Подавление импульсных помех в радиоприемниках. О борьбе с импульсными помехами

Скачать Viber 01.05.2019
Скачать Viber

Импульсные блоки питания в большинстве случаев создают основную электромагнитную "пелену" помех в полосе частот 1...100 МГц, т. е. во всех КВ-диапазонах и в начале УКВ. Дело осложняется и тем, что число таких блоков исчисляется сегодня десятками в одном жилище (компьютеры, мониторы, освещение, различные зарядные устройства и т. п.) и сотнями в одном доме - в ближней зоне КВ-антенны любительской радиостанции.

На рис. 1 приведена упрощённая схема импульсного блока питания. Точнее, узел преобразования напряжения показан предельно упрощённо, а вот цепи подавления помех, наоборот, полностью. И общий случай питания - от трёхпроводной (с отдельным проводом электротехнического заземления) розетки.

Рис. 1. Схема импульсного блока питания

Дроссели L1 и L2 подавляют синфазные помехи, идущие от блока питания и подключённого к нему устройства (например, трансивера с антенной) в сетевой провод и далее в линии электропитания. Обмотки дросселя L1 обычно имеют индуктивность около 30 мГн. Это основные элементы подавления помех в питающей сети. Поэтому они должны быть качественными и обладать высоким импедансом во всей подавляемой полосе, начиная от частоты переключения транзистора блока питания (десятки-сотни килогерц) до нескольких мегагерц.

А в ответственных случаях (чувствительные приёмники и их антенны рядом) - до десятков-сотен мегагерц. Один дроссель это сделать не может. Поэтому в таких случаях последовательно с L1 и L2 включают такие же дроссели, но с индуктивностью в 50...500 раз меньшей, чем указано на рис. 1. Эти дополнительные дроссели должны иметь высокую собственную резонансную частоту, чтобы эффективно подавлять верхние частоты требуемой полосы.

Конденсатор С1 подавляет низкочастотные дифференциальные помехи, идущие от блока питания в сеть. Высокочастотные синфазные помехи подавляют керамические конденсаторы малой ёмкости С2 и С3, включённые параллельно С1.

Но это не единственная функция С2 и С3. Они также замыкают синфазную составляющую импульсов переключения на корпус устройства.

Разберёмся с этим подробнее. На стоке силового транзистора присутствуют прямоугольные импульсы с размахом около 300 В (выпрямленное и отфильтрованное напряжение сети) с частотой несколько десятков-сотен килогерц. Фронты этих импульсов короткие (меньше микросекунды). Во время этих фронтов ключевой транзистор находится в активном режиме и греется, поэтому фронты стараются сделать короче. Но это расширяет полосу создаваемых помех. И всё равно в мощных блоках питания транзистор нагревается. Для охлаждения его закрепляют на теплоотводе, в качестве которого в некоторых случаях используют металлический корпус блока питания (про экранирование не забываем). Транзистор изолируют от корпуса прокладкой. Ёмкость стока на корпус может достигать нескольких десятков пикофарад.

А теперь посмотрим, что у нас получилось: транзисторный генератор прямоугольных импульсов с размахом 300 В через конденсатор в несколько десятков пикофарад (конструктивный между стоком охлаждаемого транзистора и корпусом устройства на рис. 1 показан штриховыми линиями) подключён к корпусам и блока питания, и питаемого им устройства. Мы считаем, что это корпус с нулевым потенциалом, а на самом деле там протекает большой ВЧ-ток через конструктивную ёмкость теплоотвода. Это приведёт к появлению большого синфазного тока (а значит, и помех) на корпусах всех устройств, подключённых к нашему источнику питания.

Чтобы такого не было, установлены конденсаторы C2 и С3. Фронты импульсов со стока транзистора, просочившиеся через конструктивную ёмкость теплоотвода, через эти конденсаторы и диоды моста (точнее, через диод, открытый в данный момент) замыкаются на исток транзистора. Этот путь для них оказывается проще, чем синфазно растекаться по корпусам.

Конденсаторы С2-С4 оказываются включёнными между безопасными для человека цепями (выходами и корпусом источника) и силовой сетью 230 В. Для обеспечения безопасности людей номинальное напряжение этих конденсаторов делают очень высоким (несколько киловольт), а их конструкцию такой, чтобы в случае аварии они обрывались, а не замыкались. Конденсаторы, устанавливаемые на месте С2-С4, выпускаются как отдельный тип и называются Y-конденсаторами. Конденсаторы с маркировкой Y1 рассчитаны на импульсы напряжения до 8 кВ, Y2 - до 5 кВ.

С точки зрения подавления помех, ёмкость конденсаторов С2-С4 желательно иметь побольше. Но надо иметь в виду, что при двухпроводной сети (или обрыве провода заземления в трёхпроводной) выходы и корпус источника через конденсаторы С2-С4 оказываются соединёнными с сетевым фазным проводом. Поэтому их суммарная ёмкость должна выбираться так, чтобы ток частотой 50 Гц на корпус не превышал 0,5 мА (неприятно, но не смертельно). С учётом возможного максимального напряжения в сети, разброса, температурных уходов и старения получается не более 5000 пФ.

Рассмотрим теперь ошибки, допускаемые в фильтрации помех импульсных источников.

Иногда, для экономии, ставят только один из двух конденсаторов С2 или С3. Идея, на первый взгляд, кажется разумной: всё равно ведь они соединены параллельно через большую ёмкость конденсатора С1. Но на высоких частотах конденсаторы большой ёмкости совсем не являются коротким замыканием, а имеют заметный индуктивный импеданс. Поэтому такая экономия может привести к тому, что на десятках мегагерц (выше резонансной частоты С1, которая окажется невелика, поскольку это конденсатор большой ёмкости) заметно снизится подавление синфазного тока, протекающего на корпус.

Встречается отсутствие конденсатора С4 - или производитель решает, что можно С4 не устанавливать, так как в его трансформаторе ёмкость мала, или пытливый потребитель выкусывает, чтобы от источника не пощипывало током утечки 50 Гц через этот конденсатор. Внешними цепями эта проблема не лечится (хотя хороший внешний развязывающий дроссель по выходным цепям снижает остроту проблемы), надо ставить С4 на его законное место.

Отсутствие С2, С3 может быть допустимо, но только если выполняются все три следующих условия сразу: сеть двухпроводная, корпус блока питания не имеет контакта с корпусами питаемых устройств (пластмассовый, например), силовой транзистор установлен не на теплоотводе-корпусе. Если хотя бы одно из условий нарушено, С2 и С3 должны быть.

Установка перемычек вместо основного развязывающего дросселя L1 редко, но всё же встречается в дешёвых источниках плохих производителей. Экономят, видимо. Лечится это установкой нормального дросселя. В крайнем случае такой дроссель можно сделать, намотав сетевой шнур на большом ферритовом магнитопроводе.

Перемычка вместо L2 встречается, увы, часто, даже у приличных производителей. Видимо, полагают, что раз в двухпроводной сети этот дроссель не нужен (а там он действительно не требуется, току некуда течь), то без него можно обойтись и в трёхпроводной. Увы, нет, поскольку это открывает прямую дорогу в сеть для синфазных помех (и помех из сети на корпус). Исправляется установкой L2 в разрыв провода между разъёмом сети и платой. На худой конец допустим внешний дроссель на сетевом шнуре.

В завершение рассмотрим частую ошибку, которая относится не только к импульсным, но и ко всем блокам питания. Нередко слева (по рис. 1) от L1 устанавливают дополнительные конденсаторы, как показано на рис. 2. Они должны блокировать чужие помехи, идущие из сети в источник питания. Конденсатор С1 блокирует дифференциальные помехи и нам не мешает. А вот конденсаторы С2 и С3, замыкающие синфазные помехи в сетевых проводах на земляной провод, могут стать причиной соединения по ВЧ корпуса устройства и силовых (фазы и нуля) проводов сети. Это произойдёт, если среднюю точку С2 и С3 соединить с корпусом устройства, как показано штриховой линией красного цвета на рис. 2. Делать так нельзя (хотя печально, часто именно так и подключают). ВЧ синфазные помехи из сети пойдут через С2 и С3 на корпус устройства. И назад: синфазные токи устройства (например, трансивера с антенной) потекут в сеть. Правильное подключение средней точки С2 и С3 должно быть только к выводу заземления трёхпроводной розетки, но не к корпусу устройства, т. е. к левому выводу дросселя L2, как показано линией зелёного цвета на рис. 2.

Рис. 2. Схема блока питания

Если используется двухпроводная питающая сеть, то проверьте, нет ли в вашем блоке питания конденсаторов с проводов сети на корпус устройства. И если есть, удалите их, так как это прямая дорога для ВЧ синфазных токов из сети в ваше устройство и назад.

