Память кэш - это что? Что такое кэш браузера? Как очистить кэш браузера и зачем это нужно

Скачать Viber 29.09.2019
Скачать Viber

Схема работы кэша

Кэш – это специально отведенный небольшой участок памяти с большей скоростью обмена данными, чем у традиционной. Существует он ввиду несоответствия между вычислительными мощностями процессоров и скоростью считывания информации со стандартных накопителей памяти.

Прогресс требовал увеличения объемов для хранения данных , в то время как быстрота их обработки отставала с самого зарождения компьютеров. Именно из-за этого и был разработан такой «мост». Процесс занесения информации в кэш-память получил название «кэширование ». Собственно, поэтому и важно её своевременно очищать – для сохранения эффективности считывания.

Кэширование в браузерах


Алгоритм кэширования в браузерах

Зачастую, говоря о кэшировании, многие вспоминают о cache -файлах в браузерах. И неудивительно, так как их очистка – один из основных советов, который дают пользователям при возникновении ошибок.

Накапливаются они вместе с числом просмотренных сайтов – с них часть сведений загружается в кэш-память, преследуя этим две цели : ускорить общее время загрузки и уменьшить нагрузку на сетевой трафик. При повторном заходе на сайт, происходит проверка на актуальность данных между сервером и клиентом. Что должно быть сохранено, а что нет, решает создатель веб-страницы.

Кэш в Windows

В операционных системах Windows, файлы кэш-памяти занимают приличное пространство. Сохраняются разнообразные временные файлы , созданные после запуска или изменения какой-либо программы, превью изображений и музыкальных композиций, точки восстановления ОС.

Контролирует данный процесс, так называемый кэш-менеджер , который периодически избавляется от неактуальных ресурсов. Причем, именно эта периодичность и является ключевым фактором эффективной работы: если файлы удалять слишком часто, то система будет тратить время, считывая их вновь, а если слишком редко – попросту не останется места для новых сведений.

Кэш на андройде

На смартфонах с операционной системой Android ситуация выглядит похожим образом, за одним существенным «но» — объем предоставленной памяти значительно ниже , чем на персональном компьютере. Помимо этого, программы после запуска хранятся в трей-листе, откуда их потом можно заново развернуть , со всеми сохраненными изменениями, совершенными в последней сессии.

К сожалению, ОС не очень хорошо справляется с очисткой лишних файлов, из-за чего, при длительном пользовании, приложения могут работать некорректно , а само быстродействие телефона значительно снизится . Для предотвращения этого, рекомендуется использовать сторонние программы , которые производят очистку, например, Clean Master.

Всем пользователям хорошо известны такие элементы компьютера, как процессор, отвечающий за обработку данных, а также оперативная память (ОЗУ или RAM), отвечающая за их хранение. Но далеко не все, наверное, знают, что существует и кэш-память процессора(Cache CPU), то есть оперативная память самого процессора (так называемая сверхоперативная память).

В чем же состоит причина, которая побудила разработчиков компьютеров использовать специальную память для процессора? Разве возможностей ОЗУ для компьютера недостаточно?

Действительно, долгое время персональные компьютеры обходились без какой-либо кэш-памяти. Но, как известно, процессор – это самое быстродействующее устройство персонального компьютера и его скорость росла с каждым новым поколением CPU. В настоящее время его скорость измеряется миллиардами операций в секунду. В то же время стандартная оперативная память не столь значительно увеличила свое быстродействие за время своей эволюции.

Вообще говоря, существуют две основные технологии микросхем памяти – статическая память и динамическая память. Не углубляясь в подробности их устройства, скажем лишь, что статическая память, в отличие от динамической, не требует регенерации; кроме того, в статической памяти для одного бита информации используется 4-8 транзисторов, в то время как в динамической – 1-2 транзистора. Соответственно динамическая память гораздо дешевле статической, но в то же время и намного медленнее. В настоящее время микросхемы ОЗУ изготавливаются на основе динамической памяти.

Примерная эволюция соотношения скорости работы процессоров и ОЗУ:

Таким образом, если бы процессор брал все время информацию из оперативной памяти, то ему пришлось бы ждать медлительную динамическую память, и он все время бы простаивал. В том же случае, если бы в качестве ОЗУ использовалась статическая память, то стоимость компьютера возросла бы в несколько раз.

