Пейджер связь. Пейджинговая связь. Пейджер приёмник персонального вызова. Пейджер устроен так, что позволяет получать сообщения, посылаемые по пейджинговой сети. Для. Мобильная сотовая связь

Возможности 18.03.2019
Возможности

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.

Дифракционной решеткой называется совокупность большого числа одинаковых, отстоящих друг от друга на одно и то же расстояние щелей (рис. 130.1). Расстояние d между серединами соседних щелей называется периодом решетки.

Расположим параллельно решетке собирательную линзу, в фокальной плоскости которой поставим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку плоской световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину, описываемую кривой, изображенной на рис. 129.3.

Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью, лишь тем, что все интенсивности возросли бы в N раз. Однако колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от - интенсивность, создаваемая одной щелью; см. (129.6)).

В дальнейшем мы будем предполагать, что радиус когерентности падающей волны намного превышает длину решетки, так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результирующее колебание в точке Р, положение которой определяется углом , представляет собой сумму N колебаний с одинаковой амплитудой сдвинутых друг относительно друга по фазе на одну и ту же величину . Согласно формуле (124.5) интенсивность при этих условиях равна

данном случае роль играет ).

Из рис. 130.1 видно, что разность хода от соседних щелей равна Следовательно, разность фаз

(130.2)

где к - длина волны в данной среде.

Подставив в формулу (130.1) выражение (129.6) для и (130.2) для , получим

( - интенсивность, создаваемая одной щелью против центра линзы).

Первый множитель в (130.3) обращается в нуль в точках, для которых

В этих точках интенсивность, создаваемая каждой из щелбй в отдельности, равна нулю (см. условие (129.5)).

Второй множитель в (130.3) принимает значение в точках, удовлетворяющих условию

(см. (124.7)). Для направлений, определяемых этим условием, колебания от отдельных щелей взаимно усиливают друг друга, вследствие чего амплитуда колебаний в соответствующей точке экрана равна

(130.6)

Амплитуда колебания, посылаемого одной щелью под углом

Условие (130.5) определяет положения максимумов интенсивности, называемых главными. Число дает порядок главного максимума. Максимум нулевого порядка только один, максимумов 1-го, 2-го и т. д. порядков имеется по два.

Возведя равенство (130.6) в квадрат, получим, что интенсивность главных максимумов раз больше интенсивности создаваемой в направлении одной щелью:

(130.7)

Кроме минимумов, определяемых условием (130.4), в промежутках между соседними главными максимумами имеется добавочных минимумов. Эти минимумы возникают в тех направлениях, для которых колебания от отдельных щелей взаимно погашают друг друга. В соответствии с формулой (124.8) направления добавочных минимумов определяются условием

В формуле (130.8) к принимает все целочисленные значения, кроме N, 2N, ..., т. е. кроме тех, при которых условие (130.8) переходит в (130.5).

Условие (130.8) легко получить методом графического сложения колебаний. Колебания от отдельных щелей изображаются векторами одинаковой длины. Согласно (130.8) каждый из последующих векторов повернут относительно предыдущего на один и тот же угол

Поэтому в тех случаях, когда k не является целым кратным N, мы, пристраивая начало следующего вектора к концу предыдущего, получим замкнутую ломаную линию, которая делает к (при ) или оборотов, прежде чем конец N-го вектора упрется в начало 1-го. Соответственно результирующая амплитуда оказывается равной нулю.

Сказанное пояснено на рис. 130.2, на котором показана сумма векторов для случая и значений , равных 2 и

Между дополнительными минимумами располагаются слабые вторичные максимумы. Число таких максимумов, приходящееся на промежуток между соседними главными максимумами, равно . В § 124 было показано, что интенсивность вторичных максимумов не превышает интенсивности ближайшего главного максимума.

На рис. 130.3 приведен график функции (130.3) для Пунктирная кривая, проходящая через вершины главных максимумов, изображает интенсивность от одной щели, умноженную на (см. (130.7)). При взятом на рисунке отношений периода решетки к ширине щели главные максимумы 3-го, 6-го и т. д. порядков приходятся на минимумы интенсивности от одной щели, вследствие чего эти максимумы пропадают.