А если сеть трёхпроводная, то установите дроссель L2 между корпусом своего устройства и землёй сети (он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С2, С3 по рис. 2) переместите на землю сети.

Сетевой фильтр, показанный на рис. 2 с конденсаторами С1-С3, является общим случаем для питания любых устройств, генерирующих радиочастотные помехи, например КВ-передатчиков.


Дата публикации: 16.07.2017

Мнения читателей
  • Перець / 16.03.2019 - 10:57
    Нічого не запутано.На мал.1 С2 і С3 знаходяться після дросселя L1. А на мал.2 C2 і C3 знаходяться до дросселя L1. Тому і точка заземлення різна. P.S. Прізвище автора статті - Гончаренко, а не Гочарко.
  • Андрей / 15.05.2018 - 02:55
    Запутанно как-то, на рис.1 С2,С3 идут на корпус прибора, а на рис.2 они идут землю. Как правильно?

Немецкая фирма Epcos (бывшее подразделение Siemens по производству пассивных компонентов) располагает широким спектром изделий для решения вопросов обеспечения электромагнитной совместимости (ЭМС) электрических или электронных устройств.

Значительную подгруппу ЭМС компонентов Epcos составляют фильтры, предназначенные для защиты устройств от высокочастотных электромагнитных помех (радиопомех).

Электромагнитные помехи (ЭМП) возникают в результате функционирования устройств, предназначенных для генерации или преобразования электроэнергии. Они представляют собой электромагнитные поля в пространстве, окружающем такие технические средства (ТС).

Основными источниками высокочастотных помех являются импульсные блока питания (бытовая электронная техника, промышленные и медицинские аппараты и др.), цепи нелинейных

Для борьбы с помехами в цепях соседних ТС, а также узлов и блоков в пределах отдельных ТС используют фильтры ЭМП. В общем случае, обычно фильтры ЭМП представляют собой ФНЧ и могут устанавливаться как непосредственно у источника помех, так и перед приемником помех (рецептором). Фильтры ЭМП Epcos (сетевые фильтры) рассчитаны на подавление помех, поступающих по проводам двух- или трехфазной сети на вход защищаемого устройства, то есть это фильтры «приемной стороны». Настоящая статья посвящена сетевым фильтрам Epcos, каждый из которых представляет собой отдельный законченный узел, устанавливаемый перед приемным устройством. Все рассматриваемые фильтры пропускают беспрепятственно напряжение частоты сети 50/60 Гц.

Напряжение синфазной помехи возникает как разность потенциалов между фазным (сигнальным) проводом, обратным проводом (так называемая масса или нейтральный провод) и землей (корпус прибора, радиатор и т. п.). Ток синфазной помехи имеет одинаковое направление в прямом и обратном проводах сети.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она именуется помехой дифференциального типа (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или помехой общего типа (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен килогерц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Помехи, возникающие в несимметричных цепях, называются несимметричными. Для противофазной помехи несимметричной является цепь с разделенной (симметричной относительно земли) нагрузкой.

Для силовых цепей более характерна несимметричная нагрузка, но, например, сами источники высокочастотных помех (преобразователи на IGBT транзисторах и т. п.) могут генерировать асимметричные (синфазные) помехи. С другой стороны, синфазные помехи при определенных условиях преобразуются в противофазные.

Фильтры ЭМП характеризуются комплексом параметров. Остановимся на параметрах, характеризующих фильтры ЭМП Epcos:

  1. Число проводов сети: 2, 3 (4).
  2. Номинальное (сетевое) напряжение: 250 (220), 440 (380) В и др.
  3. диапазон подавления помех (полоса частот заграждения);
  4. уровень подавления помех (стандартный; с усиленным подавлением и т.п.);
  5. номинальный ток, А;
  6. тип помех, подавляемых фильтром:
    • общего типа;
    • дифференциального типа;
    • несимметричные помехи;
  7. тип разъема;
  8. тип корпуса;
  9. климатическая категория (диапазон температур, в котором фильтр удовлетворяет требованиям (стандартам) по остальным техническим характеристикам).

Конструкции фильтров различаются в зависимости от типа помех. Так, для компенсации симметричной помехи, когда искажения напряжения возникают между фазными проводами сети, используют так называемый du/dt-фильтр НЧ, содержащий помехоподавляющие X-конденсаторы. Заметим, что X-конденсаторами называют такие конденсаторы, которые шунтируют провода линии между собой на высокой частоте.

Ввиду того, что при малом внутреннем сопротивлении источника помехи, ее устранение потребовало бы чрезмерно больших емкостей, необходимых для обеспечения заданного деления напряжения, на практике последовательно конденсатору включают дроссели, что увеличивает сопротивление по последовательной схеме. В результате образуется так называемый Т-образный (или П-образный) фильтр НЧ.

На высоких частотах, с целью ограничения собственной емкости, дроссель нередко исполняют в виде набора отдельных индуктивностей (секций или так называемых «бусин», английское название - beads), соединяемых последовательно. На высоких частотах могут применяться ферритовые дроссели, например, для частот 30, 50 и 100 МГц Epcos серийно выпускает дроссели/бусины серии B8248x в чип исполнении типоразмеров 0603…1806, рассчитанные на ток 0,05…4 А. У Epcos также широко представлены аналогичные дроссели в выводном исполнении. На более высоких частотах достаточное реактивное сопротивление можно обеспечить малой индуктивностью. При этом для получения дросселя силовой кабель достаточно пропустить через группу ферритовых колец.

На рис. 1 представлена эквивалентная схема du/dt-фильтра ЭМП. Он выполняет процедуру вычитания дифференцированного сигнала из исходного. В результате фильтр сглаживает пики и исключает выбросы напряжения, обусловленные симметричной помехой. Однако он почти не влияет на напряжение помехи, существующее между проводами сети и заземлением, а также и на ток утечки.

Рис. 1

Наряду с Х-конденсаторами и обычными дросселями в фильтрах ЭМП Epcos применяют связанные (с общим сердечником) катушки индуктивности двух типов.

Тококомпенсированные дроссели подавления ЭМП Epcos обычно выполняются на кольцевом ферритовом сердечнике. В них используются две катушки (два провода) для двухпроводной сети, три - для трехпроводной и т. п. При этом встречная намотка проводов геометрически может быть реализована их сонаправленной намоткой на две половины ферритового кольца.

Z-образный дроссель фирмы Epcos выполняется намоткой двух проводов на кольцевом сердечнике, изготовленном из металлического порошка и имеющем высокий порог насыщения, что линеаризует ВАХ катушек и уменьшает опасность искажений, связанных с их нелинейностью.

Ниже приводится ряд конкретных примеров фильтров ЭМП Epcos с принципиальными схемами и пояснением особенностей.

Пример A1: du/dt-фильтр ЭМП Epcos серии B84110-B c подавлением синфазной помехи (без Y-конденсаторов).

Данный фильтр используется для защиты импульсных блоков питания, телевизоров, компьютеров, промышленного и портативного оборудования. Применение фильтров асимметричных помех, в частности, значительно снимает ограничения по длине кабеля, подводимого к двигателю от преобразователя при промышленном применении.

Пример А2: фильтр ЭМП Epcos серии SIFI-D (номер B84114-D) c подавлением синфазной помехи и Y-конденсаторами6 (в дополнение к Х-конденсаторам фильтра B84110-B). Резистор на входе (рис. 3), установленный параллельно Х-конденсатору, предназначен для его разряда (конденсатора большой емкости).

Для компенсации нескольких видов помех ставится комбинация дросселей (последовательная и т. п.).

Пример А3: фильтр ЭМП Epcos серии SIFI-E (номер B84115-E). Он отличается от предыдущего дополнительно подключенным Z-образным дросселем для дополнительного ослабления симметричной помехи (рис. 4).

На рис. 5 приведены сравнительные характеристики вносимого затухания (по симметричным помехам) для двух серий фильтров. Из него видно, что первый фильтр имеет значительно меньший уровень подавления частот в полосе до нескольких сотен килогерц.


Рис. 5

Кроме связанных катушек в составе фильтров ЭМП Epcos часто присутствует многозвенный (проходной) конденсатор. Собственная индуктивность такого конденсатора весьма мала. При этом он может компенсировать как противофазную, так и синфазную помехи.

Фирма Epcos предлагает фильтры ЭМП, рассчитанные на подавление помех в широком диапазоне высоких и сверхвысоких частот, начиная от частоты примерно 10 кГц вплоть до 40 ГГц и выше. При этом средняя ширина полосы частот подавления всех фильтров составляет около 1 МГц. Среди различных моделей фильтров ЭМП Epcos можно выделить, в частности, специальные, с заданным током утечки.

Параметры фильтра накладывают отпечаток на возможные области его применения. Область применения конкретного фильтра Epcos более точно можно определить из фирменного каталога и на сайте www.epcos.com в Интернете. Ниже перечислен ряд сфер (но не все возможные), где целесообразно применение фильтров ЭМП Epcos.