Именно поэтому был разработан разумный компромисс. Основная часть ОЗУ так и осталась динамической, в то время как у процессора появилась своя быстрая кэш-память, основанная на микросхемах статической памяти. Ее объем сравнительно невелик – например, объем кэш-памяти второго уровня составляет всего несколько мегабайт. Впрочем, тут стоить вспомнить о том, что вся оперативная память первых компьютеров IBM PC составляла меньше 1 МБ.

Кроме того, на целесообразность внедрения технологии кэширования влияет еще и тот фактор, что разные приложения, находящиеся в оперативной памяти, по-разному нагружают процессор, и, как следствие, существует немало данных, требующих приоритетной обработки по сравнению с остальными.

История кэш-памяти

Строго говоря, до того, как кэш-память перебралась на персоналки, она уже несколько десятилетий успешно использовалась в суперкомпьютерах.

Впервые кэш-память объемом всего в 16 КБ появилась в ПК на базе процессора i80386. На сегодняшний день современные процессоры используют различные уровни кэша, от первого (самый быстрый кэш самого маленького объема – как правило, 128 КБ) до третьего (самый медленный кэш самого большого объема – до десятков МБ).

Сначала внешняя кэш-память процессора размещалась на отдельном чипе. Со временем, однако, это привело к тому, что шина, расположенная между кэшем и процессором, стала узким местом, замедляющим обмен данными. В современных микропроцессорах и первый, и второй уровни кэш-памяти находятся в самом ядре процессора.

Долгое время в процессорах существовали всего два уровня кэша, но в CPU Intel Itanium впервые появилась кэш-память третьего уровня, общая для всех ядер процессора. Существуют и разработки процессоров с четырехуровневым кэшем.

Архитектуры и принципы работы кэша

На сегодняшний день известны два основных типа организации кэш-памяти, которые берут свое начало от первых теоретических разработок в области кибернетики – принстонская и гарвардская архитектуры. Принстонская архитектура подразумевает единое пространство памяти для хранения данных и команд, а гарвардская – раздельное. Большинство процессоров персональных компьютеров линейки x86 использует раздельный тип кэш-памяти. Кроме того, в современных процессорах появился также третий тип кэш-памяти – так называемый буфер ассоциативной трансляции, предназначенный для ускорения преобразования адресов виртуальной памяти операционной системы в адреса физической памяти.

Упрощенно схему взаимодействия кэш-памяти и процессора можно описать следующим образом. Сначала происходит проверка наличия нужной процессору информации в самом быстром - кэше первого уровня, затем - в кэше второго уровня, и.т.д. Если же нужной информации в каком-либо уровне кэша не оказалось, то говорят об ошибке, или промахе кэша. Если информации в кэше нет вообще, то процессору приходится брать ее из ОЗУ или даже из внешней памяти (с жесткого диска).

Порядок поиска процессором информации в памяти:

Именно таким образом Процессор осуществляет поиск инфоромации

Для управления работой кэш-памяти и ее взаимодействия с вычислительными блоками процессора, а также ОЗУ существует специальный контроллер.

Схема организации взаимодействия ядра процессора, кэша и ОЗУ:

Кэш-контроллер является ключевым элементом связи процессора, ОЗУ и Кэш-памяти

Следует отметить, что кэширование данных – это сложный процесс, в ходе которого используется множество технологий и математических алгоритмов. Среди базовых понятий, применяющихся при кэшировании, можно выделить методы записи кэша и архитектуру ассоциативности кэш-памяти.

Методы записи кэша

Существует два основных метода записи информации в кэш-память:

  1. Метод write-back (обратная запись) – запись данных производится сначала в кэш, а затем, при наступлении определенных условий, и в ОЗУ.
  2. Метод write-through (сквозная запись) – запись данных производится одновременно в ОЗУ и в кэш.

