Помехи в радиоканалах. Помехи и искажения

Viber OUT 28.05.2019
Viber OUT

Помехи и искажения в канале.

В этом вопросе мы рассмотрим, что представляют собой помехи и искажения в канале, какими они бывают и их краткая характеристика.

В реальном канале сигнал при передаче искажается, и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются как искажения , вносимые самим каналом, так и помехи , воздействующие на сигнал. Частотные и временные характеристики канала определяют так называемые линейные искажения . Кроме того, канал может вносить и нелинейные искажения , обусловленные нелинейностью тех или иных звеньев (функциональных узлов) канала. Если линейные и нелинейные искажения обусловлены известными характеристиками канала, то они, по крайней мере в принципе, могут быть устранены надлежащей коррекцией. Следует отличать искажения от помех , имеющих случайный характер. Помехи заранее не известны и поэтому не могут быть полностью устранены.

Помехой называется любое случайное воздействие на сигнал, которое ухудшает верность воспроизведения переданных сообщений. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах часто встречаются атмосферные помехи, обусловленные электрическими помехами в атмосфере, и прежде всего грозовыми разрядами. Энергия этих помех сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи , возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, систем зажигания двигателей и т. п. Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом являются импульсные шумы и прерывания связи . Появление импульсных помех часто связано с автоматической коммутацией и перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры , обусловленные хаотическим движением носителей заряда в усилительных приборах, резисторах, колебательных контурах и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где другие помехи невелики, В этом диапазоне имеют значения и космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах. В общем виде влияние помехи на полезный сигнал можно выразить оператором:

помеха называется аддитивной (естественная помеха). Если же оператор может быть представлен в виде произведения:

Среди аддитивных помех различного происхождения выделяют:

­ сосредоточенные по спектру (узкополосные) помехи;

­ сосредоточенные во времени (импульсные) помехи;

­ флуктуационную помеху, не ограниченную во времени и спектру.

Флуктуационная помеха (флуктуационный шум) представляет собой (непрерывный во времени случайный процесс) случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах. В диапазоне оптических частот существенное значение имеет квантовый шум, вызванный дискретной природой сигнала.

Мультипликативные помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала.

Следует заметить, что между сигналом и помехой отсутствует принципиально различие. Более того, они существуют в единстве, хотя и противоположны по своему действию. Так излучение радиопередатчика является полезным сигналом для приемника, которому предназначено это излучение, и помехой для всех других приемников. Электромагнитное излучение звезд является одной из причин космического шума в диапазоне сверхвысоких частот и поэтому является помехой для систем радиосвязи. С другой стороны, это излучение является полезным сигналом, по которому определяют некоторые физико-химические свойства звезд.

Выводы

1. Причинами появления ошибок при передаче сообщений по каналу связи являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

2. Помехи могут быть аддитивными и мультипликативными.

3. Среди аддитивных помех наиболее распространенными являются флуктуационные, сосредоточенные по спектру и импульсные.

И так, в заключении по лекции сделаем выводы.

Заключение

1. Передача сообщений по каналам связи осуществляется с помощью сигналов, которые являются материальными носителями сообщений, отображающих ту или иную информацию. Характерной особенностью сообщений (сигналов) является их непредсказуемость. О любом сообщении можно говорить лишь как о возможном с некоторой вероятностью событии. Сообщение об известном событии информации не несет. Процесс передачи сообщений всегда является вероятностным (стохастическим).

2. Сообщения и соответствующие им сигналы могут быть дискретными и непрерывными. Непрерывный канальный сигнал формируется с помощью модуляции, а дискретный – с помощью кодирования и модуляции. Основными устройствами системы передачи дискретных сообщений являются кодек и модем. Канальные устройства вместе с линией связи образуют непрерывный канал, а последний вместе с модемом – дискретный канал.

3. Причинами появления ошибок при передаче сообщений по каналу связи являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал. Помехи могут быть аддитивными и мультипликативными.

4. Среди аддитивных помех наиболее распространенными являются флуктуационные, сосредоточенные по спектру и импульсные.

Литература

Основная:

1. Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

Дополнительная:

1. Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

2. Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

3. Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

4. Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.

1.7. Помехи и искажения

Общие сведения. В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев. Как линейные, гак и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделить искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Этот вид помех обусловлен нарушением регламента распределения рабочих частот, недостаточной стабильностью частот, и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушение контактов в реле, разъемах и т.п.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи ω на передаваемый сигнал s можно выразить оператором

x =Ψ(s ,ω) (1.9)

В частном случае, когда оператор Ψ вырождается в сумм

x = s (1.10)

помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

x = μs (1.11)

то помеху называют мультипликативной. Здесь μ (t ) - случайный процесс. Если μ - медленный по сравнению с сигналом процесс, то его называют замираниями. В реальных каналах обычно имеют место и аддитивные, и мультипликативные помехи, поэтому

x = μs (1.12)

Флуктуационная помеха. Среди аддитивных помех особое место занимает флуктуационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношениях. Этот вид помех практически имеет место во всех реальных каналах. Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи три прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя непрерывный случайный процесс.