1. Модульные системы автоматизированного (плавного) пуска приводов электродвигателей («Активный терминал»/AFE) с помощью мощных полупроводниковых ключей (IGBT-транзисторов), управляемых постоянным напряжением. Ключи коммутируются постоянным напряжением с выхода преобразователей напряжения (переменное/постоянное). Например:

  • станки с ЧПУ;
  • лифты и т. п.

2. Преобразователи напряжения электрогенераторов (ветряных электростанций и т. п.).

3. Транспорт, например:

  • конверторные приводы современных городских рельсовых средств, в частности, трамваи;
  • метро, электропоезда и т. п.;
  • транспортные средства, требующие малого тока утечки (при сложной процедуре заземления), в частности троллейбусы и т. п.;
  • скоростные поезда (дальние).

4. Приводы сталепрокатных станов (помехи при мощной коммутации, а также регулировке скорости вращения приводов подачи листа).

5. Конвейерные (лентопротяжные) линии.

6. Фильтры для импульсных блоков питания и UPS.

7. Насосы.

8. Системы нагрева, вентиляции и кондиционирования (HVAC-системы).

9. Фильтры для подавления наводок сигналов в установках/шкафах с большой концентраций блоков электронного оборудования (при малом объеме пространства).

10. При использовании силовых кабелей в качестве проводников для связных коммуникаций (домашний Интернет, а также охранные системы с ограниченным числом проводов в кабеле ввода).

11. Фильтры для передачи данных и телефонных линий (ISDN и т. п.).

Примеры применения фильтров ЭМП

Домашний Интернет: передача данных внутри дома и между домом и силовой подстанцией (рис. 6). Подавление помех при использовании силовых кабелей в качестве проводников связных коммуникаций. В отсутствии фильтра ЭМП, радиоэлектронное оборудование абонента зашумлено наводками от сетевого напряжения.


Рис. 6

Приведенная на рис. 7 схема используется для преобразователей напряжения электрогенераторов. Сам преобразователь необходим из-за того, что параметры сигнала, например амплитуда напряжения, формируемого на выходе генератора, обычно не соответствуют параметрам сети. Фильтры же ЭМП защищают генератор (к примеру, ветряной электростанции) от проникновения высокочастотных помех из преобразователя напряжения.


Рис. 7

Модульные системы автоматизированного плавного пуска приводов электродвигателей «Активный терминал»/AFE (рис. 8).


Рис. 8

IGBT-транзисторы, активизируемые простым постоянным напряжением с выхода преобразователя, обеспечивают быстрое подключение или отключение приводов двигателей значительной мощности. На входе преобразователя - сетевое трехфазное синусоидальное напряжение, а на выходе - постоянное напряжение. Однако быстрая коммутация силовой цепи является источником высокочастотных помех. В результате проникновения помехи на вход, напряжение между фазами сети искажается (возникает помеха симметричного типа). Уровень асимметричной помехи также может быть значительным из-за протяженного кабеля от преобразователя напряжения до внешней сети. Фильтр8 ЭМП Epcos, установленный на входе преобразователя, компенсирует практически без остатка обе помехи, «развязывая» преобразователь и внешнюю сеть.

Муниципальный рельсовый транспорт (трамваи). Фильтр ЭМП устанавливается между преобразователем напряжения электродвигателя и питающей (контактной) линией (рис. 9).


Рис. 9

В заключение можно констатировать широкие и разнообразные возможности фильтров ЭМП фирмы Epcos для решения задач ЭМС силовых ТС.

Специальность 221600

Cанкт-Петербург

1. ЦЕЛЬ РАБОТЫ

Целью настоящей работы является изучение принципа работы и опре­деление эффективности подавителя импульсных широкоспектральных помех.

2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Основными методами защиты радиоприемных устройств от импульс­ных широкоспектральных помех являются:

а) внеприемные - применение узконаправленных антенн, вынесение ан­тенны из зоны действия импульсных помех и подавление помех в месте их возникновения;

б) схемные - различные способы обработки смеси полезный сигнал - импульсная помеха с целью ослабления мешающего воздействия.

Одним из эффективных схемных способов борьбы с импульсными по­мехами является применение схемы широкая полоса - амплитудный ограни­читель - узкая полоса (схема ШОУ). Такая схема часто используется в радио­связи.

В настоящей работе исследуется схема ШОУ для двух случаев:

а) полезный сигнал представляет собой видеоимпульсы;

б) полезный сигнал является непрерывным радиосигналом с амплитуд­ной модуляцией.

Структурные схемы для этих случаев представлены на рис. 1 а и 1б со­ответственно. В первом случае схема ШОУ расположена после амплитудного детектора АД, во втором - в тракте радиочастоты до АД.

Схема ШОУ, представленная на рис. 1а, включает последовательно со­единенные широкополосный видеоусилитель, амплитудный ограничитель и узкополосный видеоусилитель. На вход схемы: с детектора поступает смесь сигнал - помеха (рис.2а), причем длительность сигнала намного превышает длительность помехи (tc>>tп), а амплитуда помехи существенно больше ам­плитуды сигнала (Uп>>Uc). Широкополосный усилитель предназначен для усиления входной смеси до уровня, обеспечивающего нормальную работу ограничителя. Полоса пропускания усилительного тракта до ограничителя выбирается такой, чтобы избежать существенного увеличения длительности импульса помехи (рис.2б). Порог ограничения немного выше уровня полез­ного сигнала, поэтому после ограничения уровни сигнала и помехи становят­ся почти равными (рис. 2в). Узкополосный видеоусилитель (или фильтр) вы­полняет роль интегратора, постоянная времени которого согласована с дли­тельностью сигнала и намного превышает длительность помехи. Ввиду того, что tc>>tп, сигнал на выходе фильтра успевает вырасти до своего амплитуд­ного значения, а помеха - нет (рис. 2г). Таким образом, отношение сиг­нал/помеха на выходе схемы ШОУ резко возрастает.

Оценим выигрыш в соотношении сигнал/помеха при использовании схемы ШОУ. На входе схемы присутствуют сигнал с амплитудой Uc и дли­тельностью tc и помеха с прямоугольной огибающей (Uп, tп). Роль интегри­рующей выполняет RC - цепь первого порядка с переходной характеристикой вида

h (t )=1- exp (- t п / t RC ) (1)

где tRC = RC - постоянная времени фильтра.

Из теории известно, что длительность нарастания сигнала до уровня 0.9 Uc для такой цепи определяется соотношением

tн =2.3 t RC (2)

Уровень помехи на выходе амплитудного ограничителя Uп = Uогр, где Uогр - порог ограничения, а уровень полезного сигнала и помехи на выходе схемы соответственно

Uc вых =0,9 UcK (3)

U пвых = U огр К (4)

где К - коэффициент усиления схемы. Отношение сигнал/помеха по напряжению на выходе схемы ШОУ

h вых =(Uc / U п )вых=0,9* U с /(U огр ) (5)

Выигрыш от использования схемы определяется соотношением

(6)

или, с учетом (5),

q 1 =0.9* U п /(U огр (1/)) (7)

Так как t п << t RC и t с =2,3 t RC , то

q 1 =(0.9* U п / U огр )*( t с /2,3 t п ) » 0.4( U п / U огр )*( t с / t п ) (8)

При выключенной схеме ШОУ (ограничитель отключен) уровень по­мехи на выходе

U пвых = U п K (9)

При этом отношение сигнал/помеха на выходе

h вых =(Uc / U п )вых=0,9* U с /(U п ) (10)

а выигрыш, получаемый за счет "узкополосности" выходного фильтра, согласованного по полосе с полезным сигналом, равен

q 2=[ h вых / h вх ]ШОУвыкл=0,9/ (11)

Относительный выигрыш, получаемый при использовании схемы ШОУ, определяется как соотношение

n = q 1/ q 2 (12)

После подстановки (7) и (11) в (12) и, учитывая соотношения

n << t RC и t с =2,3 t RC , , имеем

n = q 1/ q 2 = U п / U огр (13)

В схеме ШОУ (рис. 16) широкополосным усилителем являются резо­нансные каскады усилителя промежуточной частоты (УПЧ) с полосой про­пускания много шире ширины спектра полезного сигнала. УПЧ расположен до ограничителя. В качестве интегратора используется каскад УПЧ после ог­раничителя, причем полоса пропускания этого каскада согласована с шири­ной спектра полезного сигнала. Чтобы избежать ухудшения помехоустойчи­вости приемника из-за расширения полосы пропускания каскадов УПЧ до ог­раничителя, схему ШОУ располагают как можно ближе ко входу приемника.

3. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Структурная схема лабораторной установки для исследования подави­теля помех представлена на рис. 3. В состав лабораторной установки входят:

1. Генератор стандартных сигналов (ГСС);

2. Осциллограф;

3. Лабораторный макет подавителя помех.

Структурная схема установки приведена на рис. 4. Схема содержит имитатор смеси сигналов и помех и схему ШОУ. Амплитудно-модулированное колебание (АМК) от ГСС подается на вход имитатора смеси сигнала и импульсной помехи. АМК имеет следующие параметры:

а) амплитуда Um = 100 мВ;

б) несущая частота fo == 100КГц;

в) частота модуляции fm = 1 КГц. Имитатор вырабатывает следующие сигналы:

Sam - полезное АМК;

Sи - импульсный полезный сигнал;

Sп - импульсная помеха прямоугольной формы;

Spп - радиоимпульсная помеха с прямоугольной формой огибающей.

СИНХР - синхроимпульс осциллографа. На передней панели лабораторного макета предусмотрена возможность включения имитируемых сигналов и помех тумблерами "Сигнал вкл" и "По­меха вкл" соответственно. Полезный импульсный сигнал смешивается с им­пульсной помехой в сумматоре å1, а непрерывный полезный сигнал с AM и радиоимпульсная помеха - в сумматоре å2. Смесь полезного сигнала с поме­хой поступает на две схемы ШОУ, предназначенных для работы, как на ви­деочастоте, так и на радиочастоте. Переключение схем осуществляется пере­ключателем "Saм-Sи", расположенном на передней панели макета. Первая схема содержит широкополосный видеоусилитель (ШВУ), ограничитель, на диодах VD1, VD2 и узкополосный фильтр (УФ1), реализованный RC-цепочкой. Вторая схема содержит широкополосный усилитель, ограничи­тель, узкополосный фильтр (УФ2) и детектор АМК. УФ2 представляет собой колебательный контур L1 Ск1 Ск2, полоса пропускания которого согласована с

шириной спектра АМК. Ограничитель включается тумблером "ВКЛ ПП". Переключатель контрольных точек на три положения (1, 2, 3) позволяет при помощи осциллографа наблюдать сигналы на входе схемы ШОУ, на входе ограничителя и на выходе схемы.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1. Ознакомиться с принципом работы подавителя помех и составом ис­пользуемой аппаратуры.

3.2. Исследование подавителя помех при наличии импульсного полезного сигнала.

3.2.1. Подготовка к работе:

Установить на выходе ГСС сигнал со следующими параметрами:

а) амплитуда - 100 мВ;

б) частота - 100 КГц;

в) глубина модуляции - 30 %.

Включить макет, установить переключатель "Sам-Sи" в положение Sи, переключатели "Помеха вкл", "Сигнал вкл" - в положение включено, переключатель контрольных точек - в положение 1.

3.2.2. Измерения:

Измерить при помощи осциллографа параметры сигнала и помехи на входе схемы (амплитуды сигнала Uc и помехи Uп; длительность сигна­ла tс и помехи tп);

Вычислить отношение сигнал/помеха по напряжению на входе схемы;

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП";

Измерить отношение сигнал/помеха на выходе схемы при включенном и выключенном подавителе помех;

По результатам измерений определить относительный выигрыш и сравнить с расчетным;

Зарисовать осциллограммы в контрольных точках схемы при включен­ном и выключенном подавителе.

3.3.Исследование подавителя помех при приеме непрерывного сигнала сAM.

3.3.1. Подготовка к работе:

Установить переключатели в следующие положения:

a)"Sам-Sи"-Sам

б) "Сигнал вкл" - включено;

в) "Помеха вкл" - выключено;

г) контрольных точек - 3;

изменяя частоту генератора в пределах 100кГц, добиться мак­симального сигнала на выходе детектора. Наблюдение вести по экра­ну осциллографа.

3.3.2 Измерения:

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП",

Измерить отношение сигнал/помеха на входе схемы (контрольная точка 1);

Измерить отношение сигнал/помеха на выходе схемы (контрольная точка 3) при включенном и выключенном подавителе;

Примечание, уровни полезного сигнала и помех на входе и выходе схемы измеря­ются раздельно (включение сигнала и помехи осуществляется тумблерами "сигнал вкл" и "помеха вкл");

По результатам измерений определить выигрыш в отношении сиг­нал помеха при использовании схемы ШОУ и относительный выиг­рыш.

структурная схема исследуемого подавителя помех;

осциллограммы сигналов в контрольных точках схемы;

расчет ожидаемого выигрыша в отношении сигнал/помеха при приеме видеосигналов;

экспериментальные данные об эффективности подавителя помех для видео и радиосигналов.

ЛИТЕРАТУРА

Защита от радиопомех. , и др.; Под ред. М.: Сов. радио, 1976


Шевкопляс Б.В. «Микропроцессорные структуры. Инженерные решения.» Москва, издательство «Радио», 1990 год. Глава 4

4.1. Подавление помех по первичной питающей сети

Форма сигнала переменного напряжения промышленной питающей сети (~"220 В, 50 Гц) в течение коротких промежутков времени может сильно отличаться от синусоидальной — возможны выбросы или «врезки», снижение амплитуды одной или нескольких полуволн и т. д. Причины возникновения таких искажений связаны обычно с резким изменением сетевой нагрузки, например при включении мощного электродвигателя, печи, сварочного аппарата. Поэтому следует по возможности осуществлять развязку от таких источников помех по сети (рис. 4.1).

Рис. 4.1 Варианты подключения цифрового устройства к первичной питающей сети

Помимо указанной меры, возможно, потребуется введение сетевого фильтра на вводе питания устройства с целью подавления кратковременных помех. Резонансная частота фильтра может лежать в пределах 0,1,5—300 МГц; широкополосные фильтры обеспечивают подавление помех во всем указанном диапазоне.

На рис 4.2 приведен пример схемы сетевого фильтра Этот фильтр имеет габариты 30 XЗОХ20 мм и смонтирован непосредственно на колодке ввода сети в устройство. В фильтрах должны использоваться высокочастотные конденсаторы и индуктивности либо без сердечников, либо с высокочастотными сердечниками.

В некоторых случаях обязательным является введение электростатического экрана (обычной водопроводной трубы, соединенной с заземленным корпусом щита питания) для прокладки внутри него проводов первичной питающей сети. Как отмечается в , коротковолновый передатчик таксомоторного парка, расположенный на противоположной стороне улицы, способен при определенной взаимной ориентации наводить на отрезке провода сигналы амплитудой несколько сотен вольт. Этот же провод, помещенный в электростатический экран, будет надежно защищен от такого рода наводок.


Рис. 4.2. Пример схемы сетевого фильтра

Рассмотрим методы подавления сетевых помех непосредственно в блоке питания устройства. Если первичная и вторичная обмотки силового трансформатора расположены на одной и юй же катушке (рис. 4.3, а), то за счет емкостной связи между обмотками импульсные помехи могут проходить из первичной цепи во вторичную. Согласно рекомендуются четыре способа подавления таких помех (в порядке возрастания эффективности).

  1. Первичная и вторичная обмотки силового трансформатора выполняются на разных катушках (рис. 4.3, б). Проходная емкость С уменьшается, однако снижается КПД, так как не весь магнитный поток из области первичной обмотки попадает в область вторичной обмотки из-за рассеяния через окружающее пространство.
  2. Первичная и вторичная обмотки выполняются на одной и тон же катушке, но разделяются экраном из медной фольги толщиной не менее 0,2 мм. Экран не должен представлять собой короткозамкнутый виток. Он соединяется с корпусной землей устройства (рис. 4.3, в)
  3. Первичная обмотка полностью заключается в экран, не являющийся короткозамкнутым витком. Экран заземляется (рис. 4.3, г).
  4. Первичная и вторичная обмотки заключаются в индивидуальные экраны, между которыми прокладывается разделительный экран. Весь трансформатор заключается в металлический корпус (рис. 4.3,<Э). Экраны и корпус заземляются. Этот тип трансформатора в силу предельной защищенности от прохождения помех получил название «ультраизолятор».

При всех перечисленных способах подавления помех разводку сетевых проводов внутри устройства следует выполнять экранированным проводом, соединив экран с корпусной землей. Недопустима ук
ладка в один жгут сетевых и прочих (питающих платы, сигнальных и т. п.) проводов" даже в случае экранирования тех и других.

Рекомендуется параллельно первичной обмотке силового трансформатора в непосредственной близости от выводов обмотки установить конденсатор емкостью примерно 0,1 мкФ и последовательно с ним — токоограничивающий резистор сопротивлением порядка 100 Ом. Это позволяет «замыкать» энергию, накопленную в сердечнике силового трансформатора, в момент размыкания сетевого выключателя.