Архитектура ассоциативности кэш-памяти

Архитектура ассоциативности кэша определяет способ, при помощи которого данные из ОЗУ отображаются в кэше. Существуют следующие основные варианты архитектуры ассоциативности кэширования:

  1. Кэш с прямым отображением – определенный участок кэша отвечает за определенный участок ОЗУ
  2. Полностью ассоциативный кэш – любой участок кэша может ассоциироваться с любым участком ОЗУ
  3. Смешанный кэш (наборно-ассоциативный)

На различных уровнях кэша обычно могут использоваться различные архитектуры ассоциативности кэша. Кэширование с прямым отображением ОЗУ является самым быстрым вариантом кэширования, поэтому эта архитектура обычно используется для кэшей большого объема. В свою очередь, полностью ассоциативный кэш обладает меньшим количеством ошибок кэширования (промахов).

Заключение

В этой статье вы познакомились с понятием кэш-памяти, архитектурой кэш-памяти и методами кэширования, узнали о том, как она влияет на производительность современного компьютера. Наличие кэш-памяти позволяет значительно оптимизировать работу процессора, уменьшить время его простоя, а, следовательно, и увеличить быстродействие всей системы.

Основная память компьютера – это устройство с очень низкой скоростью обмена данных. И если процессору необходимы какие-то данные для работы, то он посылает запрос через шину памяти, и производится поиск этих нужных данных.

Только потом они отправляются непосредственно в процессор. Все это занимает очень много времени по компьютерным меркам. А вот, что если бы данные хранились где-то рядом с процессором?

Как раз кэш-память работает на основе этой идеи. И для того чтобы понять концепцию, для наглядности возьмем пример работы обычной библиотеки.

Назначение кеш памяти

Что же такое кэш-память или кэш (по англ. cache memory, cache):

В широком смысле, подразумевается любая память с быстрым доступом , где хранится часть данных с другого носителя с более медленным доступом;

В узком смысле - это сверхоперативный вид памяти, который используется для повышения скорости доступа микропроцессора к оперативной памяти.

Предположим, что в библиотеке работает один библиотекарь. Если человек приходит и просит первый том Пушкина, то библиотекарь идет к далекой книжной полке, находит книгу и приносит ее посетителю.

Когда этот человек прочитал книгу, то она обратно возвращается на полку. И если уже любой другой человек приходит и просит эту же самую книгу, цикл повторяется снова.

Вот пример того, как библиотека, то есть система работает без кэш-памяти .

Зачем нужна кэш-память?

А теперь представьте, что тот же самый библиотекарь использует ящик стола как кэш-память. Процедура выдачи книги остается той же, когда книгу спрашивают первый раз.

Но, когда книга вернулась, библиотекарь не возвращает ее на полку, а кладет в ящик стола (этакая местная оперативная кэш-память ).

Теперь, когда следующий человек приходит и просит эту книгу, библиотекарю уже нужно просто открыть данный ящик. Аналогичным образом кэш-память хранит элементы данных, к которым часто обращается процессор.

Таким образом, каждый раз, запрашиваются эти данные, и процессор получает их из кэша, минуя долгий путь в основную медленную память.

Хранит ли кэш только часто используемые данные? Как функционирует и работает кэш оперативной памяти ?

Кэш – это такая очень умная часть памяти, которая автоматически осуществляет поиск любых данных, которые могут понадобиться в ближайшем будущем. Опять же, вернемся за примером к нашей библиотеке.

Когда человек просит первый томик Пушкина, то библиотекарь приносит также второй том:-) И когда человек прочитает первую книгу, аероятнее всего, что он может попросить второй томик. А когда он это сделает, ходит далеко не надо... тот уже будет лежать в ящике.

Аналогичным образом, когда кэш-память извлекает запрошенные данные из памяти, она также извлекает данные, которые находятся по адресам, близким к запрошенным.

Эти смежные блоки данных, которые и передаются в кэш, называются кэш-линиями. Подробнее о понятии кэш-памяти можно посмотреть в этом видео:

Уровни кэш памяти

Большинство жестких дисков используют один уровень кэш-памяти . Но кэш имеет два уровня, где уровень L1 меньше и быстрее, а уровень L2, несколько медленнее (но все равно быстрее, чем основная внутренняя память ).

Лучшая бесплатная программа HDDScan для проверки жестких дисков

И снова возвратимся за примером к нашей библиотеке, на примере ее работы становится понятна как работает внешняя память компьютера .

Рассмотрим ящик библиотекаря в качестве кэша L1. Когда спрос на книги высок, и в ящике уже довольно много книг (нет места складывать) и вероятность того, что там найдется нужная, снижается.

