Отличие силового трансформатора от автотрансформатора. Автотрансформаторы - устройство, приницип действия, достоинства и недостатки. Список использованных источников

На iOS - iPhone, iPod touch 28.02.2019
На iOS - iPhone, iPod touch

Принцип работы трансформатора основан на законе электромагнитной индукции. В первичной обмотке под действием напряжения в сердечнике наводится магнитный поток, пропорциональный этому напряжению, который, в свою очередь, наводит ЭДС самоиндукции во вторичных обмотках. ЭДС, наводимая во вторичных обмотках, прямо пропорциональна количеству витков этих обмоток. Силовой трансформатор служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения с преобразованием мощности и при неизменной частоте.

Изобретателем трансформатора был русский ученый П. Н. Яблочков. В 1876 г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания электрических свечей (ламп накаливания). Трансформатор Яблочкова имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником (применяемые в настоящее время) появились примерно в 1884 г. С изобретением трансформатора возник технический интерес к переменному току, который до этого широко не применялся. Русский электротехник М. О. Доливо-Добровольский (1862—1919 г.) в 1889 г. предложил трехфазную систему переменного тока, построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трехфазного тока протяженностью 175 км; трехфазный генератор имел мощность 230 кВт при напряжении 95 В. В дальнейшем, в качестве силовых, начали применять масляные трансформаторы, т. к. было установлено, что масло является не только хорошей изоляцией, но и хорошей охлаждающей средой.

Трансформаторы применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками энергии, а также в выпрямительных, усилительных и других устройствах, где требуется развязка электрических цепей.

"Золотой век" намоточных трансформаторов, применяемых в радиолюбительских конструкциях, да и в промышленной аппаратуре, кажется, уже прошел. Сегодня наиболее популярны понижающие двух- и многообмоточные трансформаторы, применяемые в источниках питания, и импульсные трансформаторы (для импульсных источников питания). Для преобразования, передачи электрической энергии в низковольтных устройствах популярны оптоэлектронные трансформаторы на основе оптопар. Они обеспечивают гальваническую развязку электрических цепей и значительно эффективнее намоточных трансформаторов с магнитной индукцией. Тем не менее некоторые области применения трансформаторов в классическом виде остаются. Это область мощных трансформаторов для силовых цепей. Намоточные трансформаторы в широком ассортименте продаются в магазинах, выпускаются промышленностью, а это значит, что разбираться в их особенностях необходимо и сегодня. Этому посвящен настоящий раздел, в котором читатель узнает как общие сведения о трансформаторах, так и том, как правильно классифицировать и читать их обозначения (принимать решения о применении того или иного прибора в конкретном устройстве или заменять его наиболее подходящим по электрическим характеристикам).

Индукционные трансформаторы

Индукционный трансформатор (далее трансформатор) — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Силовые трансформаторы

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии. К силовым трансформаторам относятся трансформаторы трехфазные и многофазные мощностью до 6,3 кВт и более, однофазные мощностью 5 кВт и более. Силовые трансформаторы можно увидеть невооруженным глазом недалеко от вашего дома в ближайшей "трансформаторной" будке или электрической подстанции. Также силовые трансформаторы установлены вдоль железнодорожного полотна, по которому курсируют поезда на электротяге.

Повышающий трансформатор

Повышающий трансформатор — трансформатор, у которого первичной обмоткой является обмотка, имеющая более низкое напряжение.

Понижающий трансформатор

Понижающий трансформатор — трансформатор, у которого первичной обмоткой является обмотка с более высоким напряжением.

Сигнальный (согласующий) трансформатор

Сигнальный трансформатор (согласующий) — трансформатор малой мощности, предназначенный для передачи и преобразования электрических сигналов.

Автотрансформатор— трансформатор, две или более обмотки которого гальванически связаны так, что имеют общую точку.

Импульсный сигнальный трансформатор

Импульсный сигнальный трансформатор — это сигнальный трансформатор, предназначенный для передачи, формирования, преобразования и запоминания импульсных сигналов.

Коэффициент трансформации трансформатора малой мощности — отношение числа витков вторичной обмотки к числу витков первичной обмотки.

Магнитная индукция — это векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля.

Индуктивная связ ь— связь электрических цепей посредством магнитного поля.

Трансформаторы классифицируют по признаку функционального назначения:

  • трансформаторы питания;
  • трансформаторы согласования.