Рис. 4.3. Варианты защиты силового трансформатора от передачи импульсных помех из сети во вторичную цепь (и обратно):
а—защита отсутствует; б — разнесение первичной и вторичной обмоток; в— прокладка экрана между обмотками; г — полная экранировка первичной обмотки; д — полная экранировка всех элементов трансформатора


Рис. 4.4. Упрощенная схема блока питания (а) и диаграммы (б, в), поясняющие работу двухполупериодного выпрямителя.

Блок питания является тем большим источником импульсных помех по сети, чем больше емкость конденсатора С

Отметим, что с увеличением емкости С фильтра (рис. 4.4, а) блока питания нашего устройства увеличивается вероятность сбоев соседних устройств, так как потребление энергии от сети нашим устройством все в большей степени приобретает характер ударов. Действительно, напряжение и на выходе выпрямителя растет в те интервалы времени, когда энергия отбирается от сети (рис. 4.4, б). Эти интервалы на рис. 4.4 заштрихованы.

С увеличением емкости конденсатора С периоды его заряда становятся все меньшими (рис. 4.4, в), а ток, отбираемый в импульсе от сети,—все большим. Таким образом, внешне «безобидное» устройство может создавать в сети помехи, «не уступающие» помехам от сварочного аппарата.

4.2. Правила заземления, обеспечивающие защиту от помех по «земле»

В устройствах, выполненных в виде конструктивно-законченных блоков, существуют по крайней мере два типа шин «земли»—корпусная и схемная. Корпусная шина согласно требованиям техники безопасности в обязательном порядке подключается к шине заземления, проложенной в помещении. Схемная шина (относительно которой отсчитываются уровни напряжения сигналов) не должна быть соединена с корпусной внутри блока—для нее должен быть выведен отдельный зажим, изолированный от корпуса.


Рис. 4.5. Неправильное и правильное заземление цифровых устройств. Показана шина земли, которая обычно имеется в помещении

На рис. 4.5 показаны варианты неправильного и правильного заземления группы устройств, которые связаны между собой информационными линиями. (эти линии не показаны). Схемные шины «земли» объединяются индивидуальными проводами в точке А, а корпусные—в точке В, по возможности приближенной к точке А. Точка А может не подключаться к шине заземления в помещения, однако это создает неудобства, например при работе с осциллографом, у которого «земля» пробника соединена с корпусом.

При неправильном заземлении (см. рис. 4.5) импульсные напряжения, порождаемые уравнивающими токами по земляной шине, будут фактически приложены к входам приемных магистральных элементов, что может вызвать их ложное срабатывание. Следует отметить, что выбор наилучшего варианта заземления зависит от конкретных «местных» условий и зачастую проводится после серии тщательных экспериментов. Однако общее правило (см. рис. 4.5) всегда остается в силе.

4.3. Подавление помех по цепям вторичного электропитания

Из-за конечной индуктивности шин питания и земли импульсные токи вызывают появление импульсных напряжений как положительной, так и отрицательной полярности, которые приложены между выводами питания и земли микросхем. Если шины питания и земли выполнены тонкими печатными или иными проводниками, а высокочастотные развязывающие конденсаторы либо вовсе отсутствуют, либо их число недостаточно, то при одновременном переключении нескольких ТТЛ-микросхем на «дальнем» конце печатной платы амплитуда импульсных помех по питанию (выбросов напряжения, действующих между выводом питания и земли микросхемы) может составить 2 В и более. Поэтому при проектировании печатной платы необходимо выполнять следующие рекомендации.

  1. Шины питания и земли должны обладать минимальной индуктивностью. Для этого они выполняются в виде решетчатых структур, покрывающих всю площадь печатной платы. Недопустимо подключение микросхем ТТЛ к шине, представляющей собой «отросток», поскольку по мере приближения к его концу индуктивность цепей подвода питания накапливается. Шины питания и земли должны по возможности покрывать всю свободную площадь печатной платы. С особым вниманием следует подходить к проектированию накопительных матриц динамической памяти на микросхемах К565РУ5, РУ7 и др. Матрица должна представлять собой квадрат, чтобы адресные и управляющие линии имели минимальную длину. Каждая микросхема должна находиться в индивидуальной ячейке решетчатой структуры, образованной шинами питания и земли (две независимые решетки). Шины питания и земли накопительной матрицы не должны нагружаться «чужими» токами, текущими от адресных формирователей, усилителей сигналов управления и т, п.
  2. Подключение внешних шин питания и земли к плате через разъем должно производиться через несколько контактов, равномерно расположенных по длине разъема, для того чтобы вход в решетчатые структуры шин питания и земли производился сразу из нескольких точек.
  3. Подавление помех по питанию должно осуществляться вблизи мест их возникновения. Поэтому вблизи выводов питания каждой микросхемы ТТЛ должен быть расположен высокочастотный конденсатор емкостью не менее 0,02 мкФ. Это также в особой степени относится к упомянутым микросхемам динамической памяти. Для фильтрации низкочастотных помех необходимо использовать электролитические конденсаторы, например, емкостью 100 мкФ, При использовании микросхем динамической памяти электролитические конденсаторы устанавливаются, например, по углам накопительной матрицы или в другом месте, но вблизи этих микросхем.

Согласно вместо высокочастотных конденсаторов применяют специальные шины питания BUS-BAR, САР-BUS, которые прокладывают под линейками микросхем или между ними, не нарушая обычной автоматизированной технологии установки элементов на плату с последующей пайкой «волной». Эти шины представляют собой распределенные конденсаторы с погонной емкостью примерно 0,02 мкФ/см. При той же суммарной емкости, что и при использовании дискретных конденсаторов, шины обеспечивают значительно лучшее подавление помех при более высокой плотности монтажа.



Рис. 4.6. Варианты подключения плат П1—ПЗ к блоку питания

На рис. 4.6 приведены рекомендации по подключению устройств, выполненных на печатных платах П1—ПЗ, к выходу блока питания. Сильноточное устройство, выполненное на плате ПЗ, создает на шинах питания и земли больше помех, поэтому его следует физически приблизить к блоку питания, а еще лучше обеспечить его питание с помощью индивидуальных шин.

4.4. Правила работы с согласованными линиями связи

На рис. 4.7 показана форма сигналов, передаваемых по кабелю, в зависимости от соотношения сопротивления нагрузочного резистора R и волнового сопротивления кабеля р. Сигналы передаются без искажений при R=р. Волновое сопротивление конкретного типа коаксиального кабеля известно (например, 50, 75, 100 Ом). Волновое сопротивление плоских кабелей и витых пар обычно близко 110— 130 Ом; точное его значение может быть получено экспериментально подбором резистора К, при подключении которого искажения минимальны (см. рис. 4.7). При проведении эксперимента не следует использовать, проволочные переменные сопротивления, так как они имеют большую индуктивность и могут внести искажения формы сигнала.

Линия связи типа «открытый коллектор» (рис. 4.8). Для передачи каждого магистрального сигнала с длительностью фронта около 10 нс при расстояниях, превышающих 30 см, используется отдельная витая пара или выделяется одна пара жил в плоском кабеле. В пассивном состоянии все передатчики выключены. При срабатывании любого передатчика или группы передатчиков напряжение на линии снижается от уровня, превышающего 3 В, примерно до 0,4 В.

При длине линии 15м и при правильном ее согласовании длительность переходных процессов в ней не превышает 75нс. Линия реализует функцию Монтажное ИЛИ по отношению к сигналам, представленным низкими уровнями напряжения.


Рис. 4.7. Передача сигналов по кабелю. О—генератор импульсов напряжения

Линия связи типа «открытый эмиттер» (рис. 4,9"). В данном примере показан вариант линии, использующей плоский кабель. Сигнальные провода чередуются с земляными. В идеальном случае каждый сигнальный провод окаймляется с обеих сторон «своими» земляными проводами, однако в этом, как правило, нет особой необходимости. На рис, 4.9 с каждым сигнальным проводом соседствует «своя» и «чужая» земля, что обычно вполне допустимо. Плоский кабель и набор витых пар—по сути почти одно и то же, и все-таки второе предпочтительно в условиях повышенного уровня внешних помех. Линия типа «открытый эмиттер» реализует функцию Монтажное ИЛИ по отношению к сигналам, представленным высокими уровнями напряжения. Временные характеристики приблизительно соответствуют характеристикам линии с «открытым коллектором».

Линия связи типа «дифференциальная пара» (рис. 4.10). Линия применяется для однонаправленной передачи сигналов и характеризуется повышенной помехоустойчивостью, так как приемник реагирует на разность сигналов, а наводимая извне помеха действует на оба провода примерно одинаково. Длина линии практически ограничивается омическим сопротивлением проводов и может достигать нескольких сотен метров.