Вообще из формул (130.4) и (130.5) вытекает, что главный максимум порядка придется на минимум от одной щели, если будет выполнено, равенство: или Это возможно, если равно отношению двух целых чисел и s (практический интерес представляет случай, когда эти числа невелики).

Тогда главный максимум порядка наложится на минимум от одной щели, максимум порядка - на минимум и т. д., в результате чего максимумы порядков и т. д. будут отсутствовать.

Количество наблюдающихся главных максимумов определяется отношением периода решетки d к длине волны X. Модуль не может превысить единицу. Поэтому из формулы (130.5) вытекает, что

Определим угловую ширину центрального (нулевого) максимума. Положение ближайших к нему дополнительных минимумов определяется условием (см. формулу (130.8)). Следовательно, этим минимумам соответствуют значения равные Отсюда для угловой ширины центрального максимума получается выражение

(130.10)

(мы воспользовались тем, что ).

Положение дополнительных минимумов, ближайших к главному максимуму порядка, определяется условием: . Отсюда получается для угловой ширины максимума следующее выражение:

Введя обозначения можно представить эту формулу в виде

При большом числе щелей значение будет очень мало. Поэтому можно положить Подстановка этих значений в формулу (130.11) приводит к приближенному выражению

При это выражение переходит в (130.10).

Произведение дает длину дифракционной решетки. Следовательно, угловая ширина главных максимумов обратно пропорциональна длине решетки. С увеличением порядка максимума ширина возрастает.

Положение главных максимумов зависит от длины волны X. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, красный - наружу.

Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как стеклянная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, напротив, сильнее отклоняет красные лучи.

На рис. 130.4 изображены схематически порядков, даваемые решеткой при пропускании через нее белого света. В центре лежит узкий максимум нулевого порядка; у него окрашены только края (согласно (130.10) зависит от ). По обе стороны от центрального максимума расположены два спектра 1-го порядка, затем два спектра 2-го порядка и т. д. Положения красного конца спектра порядка и фиолетового конца спектра порядка определяются соотношениями

где d взято в микрометрах, При условии, что

спектры порядков частично перекрываются. Из неравенства получается, что Следовательно, частичное перекрывание начинается со спектров 2-го и 3-го порядков (см. рис. 130.4, на котором для наглядности спектры разных порядков смещены друг относительно друга по вертикали).

Основными характеристиками всякого спектрального прибора являются его дисперсия и разрешающая сила. Дисперсия определяет угловое или линейное расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 А). Разрешающая сила определяет минимальную разность длин волн , при которой две линии воспринимаются в спектре раздельно.

Угловой дисперсией называется величина

где - угловое расстояние между спектральными линиями, отличающимися по длине волны на .

Чтобы найти угловую дисперсию дифракционной решетки, продифференцируем условие (130.5) главного максимума слева по а справа по . Опуская знак минус, получим

В пределах небольших углов поэтому можно положить

Из полученного выражения следует, что угловая дисперсия обратно пропорциональна периоду решетки d. Чем выше порядок спектра , тем больше дисперсия.

Линейной дисперсией называют величину

где - линейное расстояние на экране или на фотопластинке между спектральными линиями, отличающимися по длине волны на Из рис. 130.5 видно, что при небольших значениях угла можно положить , где - фокусное расстояние линзы, собирающей дифрагирующие лучи на экране.

Следовательно, линейная дисперсия связана с угловой дисперсией D соотношением

Приняв во внимание выражение (130.15), получим для линейной дисперсии дифракционной решетки (при небольших ) следующую формулу:

(130.17)

Разрешающей силой спектрального прибора называют безразмерную величину

где - минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно.

Возможность разрешения (т. е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояния между, ними (которое определяется дисперсией прибора), но также и от ширины спектрального максимума. На рис. 130.6 показана результирующая интенсивность (сплошные кривые), наблюдающаяся при наложении двух близких максимумов (пунктирные кривые). В случае а оба максимума воспринимаются как один. В случае между максимумами лежит минимум. Два близких максимума воспринимаются глазом раздельно в том случае, если интенсивность в промежутке между ними составляет не более 80% от интенсивности максимума. Согласно критерию, предложенному Рэлеем, такое соотношение интенсивностей имеет место в том случае, если середина одного максимума совпадает с краем другого (рис. 130.6, б). Такое взаимное расположение максимумов получается при определенном (для данного прибора) значении .