Трансформаторы питания в свою очередь классифицируют:

по напряжению:

  • низковольтные;
  • высоковольтные;
  • высокопотенциальные;

в зависимости от числа фаз преобразуемого напряжения:

  • однофазные;
  • трехфазные;

в зависимости от числа обмоток:

  • двухобмоточные;
  • многообмоточные;

в зависимости от конфигурации магнитопровода:

  • стержневые;
  • броневые;
  • тороидальные;

в зависимости от мощности трансформатора:

  • малой мощности;
  • средней мощности;
  • большой мощности;

в зависимости от способа изготовления магнитопровода:

  • пластинчатые;
  • ленточные;

зависимости от коэффициента трансформации:

  • повышающие;
  • понижающие;

в зависимости от вида связи между обмотками:

  • с электромагнитной связью (с изолированными обмотками);
  • с электромагнитной и электрической связью (со связанными обмотками);

в зависимости от конструкции обмотки:

  • катушечные;
  • галетные;
  • тороидальные;

в зависимости от конструкции всего трансформатора:

  • открытые;
  • капсулированные;
  • закрытые;

в зависимости от назначения:

  • выпрямительные;
  • накальные;
  • анодно-накальные;

в зависимости от рабочей частоты:

  • пониженной частоты (менее 50 Гц);
  • промышленной частоты (50 Гц);
  • повышенной промышленной частоты (400, 1000, 2000 Гц). Об этом подробнее в главе 5;
  • повышенной частоты (до 10 000 Гц);
  • высокой частоты.

Конструктивные особенности трансформаторов

Основными частями трансформатора являются магнитопровод и катушка с обмотками.

Материалом для магнитопровода трансформаторов служит листовая электротехническая сталь различных марок и толщины, горячей прокатки и холоднокатаная. От содержания кремния, количество которого отражено в марке стали, а также от толщины листа зависят потери мощности в магнитопроводе от вихревых токов. Толщину листа применяемой стали выбирают в зависимости от частоты сети, питающей трансформатор: с увеличением частоты толщину листа надо уменьшать. Ленточные (витые) магнитопроводы изготавливают из лент рулонной стали; предварительно лента покрывается изолирующим и склеивающим составом.

Литература: Андрей Кашкаров - Электронные самоделки

Трансформатор являет собой электрическое устройство, которое передает электрическую энергию между двумя или более цепями посредством электромагнитной индукции. Его принцип действия заключается в том, что переменный ток в одной катушке трансформатора создает переменное магнитное поле, которое, в свою очередь, индуцирует переменную электродвижущую силу (ЭДС) или «напряжение» во второй катушке.



На сегодняшний день существует немало различных типов трансформаторов. Наиболее часто встречающимися типами в промышленности являются силовые трансформаторы и распределительные трансформаторы. Иногда их путают, поэтому в данном материале постараемся ответить на вопрос, чем силовые трансформаторы отличаются от распределительных.


Если говорить коротко, то те трансформаторы, которые установлены в конечной или принимающей точке длинной высоковольтной линий электропередач, являются силовыми трансформаторами. А распределительные трансформаторы – это те устройства, которые установлены рядом с терминалами нагрузки (например, город или село), чтобы обеспечить использование напряжения на потребительских терминалах. Ниже приведены некоторые дополнительные различия между силовыми и распределительными трансформаторами.

  • Силовые трансформаторы используются в сети передачи с более высоким напряжением для повышения и понижения напряжения (400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ) и, как правило, имеют номинальное значение свыше 200 МВА (мега вольт ампер)
  • Распределительные трансформаторы используются для распределительных сетей с низким напряжением в качестве средства для подключения конечных пользователей. (11 кВ, 6,6 кВ, 3,3 кВ, 440 В, 230 В) и обычно имеют номинальное значение менее 200 МВА
  • Силовой трансформатор обычно имеет одну первичную обмотку и одну вторичную обмотку, а также один вход и выход. Распределительный трансформатор может иметь одну первичную обмотку и одну разделенную вторичную обмотку или две или более вторичных обмоток.
  • Силовые трансформаторы, как правило, работают при почти полной нагрузке. Однако распределительный трансформатор работает при легких нагрузках в течение большей части дня.
  • Производительность силовых трансформаторов обычно анализируется коммерческой или максимальной эффективностью, поскольку они рассчитаны на максимальный КПД при полной нагрузке. Принимая во внимание, что производительность распределительного трансформатора оценивается по эффективности суточного времени работы трансформатора, поскольку они рассчитаны на максимальный КПД при нагрузке 60-70%, поскольку они обычно не работают при полной нагрузке в течение всего дня.
  • В силовых трансформаторах плотность потока выше, чем в распределительных трансформаторах.
  • В силовых трансформаторах первичная обмотка всегда подключена в звезду и вторичная обмотка имеет соединение в виде треугольника, в то время как в распределительных трансформаторах, первичная обмотка соединена в треугольник, а вторичная в звезду.
  • В подстанции на конце линии передачи подключение силового трансформатора представлено в виде «звезда-треугольник» (чтобы понизить уровень напряжения).
  • В начале линии передачи подключение силового трансформатора принимает вид «треугольник-звезда» (для повышения напряжения).