Память L2 кэш

Здесь и появляется неодходимость L2. Представим L2 как книжный шкаф возле стола библиотекаря. Когда маленький ящик стола заполнен, библиотекарь начинает ставить книги в этот шкаф. И теперь, если книга не найдена в ящике сразу, надо взять ее из шкафа, не отходя далеко.

Аналогичным образом, когда кэш L1 заполнен, данные сохраняются в L2. Процессор в первую очередь ищет данные в L1, если они не будут найдены, то он обратится уже к L2. Если там тоже данные не найдены в L2, то идет обращение к основной памяти.

Двухуровневый кэш процессора

Кэш двух уровней у процессора – хорошая идея? Безусловно, да.

Возвращаясь к нашей упомянутой библиотеке. Если человек просит дать ему книгу, которая не хранится ни в ящике, ни в книжном шкафу, то библиотекарь тратит много времени впустую, осуществляя поиск сначала в ящике, потом в шкафу и только потом получает книгу с полки.

Когда же данные не найдены ни в первом, ни во втором уровне кэша, только тогда посылается запрос в основную память. На это тратится много процессорного времени.

Но если кэш-память работает так быстро, почему бы не выполнять его достаточно большой, чтобы хранить все данные оперативной памяти в нем?

Причина в том, что высокая скорость обходится очень дорого. Поэтому необходимо рациональное использование ресурсов кэш-памяти.

Хотя в последнее время, размеры кэш-памяти все увеличиваются, а цены растут не сильно, поэтому компьютеры работают все быстрее и быстрее.

То есть, наш библиотекарь обзаводится ящиком стола все большего размера, а шкафчик, стоящий рядом становится более вместительным! Еще в тему - двухядерные процессоры - правильно конфигурируем Windows.

Кэширование жесткого диска

Дисковая кэш-память (disk cache ), или кэш-память жестского диска - принцип построения кэш-памяти на основе динамического оперативного запоминающего устройства (типа DRAM), которое хранит наиболее часто используемые данные и команды, доступ к которым производится из внешней памяти.

Поэтому принцип кэширования жесткого диска во многом схож на принцип кэширования, используемый для оперативной динамической памяти, хоть способы доступа к диску и памяти значительно разнятся.

Так, время доступа к любой из ячеек оперативной памяти имеет примерно одинаковое для данного компьютера значение, а вот время доступа к различным блокам информации на жестком диске в общем случае будет различным.

1. Нужно затратить определенное время, чтобы магнитная головка записи-чтения подошла к искомой дорожке.

2. Поскольку при движении головка вибрирует, то необходимо немного времени, чтобы она успокоилась.

3. Наконец, требуется время, чтобы головка нашла искомый сектор.

Методы кэширования, используемые для оперативной памяти, применяются и для кэширования информации, хранимой на жестких дисках.

Кэш-память диска заполняется не только требуемым сектором, но и секторами, непосредственно следующими за ним, так как известно, что в большинстве случаев взаимосвязанные данные хранятся в соседних секторах.

Этот метод известен также как метод опережающего чтения (Read Ahead). При работе с многозадачными системами желательно иметь жесткий дик (винчестер) с мультисегментной кэш-памятью, которая для каждой из задач отводит свою часть кэша.

Кстати, если у вас недостаточно знаний о том, как лучше просканировать и протестировать жесткий диск , то обязательно посмотрите
подробный и бесплатный виде-оурок на эту тему:
как проверить винчестер на работоспособность

Кэш-память процессора

Кэш-памятью сейсас комплектуется большинство современных центральных процессоров. А первоначально кэш-память располагалась не на самом процессоре, а на материнской плате.

Кэш-память процессора на компьютере выполняет функции буфера между процессором и оперативной памятью.

Если кэш-память располагается между самим процессором и оперативной памятью, то при непосредственном обращении процессора к памяти сначала производится поиск необходимых данных в кэш-памяти .

Кэш-памяти процессора делятся на несколько видов:

Cache L1 - это «кэш-память первого уровня». Является промежуточной сверхоперативной памятью, находится на самом кристалле процессора, в ней размещаются наиболее часто используемые данные.