Таким образом, разрешающая сила дифракционной решетки пропорциональна порядку спектра и числу щелей .

На рис. 130.7 сопоставлены дифракционные картины, получающиеся для двух спектральных линий с помощью решеток, отличающихся значениями дисперсии D и разрешающей силы R. Решетки I к II обладают одинаковой разрешающей силой (у них одинаковое число щелей N), но различной дисперсией (у решетки I период d в два раза больше, соответственно дисперсия D в два раза меньше, чем у решетки II). Решетки II и III имеют одинаковую дисперсию (у них одинаковые d), но разную разрешающую силу (у решетки число щелей N и разрешающая сила R в два раза больше, чем у решетки III).

Дифракционные решетки бывают прозрачные и отражательные. Прозрачные решетки изготавливаются из стеклянных или кварцевых пластинок, на поверхность которых с помощью специальной машины наносится алмазным резцом ряд параллельных штрихов. Промежутки между, штрихами служат щелями.

Отражательные решетки наносятся алмазным резцом на поверхность металлического зеркала. Свет падает на отражательную решетку наклонно. При этом решетка с периодом d действует так, как при нормальном падении света действовала бы прозрачная решетка с периодом где - угол падения. Это позволяет наблюдать спектр при отражении света, например, от грампластинки, имеющей всего несколько штрихов (канавок) на 1 мм, если расположить ее так, чтобы угол падения был близок к Роуланд изобрел вогнутую отражательную решетку, которая сама (без линзы) фокусирует дифракционные спектры.

Лучшие решетки имеют до 1200 штрихов на 1 мм . Из формулы (130.9) следует, что спектры второго порядка в видимом свете при таком периоде не наблюдаются. Общее число штрихов у подобных решеток достигает 200 тысяч (длина около 200 мм). При фокусном расстоянии прибора длина видимого спектра 1-го порядка составляет в этом случае более 700 мм.

Дифракционная решётка

Очень большая отражательная дифракционная решётка.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Виды решёток

  • Отражательные : Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
  • Прозрачные : Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m =0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m =±1) максимуме можно наблюдать разложение света в спектр . Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

- период решётки, - угол максимума данного цвета, - порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, - длина волны.

Если же свет падает на решётку под углом , то:

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .

Изготовление

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.

Примеры

Радуга на компакт-диске

Один из простейших и распространённых в быту примеров отражательных дифракционных решёток - компакт-диск или DVD . На поверхности компакт-диска - дорожка в виде спирали с шагом 1,6 мкм между витками. Примерно треть ширины (0,5 мкм) этой дорожки занята углублением (это записанные данные), рассеивающим падающий на него свет, примерно две трети (1,1 мкм) - нетронутая подложка, отражающая свет. Таким образом, компакт диск - отражательная дифракционная решётка с периодом 1,6 мкм.

См. также

  • Фурье-оптика
  • Оптическая решётка

Литература

  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • Тарасов К. И., Спектральные приборы, 1968

Wikimedia Foundation . 2010 .

  • Экономика Польши
  • Экономика Новой Зеландии

Смотреть что такое "Дифракционная решётка" в других словарях:

    Дифракционная решётка - Дифракционная решётка. Схема образования спектров с помощью прозрачной дифракционной решётки, состоящей из щелей: d период решётки; a угол падения лучей на решётку; b угол между нормалью к решётке и направлением распространения дифрагированного… … Иллюстрированный энциклопедический словарь

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптич. прибор, представляющий собой периодич. структуру из большого числа регулярно расположенных элементов, на к рых происходит дифракция света (напр., параллельных и равноотстоящих штрихов, нанесённых на плоскую или вогнутую оптич. поверхность) … Физическая энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - ДИФРАКЦИОННАЯ РЕШЁТКА, оптический прибор, представляющий собой периодическую структуру из большого числа (300 1200 на 1 мм для ультрафиолетовой и видимой области) регулярно расположенных элементов (щелей в непрозрачном или штрихов на отражающем… … Современная энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптический прибор, представляющий собой систему большого числа параллельных щелей в каком либо непрозрачном экране или параллельных штрихов на оптической поверхности, а также совокупность отражающих зеркальных полосок; при прохождении через такую … Большая политехническая энциклопедия