Электрические потребители нуждаются в трансформации тока до требуемого значения напряжения. Если подобные изменения не определяются в небольшом пределе, можно применять специальный агрегат. Обычный трансформатор имеет в своем составе две катушки. Специальный прибор может иметь всего одну совмещенную обмотку. Это и есть автотрансформатор. Его применяют в том случае, если показатель преобразования не составляет более 1.

В этом случае разница между уровнем тока в первичной и вторичной обмотке будет небольшой. Что такое автотрансформатор, а также основные принципы его работы будет рассмотрено далее.

Принцип устройства

Автотрансформаторы характеризуются определенным устройством и принципом действия. Их первая обмотка является частью второго контура или наоборот. Такие цепи характеризуются электромагнитной и гальванической связью. Повышающий и понижающий агрегат применяются во многих сферах деятельности человека. Причем его характеристики определяются особенностями включения обмоток.

При подключении к катушке переменного тока в сердечнике определяется магнитный поток. В каждом из существующих витков в этот момент будет индуктироваться электродвижущая сила. Причем ее величина будет идентична.

Схема автотрансформатора объясняет принцип работы агрегата. При подсоединении нагрузки вторичный электрический поток будет перемещаться по обмотке. По этому же проводнику в этот момент движется и первичный ток. Оба потока геометрически складываются. Поэтому на обмотку станет подаваться совсем незначительный электрический ток.

Особенности

Схема замещения автотрансформатора позволяет сэкономить на количестве медного проводника. Для такого оборудования необходима проволока меньшего сечения. Это обеспечивает значительную экономию материалов и относительно невысокую стоимость аппарата. Сократить расходы на изготовление представленного оборудования удается благодаря снижению количества стали для изготовления магнитопривода. Силовые трансформаторы и автотрансформаторы значительно отличаются размером сечения сердечника.

Устройство современного автотрансформатора делает оборудование востребованным, если показатель трансформации приближается к 1 или находится в пределах от 1,5 до 2. Если же коэффициент будет больше 3, применение подобного прибора становится неоправданным.

По многим параметрам принцип работы автотрансформатора, его конструкция и детали мало отличаются от обычных двухобмоточных трансформаторов.

Различные режимы работы автотрансформаторов позволяют устранить недостатки бытовой электросети. Это необходимо, например, когда напряжение не дотягивает или, наоборот, немного превышает стандартную норму 220 В. Особенности конструкции автотрансформатора позволяют выполнять настройку с определенным шагом. Электронный автотрансформатор, имеющий в своем составе коммутационную и регулирующую систему выполняет этот процесс автоматически.

Разновидности

На выбор разновидности автотрансформатора влияет его назначение и условия эксплуатации. Чаще всего применяется восемь типов представленных агрегатов:

  1. ВУ-25-Б. Создан для уравнивания токов вторичной обмотки при использовании схемы дифференциальной защиты силовых трансформаторов.
  2. АТД. Мощность находится на уровне 25Вт. Имеет устаревший тип конструкции. Он долго насыщается и применяется достаточно редко.
  3. ЛАТР-1. Принцип действия этого автотрансформатора позволяет применять его при нагрузке 127В.
  4. ЛАТР-2. Изготавливается для бытовой сети (220В). В ЛАТРе позволяется регулировать напряжение при помощи скользящего по виткам катушки контакта.
  5. ДАТР-1. Применяется при незначительной нагрузке в специальном оборудовании.
  6. РНО. Используется в условиях повышенной нагрузки.
  7. РНТ. Эксплуатируется при наиболее сильных нагрузках в сетях специального назначения.
  8. АТНЦ. Применяется для телеизмерительных приборов.

Также существует разделение на агрегаты малой мощности (до 1 кВ), средней мощности (больше 1 кВ) и силовые типы.