Работает эта память на частоте процессора. Время доступа к ней существенно меньше, чем к данным в основной оперативной памяти. Этим достигается ускорение работы процессора.

Cache L2 - «кэш-память второго уровня». Это промежуточная сверхоперативная память, которая имеет быстродействие ниже памяти первого уровня, но выше основной оперативной памяти. Ее размер обычно составляет от нескольких сотен килобайт до нескольких мегабайт.

Cache L3 - «кэш-память третьего уровня». Тоже промежуточная сверхоперативная память, имеющая быстродействие ниже памяти второго уровня, но выше основной оперативной памяти. Ее размер обычно составляет от одного до нескольких мегабайт.


Секреты и тонкости работы на компьютере

Диаграмма кэша памяти ЦПУ

Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»). Кэширование применяется ЦПУ , жёсткими дисками , браузерами и веб-серверами .

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор , определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всего исследуется кэш. Если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай называется попаданием кэша . Если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай называется промахом кэша . Процент обращений к кэшу, когда в нём найден результат, называется уровнем попаданий или коэффициентом попаданий в кэш.

Например, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

Если кэш ограничен в объёме, то при промахе может быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения .

При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи .

В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

В кэше с отложенной записью (или обратной записью ) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или «грязный» ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения необходимого элемента данных.

В случае, если данные в основной памяти могут быть изменены независимо от кэша, то запись кэша может стать неактуальной . Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша .

Кэш центрального процессора

Ряд моделей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры . Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня - L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт (зачастую является возможным выполнять даже несколько чтений/записей одновременно). Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик - не более 128 Кбайт.

Вторым по быстродействию является L2-cache - кэш второго уровня. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже (только в слотовых процессорах). В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. Однако, в задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД , производительность может упасть в десятки раз.

Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но он может быть очень внушительного размера - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании.

Отключение кэша второго и третьего уровней обычно используется в математических задачах, например, при обсчёте полигонов, когда объём данных меньше размера кэша. В этом случае, можно сразу записать все данные в кэш, а затем производить их обработку.

Ассоциативность кэша

Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает её логическую сегментацию. Дело в том, что последовательный перебор всех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свёл бы на нет весь выигрыш от использования встроенной в ЦП памяти. Поэтому ячейки ОЗУ жёстко привязываются к строкам кэш-памяти (в каждой строке могут быть данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ может быть связано более одной строки кэш-памяти: например, n -канальная ассоциативность (англ. n -way set associative ) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n местах кэш-памяти.

При одинаковом объеме кэша схема с большей ассоциативностью будет наименее быстрой, но наиболее эффективной.

Кэширование внешних накопителей

Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 32 Мбайт (модели с поддержкой одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всех процессов;

  • доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, поэтому использование кэширования для таких блоков в целом увеличивает производительность системы;
  • для некоторых блоков памяти внешних накопителей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.
  • Кэширование, выполняемое операционной системой

    Кэш оперативной памяти состоит из следующих элементов:

    1. набор страниц оперативной памяти, разделённых на буферы, равные по длине блоку данных соответствующего устройства внешней памяти;
    2. набор заголовков буферов, описывающих состояние соответствующего буфера;
    3. хеш-таблицы , содержащей соответствие номера блока заголовку;
    4. списки свободных буферов.

    Алгоритм работы кэша с отложенной записью

    Изначально все заголовки буферов помещаются в список свободных буферов. Если процесс намеревается прочитать или модифицировать блок, то он выполняет следующий алгоритм:

    1. пытается найти в хеш-таблице заголовок буфера с заданным номером;
    2. в случае, если полученный буфер занят, ждёт его освобождения;
    3. в случае, если буфер не найден в хеш-таблице, берёт первый буфер из хвоста списка свободных;
    4. в случае, если список свободных буферов пуст, то выполняется алгоритм вытеснения (см. ниже);
    5. в случае, если полученный буфер помечен как «грязный», выполняет асинхронную запись содержимого буфера во внешнюю память.
    6. удаляет буфер из хеш-таблицы, если он был помещён в неё;
    7. помещает буфер в хеш-таблицу с новым номером.

    Процесс читает данные в полученный буфер и освобождает его. В случае модификации процесс перед освобождением помечает буфер как «грязный». При освобождении буфер помещается в голову списка свободных буферов.