Рис, 4.8. Линия связи типа «открытый коллектор»

Рис. 4.9. Линия связи типа «открытый эмиттер»

Рис. 4.10. Линия связи типа «дифференциальная пара»

Во всех рассмотренных линиях должны использоваться приемники с высоким входным сопротивлением, малой входной емкостью и предпочтительно с гистерезисной передаточной характеристикой для увеличения помехозащищенности.

Физическая реализация магистрали (рис. 4. II), Каждое устройство, подключаемое к магистрали, содержит два разъема. Схема, подобная приведенной на рис. 4.11, рассматривалась ранее (см. рис. 3.3), поэтому остановимся лишь на правилах, которые нужно соблюдать при проектировании согласующих блоков (СБ).

Передача магистральных сигналов через разъемы. Наилучшие варианты распайки разъемов показаны на рис. .4.12. Фронт бегущего по магистрали импульса в этих случаях почти «не чувствует» разъема, так как вносимая в кабельную линию неоднородность незначительна. При этом, однако, требуется занять 50 % используемых контактов под земли.

Если это условие по каким-либо причинам невыполнимо, то можно в ущерб помехозащищенности принять второй, более экономичный но числу контактов вариант распайки разъемов, показанный на рис. 4.13. Этот вариант часто используется на практике. Земли витых пар (или земли плоского кабеля) собираются на металлические планки по возможности большего сечения, например 5 мм2.

Распайка этих земель ведется равномерно по длине планки, по мере распайки соответствующих сигнальных проводов. Обе планки объединяются через разъем с помощью ряда перемычек минимальной длины и максимального сечения, причем перемычки располагаются равномерно по длине планок. Каждая земляная перемычка должна соответствовать не более чем четырем сигнальным линиям, но общее число перемычек не должно быть меньше трех (одна в центре и две по краям).


Рис. 4.13. Допустимый вариант передачи сигналов через разъем. Н-=5 мм2—сечение планки, 5^0,5 мм2—сечение земляного провода

Рис. 4.14. Варианты выполнения ответвлений от магистрали

Выполнение ответвлений от магистрали. На рис. 4.14 показаны варианты неправильного и правильного выполнения ответвления от магистрали. Прослежен путь одной линии, земляной провод показан условно. Первый вариант (типичная ошибка начинающих схемотехников!) характеризуется расщеплением на две части энергии волны,

Рис. 4.15. Варианты подключения приемников к магистрали
приходящей с линии А. Одна часть идет на заряд линии В, другая— на заряд линии С. После заряда линии С «полноценная» волна начинает распространяться по линии В, пытаясь догнать ушедшую ранее волну с половинной энергией. Фронт сигнала, таким образом, имеет ступенчатую форму.

При правильном выполнении ответвления отрезки линий А, С и В оказываются включенными последовательно, поэтому волна практически не расщепляется и фронты сигналов не искажаются. Передатчики и приемники, расположенные на плате, должны быть максимально приближены к ее краю для уменьшения неоднородности, вносимой в точку объединения отрезков линий В и С.

Для развязки пучков приемников от магистрали можно использовать одно или двунаправленные приемопередатчики (см. рис. 3.18. 3.19). При разветвлении линии на несколько направлений для каждого следует выделить отдельный передатчик (рис. 4.15, в).

Для передачи по линии лучше использовать не прямоугольные, а трапецеидальные импульсы . Сигналы с пологими фронтами, как отмечалось, распространяются вдоль линии с меньшими искажениями. В принципе в отсутствие внешних помех для любой сколь угодно длинной и даже несогласованной линии можно подобрать настолько медленную скорость нарастания сигнала, что передаваемый и принимаемый сигналы будут отличаться на сколь угодно малую величину.

Для получения трапецеидальных импульсов передатчик выполняется в виде дифференциального усилителя с интегрирующей цепью обратной связи. На входе магистрального приемника, выполненного также в виде дифференциального усилителя, устанавливается интегрирующая цепь для фильтрации высокочастотных помех.

При передаче сигналов в пределах платы, когда число приемников велико,часто используют «последовательное согласование». Оно состоит в том, что последовательно с выходом передатчика, в непосредственной близости от этого выхода, включается резистор сопротивлением 20—50 Ом. Это позволяет погасить колебательные процессы на фронтах сигналов. Такой прием часто используют при передаче сигналов управления (КА5, САЗ, \УЕ) от усилителей к БИС динамической памяти.

4.5. О защитных свойствах кабелей

На рис. 4.16,а показана простейшая схема передачи сигналов по коаксиальному кабелю, которая в ряде случаев может считаться вполне удовлетворительной. Ее основной недостаток состоит в том, что при наличии импульсных уравнивающих токов между корпусными землями (уравнивание потенциалов — основная функция системы корпусных земель) часть этих токов 1 может течь по оплетке кабеля и вызывать падение напряжения (в основном из-за индуктивности оплетки), которое в конечном счете действует на нагрузку К.

Более того, в этом смысле схема, приведенная на рис. 4.16, а, оказывается предпочтительной, и с увеличением числа точек соприкосновения оплетки кабеля с корпусной землей улучшаются возможности отекания наведенных зарядов с оплетки. Использование кабеля с дополнительной оплеткой (рис. 4.16, в) позволяет защититься как от емкостных наводок, так и от уравнивающих токов, которые в этом случае текут по внешней оплетке и практически не влияют на сигнальную цепь.

Включение кабеля с дополнительной оплеткой по схеме, показанной на рис. 4.16, г, позволяет улучшить частотные свойства линии путем уменьшения ее погонной емкости. В идеальном случае потенциал любого элементарного участка центральной жилы совпадает с потенциалом элементарного цилиндра внутренней оплетки, окружающего этот участок.

Линии такого типа используются в локальных сетях ЭВМ для повышения скорости передачи информации. Внешняя оплетка кабеля является частью сигнальной цепи, и поэтому данная схема с точки зрения защищенности от внешних помех эквивалентна схеме, показанной на рис. 4.16,6.


Рис. 4.16. Варианты использования кабелей

Ни медная, ни алюминиевая оплетка простого коаксиального кабеля не защищает его от воздействия низкочастотных магнитных полей. Эти поля наводят ЭДС как на отрезке оплетки, так и на соответствующем отрезке центральной жилы.

Хотя эти ЭДС и одноименны по знаку, они не компенсируют друг друга по величине из-за разной геометрии соответствующих проводников — центральной жилы и оплетки. Разностная ЭДС в конечном счете прикладывается к нагрузке К. Дополнительная оплетка (рис. 4.16, в, г) также не способна предотвратить проникновение магнитного поля низкой частоты в ее внутреннюю область

Защиту от низкочастотных магнитных полей обеспечивает кабель, содержащий витую пару проводов, заключенную в оплетку (рис. 4.16, д). В этом случае ЭДС, наводимые внешним магнитным полем на составляющих витую пару проводах, полностью компенсируют друг друга как по знаку, так и по абсолютной величине.

Это тем более справедливо, чем меньше шаг свивания проводов по сравнению с зоной действия поля и чем более тщательно (симметрично) выполнена скрутка. Недостатком такой линии является ее сравнительно низкий частотный «потолок»—порядка 15 МГц — из-за больших потерь энергии полезного сигнала на более высоких частотах.

Схема, представленная на рис. 4.16, е, обеспечивает наилучшую защиту от всех видов помех (емкостные наводки, уравнивающие токи, низкочастотные магнитные поля, высокочастотные электромагнитные поля).

Внутреннюю оплетку рекомендуется соединять с «радиотехнической» или «истинной» (в прямом смысле—заземленной) землей, а внешнюю — с «системной» (схемной или корпусной) землей. При отсутствии «истинной» земли можно воспользоваться схемой включения, показанной на рис. 4.16, ж.

Внешняя оплетка соединяется с системной землей на обоих концах, а внутренняя — только со стороны источника. В тех случаях, когда нет необходимости в защите от низкочастотных магнитных полей и есть возможность передавать информацию без использования парафазных сигналов, один из проводов витой пары может служить сигнальным проводом, а второй —экраном. В этих случаях схемы, приведенные на рис. 4.16, в,ж, можно рассматривать как коаксиальные кабели с тремя экранами — земляным проводом витой пары, внутренней и внешней оплетками кабеля.

4.6. Использование оптронных развязок для подавления помех

Если устройства системы разнесены на значительное расстояние, например на 500 м, то трудно рассчитывать на то, что их земли всегда имеют один и тот же потенциал. Как отмечалось, уравнивающие токи по земляным проводникам создают импульсные помехи на этих проводниках за счет их индуктивности. Эти помехи в конечном счете прикладываются к входам приемников и могут вызвать их ложное срабатывание.

Использование линий типа «дифференциальная пара» (см. § 4.4) позволяет подавлять лишь синфазные помехи и поэтому не всегда лает положительные результаты. На рис. 4.17 показаны схемы оптронных развязок между двумя удаленными друг от друга устройствами.