С физической точки зрения случайные помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т - абсолютная температура, которую имеет сопротивление R ; F - полоса частот; k=вт. сек/град- постоянная Больцмана.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот. Типичным примером флуктуационных помех являются внутренние шумы приемника. Флуктуационный характер имеют космические помехи, а также некоторые виды атмосферных и индустриальных помех.

Импульсные помехи. К импульсным или сосредоточенным по времени помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания.

Импульсные помехи представляют собой дискретный случайный процесс, состоящий из отдельных редких, случайно распределенных по времени и амплитуде импульсов. Статические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

Сосредоточенные по спектру помехи. К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленные, медицинские) и т. п. Обычно это модулированные колебания, т. е. синусоидальные колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, спектр которых заполняет всю полосу частот приемника, ширина спектра сосредоточенной полежи в большинстве случаев меньше полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора С n 11 , включенного параллельно приемнику сигнала и имеющего входной импеданс Z вх1 (рис. 2.55). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех U вн1 такого вида включено последовательно с Z вх1. Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему Z общ.

Токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; – напряжение помехи, наводимой из второго канала связи в первый; – напряжение помехи, наводимой из первого канала связи во второй;

Потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно Zвх соответствующего канала: Zвх1 и Zвх2. Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи верно равенство

где – изображение тока во втором канале (канале, создающем помеху). В соответствии со схемой

Помехи в радиоканалах

В процессе прохождения по каналу связи сигнал подвергается искажениям. Необратимые искажения формы сигнала в канале являются следствием воздействия помех. Помехой мы назовем любое случайное воздействие в канале связи на сигнал, приводящее к неисправимому искажению его формы. В общем случае характер воздействия помехи на сигнал можно выразить через оператор :

В частности, если , оператор имеет характер суммирования, помеха называется аддитивной . Если , помеха является мультипликативной . В более общем случае .

Источниками аддитивных помех являются физические явления, порождающие мешающие воздействия, способные исказить форму полезного сигнала. Среди источников помех следует отметить атмосферные (связанные с грозовыми явлениями), индустриальные (излучения электрических промышленных и медицинских приборов, систем автомобильного зажигания и т. д.), космические (излучения космических объектов), помехи от посторонних радиостанций и т. д. В любом канале связи типичными являются помехи флуктуационного характера, связанные с электрическими колебаниями шумового характера, возникающие вследствие электрических возмущений на уровне молекулярных и атомарных структур физических компонент, составляющих элементную базу функциональных блоков системы связи.

По характеру процессов аддитивные помехи можно разделить на гладкие, непрерывные, широкополосные по спектру частот (тепловые, флуктуационные шумы); импульсные (хаотические последовательности импульсов) - помехи в виде одиночных импульсов, следующие один за другим через такие промежутки времени, что переходные процессы в канале от одного импульса успевают практически завершиться к моменту прихода следующего импульса; сосредоточенные по спектру излучений - сигналы посторонних радиостанций, называемые иногда структурно-детерминированными в предположении известного характера модуляции мешающих радиосигналов; различного рода прицельные помехи - помехи, создаваемые противником.

Мультипликативные помехи чаще всего порождаются явлениями, связанными с особыми условиями распространения радиоволн в атмосфере. Случайные изменения неоднородностей окружающей среды - тропосферные, ионосферные, - приводящие к флуктуациям амплитуд и фаз канальных сигналов, многолучевость радиосигналов, приходящих в точку приема, являются основной причиной возникновения мультипликативных помех.

В радиолокации и радионавигации помехи принято делить на активные - помехи от различных мешающих источников - и пассивные помехи, возникающие в результате переотражения зондирующих сигналов от мешающих объектов. Кроме того, различают преднамеренные специально организованные противником - и непреднамеренные. Рассмотренные выше шумовые, индустриальные и взаимные помехи относятся к активным непреднамеренным. Прицельные или преднамеренные помехи создаются противником с помощью специальных средств радиопротиводействия. Они также могут иметь характер активных помех, создаваемых радиопередатчиками противодействия, либо пассивных помех, возникающих в результате переотражения от искусственных мешающих объектов (к ним можно отнести дипольные отражатели, ложные цели, разбросанную в воздухе металлическую фольгу и др.).

Различные математические модели помех будут рассмотрены далее.

Помехами называются посторонние электромагнитные возмущения n(t), накладывающиеся на передаваемые сигналы S(t) и препятствующие приему сигналов.

По форме помехи делятся на несколько видов:

  • синусоидальные - от промышленной сети с частотой 50 Гц, от медицинских установок и различных аппаратов;
  • импульсные - в виде отдельных импульсов или групп импульсов (например, помехи от систем зажигания двигателей внутреннего сгорания);
  • хаотические - типа теплового шума (например, броуновское движение заряженных частиц).

По характеру мешающего воздействия помехи также делятся на несколько видов:

  • аддитивные - когда в канале связи помеха u(t) складывается с полезным сигналом S{t), т.е. Z(t) = S(t ) + u(t);
  • мультипликативные - когда воздействие помехи n(t) эквивалентно изменению коэффициента передачи канала связи, т.е. Z{t) = S(t) n(t).