    Таким образом:

    1. если процесс прочитал некоторый блок в буфер, то велика вероятность, что другой процесс при чтении этого блока найдёт буфер в оперативной памяти;
    2. запись данных во внешнюю память выполняется только тогда, когда не хватает «чистых» буферов, либо по запросу.

    Алгоритм вытеснения

    Если список свободных буферов пуст, то выполняется алгоритм вытеснения буфера. Алгоритм вытеснения существенно влияет на производительность кэша. Существуют следующие алгоритмы:

    1. LRU (Least Recently Used) - вытесняется буфер, неиспользованный дольше всех;
    2. MRU (Most Recently Used) - вытесняется последний использованный буфер;
    3. LFU (Least Frequently Used) - вытесняется буфер, использованный реже всех;
    4. ARC (англ.) (Adaptive Replacement Cache) - алгоритм вытеснения, комбинирующий LRU и LFU, запатентованный

      Программное кэширование

      Политика записи при кэшировании

      При чтении данных кэш-память даёт однозначный выигрыш в производительности. При записи данных выигрыш можно получить только ценой снижения надёжности. Поэтому в различных приложениях может быть выбрана та или иная политика записи кэш-памяти..

      Существуют две основные политики записи кэш-памяти - сквозная запись (write-through) и отложенная запись (write-back).

      • сквозная запись подразумевает, что при изменении содержимого ячейки памяти, запись происходит синхронно и в кэш и в основную память.
      • отложенная запись подразумевает, что можно отложить момент записи данных в основную память, а записать их только в кэш. При этом данные будут выгружены в оперативную память только в случае обращения к ним какого либо другого устройства (другой ЦП, контроллер DMA) либо нехватки места в кэше для размещения других данных. Производительность, по сравнению со сквозной записью, повышается, но это может поставить под угрозу целостность данных в основной памяти, поскольку программный или аппаратный сбой может привести к тому, что данные так и не будут переписаны из кэша в основную память. Кроме того, в случае кэширования оперативной памяти, когда используются два и более процессоров, нужно обеспечивать согласованность данных в разных кэшах.

      Кэширование интернет-страниц

      В процессе передачи информации по сети может использоваться кэширование интернет-страниц - процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машине пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика . Таким образом, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи CMS конкретного сайта для снижения нагрузки на сервер при большой посещаемости. Кэширование может производится как в память, так и в файловый кэш (

    Кэш-память процессора позволяет получать данные с очень высокой скоростью, значительно ускоряя вычисления. В кэш – память помещаются данные, которые часто требуются процессору. Это позволяет не затрачивать лишнее время на считывание данных из оперативной памяти. Если процессор запрашивает данные, которые отсутствуют в кэш-памяти, то запрос передается через шину памяти в оперативную память, а затем найденные данные отправляются в процессор. Не трудно догадаться, что на такой запрос уходит довольно много времени. Чтобы рассказать вам, как устроена кэш-память, мы будем использовать аналогию с обычной библиотекой.

    Предположим, что у нас есть библиотека с одним библиотекарем. В библиотеку приходит посетитель и просит достать ему первую часть Гарри Поттера. Библиотекарь идет к книжным полкам, находит книгу и приносит ее посетителю. Он, пролистав, отдает ее обратно библиотекарю, который относит и ставит книгу обратно на полку. Допустим, следом приходит еще один посетитель и просит то же самое. Цикл повторяется снова. Вот так же работает и система, у которой нет кэш-памяти.

    Для чего процессору нужна кэш-память?

    Теперь, давайте посмотрим, что произойдет, если у нас есть в наличие кэш-память. Представим, что наш библиотекарь сидит за столом, в котором есть ящик, который будет служить ему в качестве кэш – памяти. Процедура та же - первый посетитель дает заявку на книгу, но когда она возвращается библиотекарю, то он не относит ее на полку, а помещает в ящик, находящийся в столе. Когда придет другой посетитель и тоже закажет ту же самую книгу, то библиотекарю не надо будет за ней никуда идти, он просто возьмет ее из ящика. Аналогичным образом работает и кэш – память процессора. Каждый раз, когда запрашиваются новые данные, процессор ищет их сначала в кэш-памяти. Подобная мера позволяет многократно увеличить скорость работы процессора.