    дифракционная решётка - difrakcinė gardelė statusas T sritis fizika atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus. дифракционная решётка, f pranc. réseau de diffraction, m … Fizikos terminų žodynas

    дифракционная решётка - оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Это могут быть параллельные щели в непрозрачном экране или отражающие зеркальные полоски… … Энциклопедический словарь

    Дифракционная решётка - оптический прибор, представляющий собой совокупность большого числа параллельных, равноотстоящих друг от друга штрихов одинаковой формы, нанесённых на плоскую или вогнутую оптическую поверхность. Таким образом, Д. р. представляет собой… … Большая советская энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - совокупность большого числа сосредоточ. в ограни ч. области пространства элементов, на к рых происходит дифракция света. По структуре Д. р. разделяются на нерегулярные, имеющие хаотически располож. элементы, и регулярные; на одно, двух… … Большой энциклопедический политехнический словарь

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптич. прибор, представляющий собой периодич. структуру из большого числа регулярно расположенных элементов, на к рых происходит дифракция света. Это могут быть параллельные щели в непрозрачном экране или отражающие зеркальные полоски (штрихи),… … Естествознание. Энциклопедический словарь

    дифракционная решётка, сформированная лазерным лучом - lazerio spinduliuotės sukurta difrakcinė gardelė statusas T sritis radioelektronika atitikmenys: angl. laser induced diffraction grating vok. Diffraktionsgitter gebildet durch Laserstrahl, n rus. дифракционная решётка, сформированная лазерным… … Radioelektronikos terminų žodynas

Сейчас уже стало забываться, что такое пейджер. А всего лет 15 назад он был символом успешности. Те, кому не хватало денег на сотовый телефон, стоивший в те времена более 1000 долларов плюс немалые расходы на оплату звонков, обзаводились пейджерами. Впрочем, редкие владельцы мобильников ими тоже не пренебрегали.


Что такое пейджер

Пейджер – маленькое устройство односторонней связи, отображавший короткие сообщения (не длиннее СМС-ки) на дисплее. Особенность этого вида связи заключается в том, что сигналы могли передавать только специализированные пейджинговые сети. Сообщения отправлялись на аппаратик из центра пейджинговой связи, где операторы набирали их на обычной клавиатуре и отправляли адресату.
Чтобы отправить сообщение на пейджер, надо было позвонить по определённому телефону оператору, назвать номер абонента или его псевдоним и продиктовать сообщение. Можно было так же указать и время, когда это сообщение нужно было отправить. Оператор отправлял набранное сообщение в эфир, предваряя его специальным кодовым сигналом, уникальным для каждого пейджера, который ловил предназначенное ему сообщение, как радиоприёмник.
Если владелец пейджера в данный момент оказывался «вне зоны доступа» (например, в метро) или просто отключил аппарат, то сообщение он мог пропустить. Чтобы этого не случилось, можно было заказать многократную отправку сообщения. При отсутствии сотовых телефонов такая связь была очень удобна. На пейджер можно было отправить поручение, попросить позвонить, о чём-то предупредить, дать сигнал и т.д.

Пейджеры породили волну анекдотов:
«Втяни живот, задыхаюсь! Твой пейджер» (в России пейджер часто носили на поясе)
«Дядя Гоги, дядя Вахтанг просил вас ему перезвонить!» - Спасибо Пейджер-джан.
Вчера перечитывал пейджер. Много думал.

Изобретение пейджера

Первые устройства пейджинговой связи появились в США в конце 20-х годов. Изобрёл их радиоинженер Чарльз Нииргард. Легенда гласит, что когда он лежал в госпитале, ему ужасно надоедали селекторная вызовы, по которым искали врачей. Именно эти громогласные вызовы побудили его придумать такую «тихую» связь. В 30-е годы пейджерами активно пользовалась полиция.