Аддитивные помехи, в свою очередь, подразделяются на помехи соседних радиоканалов, промышленные, естественные, флюктуаци- онные и помехи в виде случайного процесса.

Помехи соседних радиоканалов (перекрестные помехи) возникают, например, из-за перекрытия спектров соседних каналов связи (рис. 5.12). Мера борьбы - раздвигание несущих частот соседних каналов не менее чем на две полуширины спектров сигналов.

Рис. 5.12. Перекрытие спектров соседних каналов связи с несущими частотами f x и/ 2

Промыииенные помехи (искусственные помехи) возникают вследствие затухающих колебаний при искрообразовании в различных электрических устройствах (например, электромагнитное излучение промышленного оборудования, ламп накаливания). Эти помехи проявляются, например, в беспорядочном треске и щелчках в телефонах. Мера борьбы - предотвращение или уменьшение искрообразования, использование фильтров для замыкания ВЧ-колебаний в устройствах, экранирование радиоаппаратуры.

Естественные помехи могут быть атмосферными (внутриканаль- ными) и космическими. Атмосферные помехи возникают из-за электромагнитного излучения при грозовых разрядах и проявляются на длинных и средних волнах в виде сильного нерегулярного треска в телефонах и радиоприемниках. Космические помехи вызваны излучением звезд в результате протекающих в них процессов преобразования энергии. Меры борьбы - переход в ультракоротковолновый диапазон, свободный от этого вида помех.

Флюктуационные помехи, источником которых являются внутренние шумы, представляют собой случайные колебания токов и напряжений в элементах радиоаппаратуры - последовательность коротких импульсов, имеющих случайный момент появления.

Помехи в виде случайного процесса можно определить как нежелательный процесс, который сопровождает передачу сигналов в линиях связи. Примером могут служить перекрестные помехи, когда во время телефонной связи происходит ложная коммутация двух телефонных линий, в результате чего в трубке можно слышать разговор по другой линии. Другим примером являются внутриканальные помехи, которые иногда возникают в телевизионных системах под воздействием атмосферных явлений. При этом телевизионный сигнал начинает распространяться на расстояния, превышающие обычные, и возникают взаимные помехи с локальными радиостанциями, ведущими вещание на тех же частотах.

Часть помех в линии связи вносят электронные компоненты - различные шумы: тепловой, дробовой, фликер-шум.

Тепловой шум возникает в процессе теплового возбуждения атомов проводника или резистора. В результате появляются свободные электроны, которые хаотически движутся в различных направлениях с различными скоростями. Их движение приводит к появлению случайной разности потенциалов на концах проводника или резистора.

Дробовой шум присутствует везде, где через какое-либо активное устройство течет постоянный или переменный ток и происходят случайные колебания величины этого тока, которые накладываются на сигнал и искажают его. Название «дробовой шум» происходит от специфического потрескивания, которое можно услышать в наушниках, если усилить сигнал с помощью усилителя низкой частоты.

Фликер-шум возникает в полупроводниковых вакуумных устройствах вследствие дефектов кристаллической структуры материала, которые приводят к флюктуациям проводимости. Происхождение этих шумов до конца не выяснено. Фликер-шумы нельзя смоделировать, поскольку они изменяются от устройства к устройству. В большинстве случаев на частотах свыше 10 кГц фликер-шумом можно пренебречь. Условно считают, что фликер-шум занимает полосу 0,1... 10 3 Гц.

В качестве параметра для оценки качества системы используется отношение сигнал/шум - отношение максимального значения напряжения сигнала к эффективному значению напряжения шума:

Отношение сигнал/шум часто определяют в децибелах:

Иногда в качестве отношения сигнал/шум берут отношение мощности сигнала P s и средней мощности помехи Р„, также выраженное в децибелах:

Типичные значения приемлемого отношения сигнал/шум составляют около 50...60 дБ - для высококачественного радиовещания музыкальных программ, 16 дБ - для низкокачественной передачи речи, до 30 дБ - для коммерческих телефонных систем, 60 дБ - для телевизионного вещания с хорошим качеством.

Отношение сигнал/шум уменьшается при прохождении сигнала через каскады усиления или преобразования в приемных устройствах систем связи, так как каждый каскад добавляет собственный шум. Если рассматривать многокаскадный усилитель, то общий коэффициент усиления определяется произведением коэффициентов усиления каждого каскада:

В идеальном случае, когда каскады не вносят собственных шумов, на выходе отношение сигнал/шум не изменится, так как

Реально каждый /-каскад вносит шумы и помехи:

Тогда отношение сигнал/шум на выходе /-каскада будет составлять

При расчете общего отношения сигнал/шум всех каскадов системы необходимо раздельно вычислить полезный сигнал 5 отах ВЬ1Х и уровень шума л вых (/) с учетом коэффициентов передачи каскадов G, и уровня шумов «,(/), внесенных в каждый каскад.



Рекомендуем почитать

Наверх