    Кэш-память хранит только наиболее часто используемые элементы данных?

    Нет, кэш-память является довольно интеллектуально продвинутой памятью, в которую помещаются также и те данные, которые, вероятно, будут востребованы в ближайшее время. Продолжая нашу аналогию с библиотекарем, это можно объяснить следующим образом. Когда посетитель просит библиотекаря достать ему первую часть Гарри Поттера, то наш догадливый библиотекарь также берет с полки и вторую часть Гарри Поттера, резонно полагая, что посетитель, прочитав первую часть, в скором времени попросит и вторую. И когда тот ее просит, то она тут же достается из того же ящика стола. Аналогичным образом, когда кэш-память извлекает элементы данных из основной памяти, она также выбирает данные, которые находятся по адресам, рядом с затребованными данными. Эти рядом расположенные блоки данных, которые передаются в кэш, называется строки кэша.

    Два уровня кэш-памяти процессора

    Большинство жестких дисков и некоторых других компонентов компьютера используют всего один уровень кэш – памяти. В отличие от них, кэш – память процессора является двухуровневой, в которой кэш 1-го уровня (L1) меньше и быстрее, а кэш 2-го уровня немного медленнее первого, но при этом намного быстрее, чем оперативная память. Кэш L1 разделен на две части, а именно, на кэш команд и на кэш данных. В кэше команд хранится набор инструкций, которые необходимы процессору для вычислений, в то время как кэш данных хранит значения, которые необходимы для текущего исполнения. Кэш L2 отвечает за загрузку данных из основной памяти. Опять же, возвращаясь к нашей библиотеке.

    Рассмотрим, например, ящик библиотекаря как кэш L1. В один из сильно загруженных работой дней, когда посетителей много, спрос на книги велик, а ящик в столе заполнен, возникает риск его переполнения. В этом случае на помощь библиотекарю приходит рядом стоящий книжный шкаф (L2). В него библиотекарь будет складывать книги, когда не останется места в ящике стола. Теперь, когда у него спросят некоторые популярные книги, то он сначала посмотрит в ящик стола и если не найдет там запрашиваемой книги, то пойдет к книжному шкафу. Который, как вы, наверное, догадались, в нашей аналогии играет роль кэш-памяти второго уровня.

    Аналогичным образом, в процессоре, когда кэш L1заполнен, данные сохраняются в кэш-память L2. Процессор в первую очередь ищет данные в первом кэше L1, и если они не будут найдены, то далее разыскиваются в L2. Если данные не будут найдены в L2, то следует запрос в оперативную память, и в последнюю очередь запрос делается к жесткому диску.

    Чем больше кэш, тем лучше?

    На этот вопрос можно ответить одновременно и, да и нет. Больший объем кэша позволяет быстро получать данные в случае, если они доступны в любом из уровней L1 и L2. Вернемся к нашему примеру с библиотекой. Если посетитель попросит какую – либо популярную книгу, которая не хранится библиотекарем в ящике стола или в книжном шкафу, то он сначала поищет ее в ящике, а затем перейдет к книжному шкафу. То есть некоторое количество времени будет тратиться впустую, прежде чем книга, наконец, будет извлечена с книжной полки библиотеки. Так же и процессор сначала проверяет кэш первого уровня (L1), затем второго (L2) и только после этого, отправляет запрос в оперативную память. Когда данные обнаруживаются в кэше, то это называется «попаданием», в противоположном случае – «промахом»


    Таким образом, в процессе поиска данных в двух уровнях кэша, многопроцессорного времени фактически тратится зря. Элементы данных периодически обновляются и заменяются с использованием различных алгоритмов, чтобы максимизировать случаи попадания в кэш.


    Многие сейчас, вероятно, сделали однозначный вывод, если кэш-память работает столь быстро, то почему бы не реализовать ее достаточно большой, с тем, чтобы все данные, с которыми работает оперативная память, хранить в кэше. Однако не все так просто, кэш память обеспечивает быстрый доступ к найденным, но при этом сам иерархический поиск данных влечет за собой большие ресурсные расходы. Поэтому наиболее предпочтительным вариантом является оптимальный баланс между скоростью поиска данных и размером кэш-памяти.



    Рекомендуем почитать

    Наверх