Рис. 4.17. Схемы оптронных развязок между удаленными друг от друга устройствами:
а — с активным приемником, б — с активным передатчиком

Схема с «активным приемником» (рис. 4.17, а) содержит передающий оптрон VI и приемный оптрон V2. При подаче импульсных сигналов на вход Х светодиод оптрона VI периодически излучает свет, в результате выходной транзистор этого оптрона периодически насыщается и сопротивление между точками а и b падает от нескольких сотен килоом до нескольких десятков ом.

При включении выходного транзистора передающего оптрона ток от положительного полюса источника U2 проходит через светодиод оптрона V2, линию (точки а и b) и возвращается к отрицательному полюсу этого источника. Источник U2 выполняется изолированным от источника U3.

Если выходной транзистор передающего оптрона выключен, то ток по цепи источника U2 не протекает. Сигнал X" на выходе оптрона V2 близок нулю, если его светодиод включен, и близок +4 В, если этот светодиод выключен. Таким образом, при Х==0 светодиоды передающего и приемного оптронов включены и, следовательно, Х"==0. При Х==1 оба светодиода выключены и Х"==1.

Оптронная развязка позволяет значительно повысить помехоустойчивость канала связи и обеспечить передачу информации на расстояния порядка сотен метров. Диоды, подключенные к передающему и приемному оптронам, служат для их защиты от обратных выбросов напряжения. Резисторная цепь, связанная с источником U2, служит для задания тока в линии и ограничения тока через светодиод приемного оптрона.

Ток в линии согласно интерфейсу ИРПС может быть выбран равным 20 или 40 мА. При выборе номиналов резисторов нужно учитывать омическое сопротивление линии связи. Схема с «активным передатчиком» (рис. 4.17, б) отличается от предыдущей тем, что источник питания линии U2 расположен на стороне передатчика. Это не дает никаких преимуществ — обе схемы по сути одинаковы и являются так называемыми «токовыми петлями».

Рекомендации, приведенные в этой главе, могут показаться начинающему схемотехнику слишком жесткими. Борьба с помехами представляется ему «сражением с ветряной мельницей», а отсутствие опыта работы по проектированию устройств повышенной сложности создает иллюзию того, что можно создать работоспособное устройство, не выполнив ни одной из приведенных рекомендаций.

Действительно, иногда возможно и такое. Известны даже случаи серийного выпуска таких устройств. Однако в неофициальных отзывах об их работе можно услышать много интересных нетехнических выражений, таких, как визит-эффект и некоторых других, более простых и понятных.

В настоящее время в большинстве электронных устройств источников постоянного напряжения используются встроенные или внешние импульсные блоки питания (ИБП). Основной принцип работы (ИБП) заключается в том, что сетевое переменное напряжение сначала выпрямляется, далее преобразуется в переменное высокочастотное напряжение прямоугольной формы, которое затем понижается или повышается трансформатором до необходимых значений, далее выпрямляется, фильтруется и стабилизируется посредством обратной связи (ОС).

Широкое распространение (ИБП) обусловлено несколькими причинами: небольшим весом, малыми габаритами, высоким КПД, низкой стоимостью, широким диапазоном питающего сетевого напряжения и частоты, высокой степенью стабилизации выходного напряжения и т.д.

К недостаткам (ИБП) можно отнести то, что все они без исключения являются источниками интенсивных электромагнитных помех (ЭПМ), это связано с принципом работы схемы преобразователя, т.к. сигналы в (ИБП) представляют собой периодическую последовательность импульсов. Спектры таких сигналов занимают диапазон частот шириной до нескольких мегагерц. Помехи могут распространяться в виде токов, текущих в проводящих элементах, контуре заземления и самой земле (кондуктивные помехи ) и в виде электромагнитных полей в непроводящих средах (индуктивные помехи ).

Так же сами (ИБП) довольно восприимчивы к влиянию внешних (ЭПМ). В этой связи возникает необходимость, как подавлять помехи, которые они генерируют и наводят в питающую сеть, так и защищать их от внешних помех, проникающих из питающей сети. Для этой цели (ИБП) в обязательном порядке должен иметь сетевой фильтр подавления (ЭПМ), или как его еще называют EMI - фильтр (рис. 1).

Рис.1 Встроенный сетевой фильтр подавления электромагнитных помех.

Надо отметить, что такой фильтр будет работать как в прямом, так и в обратном направлении, т.е. ослабит как входящие, так и исходящие помехи.

Кондуктивная помеха по питающей сети имеет две составляющих – противофазную и синфазную.

Это напряжение помехи между шинами питания, фазой (L ) и нулем (N ) питающей сети. Ток противофазной помехи, наведенный на оба провода питающей сети, протекает по ним в противоположных направлениях (рис.2).

Противофазные напряжения помех непосредственно накладываются на напряжение питания питающей сети, воздействуют на линейную изоляцию между проводами и могут быть восприняты как управляющие сигналы в устройствах, и тем самым вызывать ложное срабатывание.

Синфазная (асимметричная, несимметричная) составляющая помехи - это напряжение помехи между шинами питания питающей сети и корпусом устройства (заземлением), т.е. между фазой (L) и землей (GND ) , нулем (N) и землей (GND ) . Ток синфазной помехи протекает по шинам питающей сети в одном направлении (рис.3).

Синфазные помехи обусловлены главным образом разностью потенциалов в цепях заземления устройства, вызванной токами в земле (аварийными, при замыканиях высоковольтных линий на землю, рабочими или токами молнии), а так же магнитными полями. Синфазные напряжения помех воздействуют на изоляцию проводов относительно земли и могут вести к электрическим пробоям. Так же может происходить частичное или полное преобразование синфазной помехи в противофазную.

Кроме сетевого фильтра входные цепи (ИБП) должны иметь защиту от короткого замыкания (Предохранитель ), импульсных бросков напряжения в питающей сети (Варистор и Супрессор ), ограничитель броска тока при включении (ИБП) в питающую сеть (Термистор ), а так же иметь защиту от внешних воздействий, например грозы или высоковольтного электрического пробоя (). На (рис. 4) показана схема многозвенного сетевого фильтра, обеспечивающего качественное подавление синфазных и дифференциальных помех с элементами защиты входных цепей (ИБП).

Рис.4 Схема многозвенного сетевого фильтра подавления (ЭПМ), с элементами защиты входных цепей (ИБП).

Схема фильтра реализована на основе двух фильтров нижних частот (ФНЧ) путем каскадного соединения (Г-образных) или (Т-образных) звеньев. Назначение элементов схемы сетевого фильтра следующее:

С Y 1, CY 2 - конденсаторы Y типа предназначены для подавления синфазной составляющей помехи. Выбор величины емкости конденсаторов CY, в первую очередь, определяется значением безопасного для человека тока заземления, величина которого для оборудования общего назначения составляет не более 2мА, а для медицинского не более 0,1мА. Емкость СY конденсаторов варьируется от 470пФ до 10000пФ, на рабочее напряжение 3кВ. Какая бы не была емкость СY конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Y2 , которые выдерживают импульсы до 5кВ. Увеличение емкости конденсаторов CY улучшает фильтрацию синфазных помех, но увеличивает ток утечки.

С X 1, CX 2, CX 3-к онденсаторы X типа предназначены для подавления противофазной составляющей помехи. Задача СХ конденсаторов не пропускать помехи из внешней питающей сети в (ИБП), а так же не выпускать помехи, созданные самим (ИБП) во внешнюю питающую сеть.

Сопротивление конденсаторов CX уменьшается с ростом частоты, следовательно, помехи и резкие скачки напряжения шунтируются (закорачиваются) на входе и выходе сетевого фильтра. Емкость СX конденсаторов варьируется от 0,1мкФ до 1мкФ и зависит от мощности (ИБП). Какая бы не была емкость СХ конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Х2 , которые выдерживают импульсы до 2,5кВ. К конденсаторам типа СХ предъявляются высокие требования по безопасности. Они должны выдерживать максимально возможные всплески напряжения в питающей сети, не должны загораться и поддерживать горение. Увеличение емкости конденсатора CX улучшает фильтрацию дифференциальных помех, но приводит к увеличению реактивного тока.

L Y 1- синфазный дроссель используются для подавления синфазных помех. Он выполнен на тороидальном ферритовом сердечнике с достаточно высокой магнитной проницаемостью (μ) и имеет две идентичные обмотки (рис. 5).

Рис.5 Схема синфазного дросселя.

В случае появления синфазных токов помех, магнитные потоки обоих обмоток складываются, т.к. обмотки дросселя оказываются включенными последовательно с шинами питания фазой (L) и нулем (N) питающей сети. Входной импеданс увеличивается, что приводит к подавлению синфазных токов помех и значительному снижению амплитуды шумового сигнала. Индуктивное сопротивление XL растет с увеличением частоты синфазных помех: XL=2πfL, f-частота помех, L-индуктивность включенных последовательно обмоток дросселя.