Но распространение этих устройств шло медленно. Более современный вариант пейджера был создан в Англии в 1956 году компанией Motorola. В те годы число абонентов сети не могло быть больше 57, а радиус действия не превышал 200 м. Тем не менее, он был очень полезен внутри больниц, крупных офисов и т.п. Тогда же появилось и название – пейджер – от слова «page» (слуга, паж).

Первые аппараты могли только выдавать пищащий сигнал, благодаря чему появилось и другое название – бипер. Заслышав сигнал, врач знал, что ему надо бежать в операционную, военный спешил в штаб, пожарные готовились к выезду на пожар.

Затем пейджеры усложнились: они получили возможность передавать звуковые сообщения. Заслышав сигнал бипера, абонент подносил его к уху и слушал сообщение, передаваемое диспетчером. Благодаря системе контуров внутри пейджера, он мог принимать только тот сигнал, который предназначен именно для него. Другие сигналы ему недоступны.
Довольно быстро биперы снабдили маленькими экранчиками, на которых отображалась сначала только цифровая, а затем и буквенная информация. Эта информация не просто отображалась, но и запоминалась. Таким образом, абонент мог в любое удобное время перечитать послание. Некоторые ведомства в Англии и США пользуются пейджерами до сих пор: они очень удобны и экономичны, когда не нужна двухстороння связь.

Модернизация пейджинговой связи

Расцвет пейджинговой связи в США и Европе пришёлся на 80-е годы, когда появилась возможность передавать текстовую информацию. Передаваемое сообщение, которое передавал пользователь, оператор забивал в компьютер, где оно хранилось. Передача по мотороловскому протоколу FLEX осуществлялась либо сразу после заказа, либо в назначенное пользователем время. Возможны были повторы через определённый интервал, чтобы абонент гарантированно принял сигнал и не забыл о нём.

Пейджеры Motorola Advisor и снабжены 80-символьным 4-строчным дисплеем с подсветкой, индикатор батарейки, встроенные часы, будильник. Ёмкость памяти в Advisor — 52 сообщения на 6400 символа и в Maxima 231 сообщение на 18480 символа. В 90-е годы Motorola создала двухсторонний пейджер на протоколе ReFLEX, так называемый твейджер («two-way paging»). Но в это же время начали быстро распространяться сотовые телефоны, и звезда пейджинга закатилась.

Пейджеры в СССР и России


Часы-пейджер.

Появившись в СССР в конце 70-х годов, пейджеры не стали достоянием широких масс. Ими пользовались в основном медики на «Скорой помощи». Всплеск пейджинговой активности пришёлся на Олимпиаду 80, когда ей пользовались многие службы. Но в основном пейджеры распространились уже в России с 1993 года.
Тогда, в 90-е, пейджеры наравне с редкими сотовыми телефонами, были признаком достатка хозяина. Появились даже дешёвые китайские часы в форме этого средства связи. Многие любители пускать пыль в глаза покупали эти часы для демонстрации своей мнимой «крутости».

Операторы пейджинговых сетей не принимали сообщения с матом к большому огорчению ненормативной лексики. Уже тогда изобрели эвфемизмы типа «6 ля». И операторы послушно набирали «ляляляляляля».

Чуть позже некоторые операторы организовали передачу сообщений через электронную почту или сайт, на котором пользователь сам набирал сообщение. Правда, на почту сразу посыпался разнообразный спам.

Закат пейджеров

Возможно, двухсторонний пейджинг – твейджинг – позволил бы пейджерам жить и развиваться дальше, но грянул 1998 год. Тогда, оказавшись на грани разорения, сотовые операторы переориентировались со среднего класса, которого у нас в России и сегодня кот наплакал, на основные массы населения. Мобильники и тарифы стали быстро дешеветь. Последний удар был нанесён развитием сервиса SMS.

Сегодня пейджеры используются лишь кое-где, в локальных ведомственных сетях, поскольку пейджерная связь и сами устройства значительно дешевле мобильников. Кроме того, сообщения, переданные на пейджер, остаются в компьютерах, а это уже документ, разговор же по сотовому «к делу не пришьёшь». Но это всё это только остатки былой славы.

