на выходе микросхемы наблюдается сигнал в виде меандра, который может быть описан следующими уравнениями:
Длительность высокого уровня: t1 = ln2*(R1+R2)*C = 0,693*(R1+R2)*C
Длительность низкого уровня: t2=ln2*R2*C2 = 0,693*R2*C2
Период: T=ln2*(R1+2*R2)*C = 0,693*(R1+2*R2)*C
Частота: f=1/(ln2*(R1+2*R2)*C)

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R 1 , R 2 и конденсатор С 1 . Время импульса (t 1), время паузы(t 2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t 1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности - Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С 1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С 1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 U ПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t 1), который продолжается до нижнего порогового значения 1/3 U ПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 U ПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R 1 – 200кОм-0,125Вт и электролитический конденсатор С 1 – 4,7мкФ-16В. R 2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С 2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R 1 *C 1 =1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(U ВЫХ -U LED)/I LED ,

U ВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке.
С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Читайте так же


Теория и практика применения таймера 555. Часть первая.

Часть первая. Теоретическая.

Наверное нет такого радиолюбителя (Мяу, и его кота! - Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием "Интегральный таймер" (The IC Time Machine ).
На тот момент это была единственная "таймерная" микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

Texas Instruments

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы - гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов - пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась - сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем - 556 и 558. 556 - это сдвоенная версия таймера, 558 - счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый - на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф - 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги - какой вывод для чего нужен и что все это значит.

Итак, выводы (Мяу! Это он про ноги... ):

1. Земля. Особо комментировать тут нечего - вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С - это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий - высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания - это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?! ) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе - низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ - мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии - на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый - если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения - в таком случае выход остается активным - на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй - если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили - перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C , где R - сопротивление резистора в МегаОм-ах, С - емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам - работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода - значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот - горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания - 9 вольт. Например, от батареи "Крона".

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый - моностабильный мультивибратор . Моностабильный - потому что стабильное состояние у такого мультивибратора одно - выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот - для формирования паузы на заданное время.

Второй режим - это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический. )
Все-таки Кот у нас - зануда.
Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 - Останов. Это вход компаратора №1. Сюда же подключен вывод 7 - Разряд. Входной импульс подается на вывод 2 - Запуск. Это вход компаратора №2. Совершенно простецкая схема - один резистор и один конденсатор - куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень - около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера - это очень важно. Так, что там у нас происходит то? А, да - заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер - напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться... фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C - в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса - t1 и промежутком между импульсами - t2. t = t1+t2 .
Частота и период - понятия обратные друг другу и зависимость между ними следующая:
f = 1/t .
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C ;
t2 = 0.693R2C ;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы - их можно задать .

Как вам эта статья?

Рассмотрим примеры практического применения данной микросхемы

Триггер Шмидта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

- - - - - - - - - - - - - - - - - -

Простой таймер включения устройства в ~220V.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Схема для получения более точных интервалов .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Практическое применение в статье ШИМ для вентилятора

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Сумеречный выключатель .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Управление устройством с помощью одной кнопки .

Вариант исполнения такой схемы находится в этом блоге .

Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог 561TM2)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Контроль уровня воды.

Схема для включения светодиодной подсветки от автономного питания, на 10- 30секунд.

Один вариант из применения, встраивается во входную дверь в районе замочной скважины.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Подсветка включается посредством нажатия кнопки на дверной ручке - в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Кодовый замок на таймере NE555.

Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.(в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.

Работа схемы;
- Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
- Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
- Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
- После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся.
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. :)
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем)
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Назначение восьми ног микросхемы.

1. Земля.

Вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск.
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb,) и конденсатором С - это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход.
Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий - высокий уровень происходит приблизительно за 100 нс.
4. Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания - это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль.
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов.
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд.
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

Продолжаем обзор таймера 555 . В данной статье рассмотрим примеры практического применения данной микросхемы. Теоретический обзор можно прочитать .

Пример №1 — Сигнализатор темноты.

Схема издает звуковой сигнал при наступлении темноты. Пока фоторезистор освещен, на выводе №4 установлен низкий уровень, а значит, NE555 находится в режиме сброса. Но как только освещение падает, сопротивление фоторезистора возрастает и на выводе №4 появляется высокий уровень и как следствие таймер запускается, издавая звуковой сигнал.

Пример №2 — Модуль сигнализации.

Схема представляет один из модулей автосигнализации, который подает сигнал при изменении угла наклона автомобиля. В качестве датчика применен ртутный выключатель. В исходном состоянии датчик не замкнут и на выходе NE555 установлен низкий уровень. При изменении угла наклона автомобиля ртутная капля замыкает контакты, и низкий уровень на выводе №2 запускает таймер.

В результате чего на выходе появляется высокий уровень, который управляет каким-либо исполнительным устройством. Даже после размыкания контактов датчика таймер все равно останется в активном состоянии. Отключить его можно, если остановить работу таймера, подав на вывод №4 низкий уровень. C1 — керамический конденсатор емкостью 0.1мкФ ().

Пример №3 — Метроном.

Метроном — устройство, используемое музыкантами. Он отсчитывает необходимый ритм, который может быть отрегулирован переменным резистором. Схема построена по схеме генератора прямоугольных импульсов. Частота метронома определяется RC-цепочкой.

Пример №4 — Таймер.


Таймер на 10 минут. Таймер включается путем нажатия на кнопку «Пуск», при этом загорается светодиод HL1. По прошествии выбранного временного интервала загорается светодиод HL2. Переменным резистором можно подстроить временной интервал.

Пример №5 — Триггер Шмитта на 555 таймере.


Это очень простая, но эффективная схема . Схема позволяет, подавая на вход зашумленный аналоговый сигнал, получить чистый прямоугольный сигнал на выходе



Рекомендуем почитать

Наверх