Когда через обмотки протекают дифференциальные токи помех, они индуцируют низкочастотные магнитные поля, которые при таком включении имеют противоположные направления и взаимно компенсируют друг друга.

Таким образом, обмотки дросселя для синфазной составляющей помехи имеют большое индуктивное сопротивление, поскольку для синфазного тока они включены согласно. В то же время для противофазной составляющей помехи индуктивное сопротивление обмоток минимально, так как для противофазного тока они включены встречно.

Индуктивность синфазного дросселя LY определяется многими параметрами и лежит в диапазоне от 10мГн до 0,47мГн при токе потребления от 1A до 10A . Начальная магнитная проницаемость сердечника μ i = 6000-10000. Размеры ферритового сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов. Увеличение индуктивности синфазного дросселя улучшает фильтрацию, но приводит к увеличению активного сопротивления обмоток.

L X 1- Z –образный дроссель предназначен для подавления противофазных (дифференциальных) помех. Дроссель имеет две одинаковые обмотки намотанных сонаправленно, на тороидальном ферритовом сердечнике с зазором или магнитодиэлектрическом сердечнике из распыленного железа (Iron powder core) (рис. 6).

Рис.6 Схема Z –образного дросселя.

Индуктивность Z-образного дросселя LX зависит от многих параметров и лежит в диапазоне от 270мкГн до 47мкГн при токе потребления от 1А до 10A. Сердечник из распыленного железа может быть серии DT68-DT106. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

L1, L 2 - ВЧ дроссели обеспечивают дальнейшее ослабление высокочастотных помех. Включаются последовательно с шинами питания фазой (L) и нулем (N) питающей сети на выходе сетевого фильтра. Содержат мало витков и выполняются на ферритовых кольцах с малым значением магнитной проницаемости μ. Их применение позволяет расширить диапазон частот эффективного подавления помех фильтром до 50-60МГц. Индуктивность ВЧ дросселей лежит в диапазоне 5-10 µH и зависит от частоты ослабления ВЧ помех. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

R2, R 3 - резисторы уменьшают добротность L1, L2 для устранения резонансных явлений.

RK 1 – терморезистор (NTC термистор) предназначен для ограничения броска тока при включении (ИБП) в питающую сеть. Термистор - полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры. Термисторы бывают двух типов: с положительным и отрицательным температурным коэффициентом. У термистора с положительным коэффициентом при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом - уменьшается. Их сокращённые названия на английском языке: PTC (positive temperature coefficient ) и NTC (negative temperature coefficient ).

Термистор включается последовательно с одной из шин питания фазой (L) или нулем (N) питающей сети. NTC термистор, при температуре окружающей среды, имеет сопротивление в несколько Ом. В момент включения (ИБП) в питающую сеть, конденсатор выпрямителя заряжается, поэтому представляет собой короткозамкнутую нагрузку. В цепи питания происходит бросок тока, но термистор поглощает его, превращая в тепло. Далее термистор разогревается, его сопротивление падает почти до десятых долей Ома и он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Термистор является инерционным элементом. Фактически при кратковременном отключении питания и повторном пуске, термистор не работает как элемент защиты, т.к. полностью восстанавливает свои свойства только через 5-10 мин. Температура термистора в рабочем состоянии, когда его сопротивления близкого к нулю, может доходить до 250 градусов.

R1 резистор обеспечивает быстрый разряд конденсаторов СX при отключении сетевого кабеля от питающей сети и необходим для безопасного обращения с устройством.

FV 1-разрядник предназначен для ограничения перенапряжений в электротехнических установках и электрических сетях . Разрядник состоит из электродов с искровым промежутком между ними и дугогасительного устройства. Один из электродов присоединяется к защищаемой цепи, другой - заземляется. Когда к такому устройству прикладывается высокое импульсное напряжение со скоростью около 1 кВ/мкс, возникает разряд. Чем меньше скорость нарастания фронта, тем выше должно быть напряжение, "зажигающее" разряд. Через такое устройство может проходить импульсный ток до 100кА. Несмотря на отличную способность снижать напряжение, разрядник имеет время реакции от сотен наносекунд до единиц микросекунд, что в десятки раз медленнее по сравнению с варисторами. Применение данных устройств актуально, где есть опасность прямого удара молнии в провода питающей сети или высоковольтных источниках питания, где есть вероятность попадания высокого напряжения на шины (L) или (N) питающей сети.

RU 1 - варистор защищает цепи от импульсных бросков напряжения или увеличивает скорость срабатывания плавкого предохранителя. Варистор – это полупроводниковый резистор, сопротивление которого резко изменяется при изменении приложенного напряжения выше номинального.

Варистор включается на входе сетевого фильтра параллельно входному сетевому напряжению 220В и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал т.к. его сопротивление в этом случае сотни МОм. В случае возникновения высоковольтного импульса напряжения способного вывести из строя (ИБП), варистор практически мгновенно изменяет своё сопротивление до десятков Ом, то есть шунтирует (закорачивает) цепь питания, ток в этом состоянии может достигать нескольких тысяч ампер, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после поглощения импульса он мгновенно восстанавливает свои свойства.

Одного варистора может быть не достаточно в случае аварии на линии электроснабжения, когда вместо фазы и нуля по обоим проводам подали фазу. Для защиты от такого рода аварий целесообразно включать в схему нескольких варисторов, как показано на (рис.7).

Рис.7 Схема защитного треугольника на варисторах.

Эта схема из трех варисторов на входе сетевого фильтра надёжно блокирует проникновение импульса не только по фазовой цепи (L), но и по цепи нуля (N). Варистор RU1 подключается между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой (L) и землей (Gnd), а так же между нулем (N) и землей (Gnd). Принцип работы RU2 аналогичен, описанному выше RU1. Варистор RU3 контролирует напряжение между нулем (N) и землей (Gnd). Если всё нормально, напряжения быть не должно или оно крайне мало (единицы вольт). В случае появления большого напряжения на проводе (N), как правило, фазы (L), варистор RU2 благополучно зашунтирует защищаемый блок.

VD 1-защитный диод TVS (Transient Voltage Suppressor) или супрессор обеспечивает подфильтровку остаточных перенапряжений, которые пройдут через варисторы, без заметных выбросов на шину заземления. Так как емкость варисторов составляет не менее 1000пФ, то они не позволяют фильтровать высокочастотные выбросы выше 100МГц. В таких случаях лучшим решением является применение быстродействующего супрессор-диода. Принцип работы супрессора основан на ярко выраженной нелинейной вольтамперной характеристике. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа, то он перейдет в режим лавинного пробоя, т.е. импульс напряжения будет ограничен до нормальной величины, а излишки уйдут на землю (GND). Отличительной чертой супрессоров является очень короткое время реакции на превышение напряжения, скорость переключения лежит в пикосекундном диапазоне. Супрессоры выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двухполярным напряжением, а несимметричные только с напряжением одной полярности. В маркировке супрессора 1.5КЕ400СА зашифрованы основные его характеристики. 1,5- Мощность 1500Вт; 400-напряжение пробоя 440В; С-двунаправленный (без буквы однонаправленный); А- допустимое отклонение напряжения 5%. Симметричный защитный диод 1.5КЕ440СА можно заменить двумя такими же однополярными (без индекса СА), включенным встречно. Для надежной защиты сетевого фильтра и входных цепей (ИБП) супрессоры включаются по схеме защитного треугольника, как и варисторы (рис. 7).

Для защиты от внешних индуктивных помех применяют экранирование, как всего (ИБП), так и отдельно сетевого фильтра. Экранирование выполняется за счет использования металлического корпуса, с обязательным соединением с шиной заземления . Это препятствует распространению излучаемых электромагнитных помех за пределы корпуса (ИБП), а так же подавляет внешние электромагнитные помехи, воздействующие на (ИБП).

Применение высокоэффективных индуктивно-емкостных помехоподавляющих фильтров позволяет обезопасить оборудование от вредного влияния входящих помех, а так же снизить исходящие помехи, которые генерируются внутри самого оборудования. Использование фильтров подавления (ЭПМ) - одно из основных требований по электромагнитной совместимости современного оборудования.

Компания Лазер-блок является производителем высоковольтных блоков питания для лазерных станков с СО2 излучателями. В выпускаемых нами блоках питания для лазерных станков , или как их еще называют, блоки розжига для лазера , мы используем только высококачественные электронные компоненты, которые закупаем со всего мира, а так же используем и отечественные аналоги, которые славятся своим запасом прочности. Наши инженеры постоянно проводят исследования в лаборатории, внося корректировки в схемы.



Рекомендуем почитать

Наверх