Помните фильм «Брюс Всемогущий»? Где бог отправлял главному герою сообщения на маленькое электронное устройство? Сегодня мы решили вспомнить пейджер – символ достатка в России девяностых и старшего брата современных мобильных телефонов.

Кадр из фильма «Брюс Всемогущий» (2003)

Что такое пейджер

Тридцатилетним может и смешно от этого вопроса, а вот нынешние школьники уже и не знают, что была такая штука. Пейджер – миниатюрный радиоприемник, который позволяет принимать короткие сообщения на определенной частоте. Все сообщения отправляются через оператора: вы звоните в операторскую, диктуете сообщение и номер абонента. А оператор отправляет сообщение адресату. Позже появились двусторонние пейджеры, которые позволяют общаться без посредников.

Первый пейджер представила компания Motorola в 1956 году. Он принимал сигналы в радиусе 200 метров и выдавал короткий звуковой сигнал, за что получил свое второе название – бипер, от английского Beep. Тогда пейджеры использовались для оснащения больниц, а с развитием технологии и увеличением радиуса действия они нашли применение в полицейских участках и службах спасения.


Кадр из клипа Eminem «Stan» (2000)

Но мировую популярность миниатюрные устройства снискали только в середине 80-х, когда в 1986 году Motorola выпустила Bravo - самую популярную модель пейджера с тремя кнопками и трехстрочным дисплеем.

В 1996 году в мире пейджерами пользовались почти 100 миллионов человек.

Как устроен пейджер

В его основе стоит радиоприемник, настроенный на определенную частоту приема пейджинговой компании и формат принимаемых сообщений. Кроме того, был декодер, микро-ЭВМ - “мозги” пейджера, несколько кнопок и позже - дисплей.


Структурная схема пейджера

В каждый пейджер встроены кэп-коды - физические адреса, личные и групповые. Личный адрес уникален для каждого устройства, а групповые одинаковы у всех пейджеров с общей языковой кодировкой. Все кэп-коды хранятся в базе данных оператора. Когда клиент звонит оператору и называет номер абонента, оператор находит его личный кэп-код и отправляет сообщение.

В разных странах пейджинговая связь работает с разными форматами. Самая распространенный - протокол POCSAG, разработанный в Великобритании в 1978 году. Он успешно применяется до сих пор, скорость передачи сообщений 512, 1200 или 2400 бит/сек.

Более скоростной протокол Flex создала Motorola в 1993 году. В нем использовалась синхронная передача данных, сообщения передавались со скоростью 1600, 3200 и 6400 бит/сек. Flex способен поддерживать более 5 млрд адресов - это в два раза больше, чем у POCSAG.

Специально для Европы был разработан протокол ERMES, полностью совместимый со стандартом связи GSM и адаптированный к другим европейским разработкам сотовых сетей. Формат был создан в рамках создания общеевропейской системы персонального радиовызова и работал в диапазоне частот 169,4 – 169,8 МГц.

Всего было три основных типа устройств: тональные - пейджеры первого поколения, они же биперы, цифровые - передавали информацию только в цифровом виде и текстовые - с помощью которых можно было отправлять сообщения.

Последним словом в развитии пейджинга стали твейджеры: оснащенные qwerty-клавиатурой, с двусторонней связью, они позволяли общаться без посредников. Первый твейджер Tango выпустила Motorola совместно с национальным американским оператором SkyTel в 1996 году. Но уже тогда было понятно, что век маленьких пищащих устройств заканчивается - мир активно завоевывала мобильная связь.


Кадр из фильма «Нулевой эффект» (1998)

Пейджеры в России: Пепси, пейджер, МТV

Пейджинговая связь появилась в СССР к концу 60-х – ей пользовались сотрудники «скорой» и некоторых госструктур. В 1979 году, во время подготовки к Олимпиаде-80, английская компания Multitone развернула в Москве сеть «Радиопоиск», которая работала на частоте около 43 МГц. Она решала задачу быстрой передачи команд исполнителям торжеств и координировала их действия.

Широкая общественность пейджерами не пользовалась до самого распада Советского Союза.

В разгар 90-х это был символ обеспеченной жизни: громоздкие мобильные телефоны с их астрономическими ценами (Nokia Mobira стоил 2000 $ и весил три килограмма), могли позволить себе единицы, а пейджеры распространились шире. Но обслуживание все равно было дорогим : подключение около 350 $, и абонентская плата 50-70 $ в месяц. Первый русифицированный пейджер выпустили на рынок уже упомянутые Multitone – модель MIT-472 стоила 380 долларов и могла принимать сообщения размером до 7500 символов. Теоретически, на такое устройство можно отправить этот текст - его объем чуть больше 7 с половиной тысяч знаков. На дисплее одновременно отображалось максимум 94 символа.

Если денег не было, а выделиться хотелось, то желающие покупали электронные часы, похожие на пейджер, и гордо вешали их на пояс.

По всей стране насчитывались десятки пейджинговых компаний: федеральных операторов не было, а количество региональных сильно отличалось в зависимости от региона.

Качество связи зависело от количества передатчиков у оператора, их мощности и расположения. Например, на Останкинской башне работали передатчики мощностью 350 Ватт и радиусом покрытия 70-80 км. В конце 90-х использовались передатчики Motorola или их отечественные аналоги ЖМ-300. Иногда на них ставили усилители.

Каждый оператор работал на своей частоте. Компания закупала пейджеры, запрограммированные на эту частоту и настраивала на нее передатчики. Либо можно было заказать свободные пейджеры, и потом настроить их на свою частоту. Но этот вариант более долгий, т.к. в основном устройства привозили из Юго-Восточной Азии.

Почти весь рынок разделили между собой 11 крупных компаний : “Мобил-Телеком”, “Вессо-Линк”, “Информ-Экском” и другие. На долю мелких операторов осталось 3% от всего объема клиентов.

По данным Госкомсвязи (ныне Минкомсвязи РФ) за период с 1994 по 1996 год количество абонентов увеличилось в 20 раз, и к началу 1998 года в России пейджинговой связью пользовались около 300 тыс. человек. Более 70% рынка было сосредоточено в Москве и Санкт-Петербурге: в столице пейджерами пользовался 1,1% населения, в Питере - 0,6%. К 2000 году планировалось увеличить число клиентов в три раза. Но этим планам было не суждено сбыться.

В начале нулевых мобильные телефоны начали активно вытеснять пейджеры с российского рынка связи. Еще в 2000 году Децл вещал юному поколению: «Пепси, пейджер, MTV, подключайся!», а в 2005 мобильники были уже у 80% населения. В 2007 году вышел первый iPhone.
О пейджерах забыли.

Пейджеры сегодня

В массовом сознании маленькие черные коробочки давно вытеснили современные смартфоны, но пейджеры до сих пор живы. Ими пользуются сотрудники больниц для экстренной связи, МЧС, МВД, крупных центров обслуживания автомобилей, некоторых АЭС.

В Штатах пейджерами пользуются в больницах, службах спасения, полиции – можно сказать, что они вернулись домой после своего шествия по миру. Получив сообщение, доктор стремится в операционную, спасатели - на вызов, сотрудники полиции - на место происшествия.

Сегодня в Москве работают две пейджинговые компании – Телекомт и Информ-Экском . Мы пообщались с человеком, который занимается этим видом связи с 1993 года, и вот что он нам рассказал.

Плотность покрытия пейджинговой вышки больше: она работает там, где не ловит сотовая связь, а шлюзы не так нагружены, поэтому передать экстренное сообщение на пейджер получится быстрее. Устройство не нужно заряжать, только менять батарейку типа ААА примерно раз в месяц.

Частные системы пейджинговой связи полностью подконтрольны заказчику: они созданы под его требования, не зависят ни от сотовых операторов, ни от перегрузок энергетических сетей и могут долго работать при отсутствии централизованного энергообеспечения.

Сегодня пейджинговая связь дешевая – ежемесячная абонентская плата начинается от 170 рублей в месяц, при этом деньги со счета украсть невозможно. Цена на сам пейджер колеблется от 700 до 2000 рублей. Все эти преимущества, по мнению оставшихся пейджинговых операторов, не дадут окончательно вытеснить пейджеры с рынка.



Рекомендуем почитать

Наверх