Однофазные разновидности

Сегодня применяются однофазный и трехфазный автотрансформатор. В первом случае оборудование представлено такой разновидностью, как ЛАТР. Его применяют для низковольтных сетей. При повышенном напряжении требуется понижающая конструкция, например, автотрансформатор типа 220/110 или 220/100. В этом случае вторичная обмотка входит в состав первичного контура. Повышающий тип автотрансформаторов, наоборот, включает первичную обмотку в состав вторичного контура.

В обеих разновидностях устройств регулирование производится посредством скольжения подвижного контакта по обмоточным виткам. ЛАТРы состоят из магнитопривода кольцеобразной формы. Его обмотка включает в себя один слой. Она состоит из изолированного провода из меди.

Однофазные автотрансформаторы имеют несколько ответвлений, которые отходят от обмотки. Именно эти элементы конструкции определяют, будет ли агрегат работать на повышение или понижение напряжения сети. Чтобы получить плавность настройки вторичного напряжения создается небольшая дорожка на поверхности обмотки. Она очищена от слоя изоляции. По этой дорожке перемещается роликовый или щеточный контакт. Регулировка осуществляется в пределах от 0 до 250 В.

Трехфазные разновидности

Наряду с однофазными применяются и трехфазные аппараты. Они отличаются типом обмотки. Существует автотрансформатор трехфазного типа с двумя и тремя контурами.

Чаще всего обмотки в подобных устройствах соединяются в виде звезды. Они имеют выведенную отдельно точку нейтрали. При помощи направления подведения напряжения выполняется понижение или повышение. Этот принцип положен в основу старта работы мощного двигателя, регулирования электрического тока по ступенчатой системе. Трехфазный тип автотрансформаторов применяется для нагревательных элементов печей.

Приборы с тремя обмотками используются в сетях высоковольтного типа. При этом со стороны высшего напряжения агрегат соединяется с нулевым проводом в звезду. Этот тип контакта способен снизить напряжение с учетом особенностей изоляции аппаратуры. Применение подобных приборов способно повысить уровень КПД системы, а также сэкономить затраты на совершение передачи электроэнергии. Однако в этом случае повышается количество токов короткого замыкания.

Наличие гальванической связи между совмещенными контурами не позволяют использовать представленное оборудование в силовых сетях (6-10 кВ), если напряжение понижается до 0,38 кВ. В этом случае трехфазное напряжение 380В подается непосредственно к электрическим потребителям. На таком оборудовании могут работать люди. Во избежание несчастных случаев применяются в подобных условиях другие разновидности агрегатов.

Недостатки

Перед тем, как вводить в эксплуатацию представленное оборудование, необходимо изучить его основные недостатки:

  • Схема низковольтного типа будет значительно зависеть от высокого уровня напряжения. Чтобы избежать возникновения сетевого сбоя, потребуется создать продуманную систему подачи низкого напряжения. Только в таком случае прибор сможет перенести повышенные нагрузки.
  • Поток, рассеивающийся между обмотками, незначителен. При возникновении определенных неисправностей может возникнуть короткое замыкание. Его вероятность в этом случае значительно увеличивается.
  • Соединения, которые создаются между вторичными и первичными обмотками, должны быть идентичными. В противном случае могут возникнуть некоторые проблемы при работе агрегата.
  • Невозможно создать систему с заземлением с одной стороны. Нейтралью должны обладать оба блока.
  • Представленная система делает трудной задачей сохранение электромагнитного баланса. Для улучшения этого показателя потребуется увеличить корпус прибора. Если диапазон трансформации будет значительным, экономия ресурсов будет незначительной.

Также следует отметить, что выполняя ремонт автотрансформатора, устраняя возникшие неполадки и аварийные ситуации, может снизиться безопасность работы обслуживающего персонала. Высшее напряжение может наблюдаться и на низшей обмотке. В этом случае все элементы системы окажутся подведены к высоковольтной части. По правилам безопасности такое положение вещей недопустимо. В этом случае возникает вероятность пробоя изоляции проводников, которые присоединены к электрооборудованию.

Рассмотрев основные особенности работы и устройства автотрансформаторов, можно сделать выводы о целесообразности их применения в своих целях.

Трансформаторы тока

Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы - в первую очередь - как измерительные или же защитные приборы.

  • Защитные трансформаторы

Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование. В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы. Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.

  • Измерительные трансформаторы

Измерительные трансформаторы представляют собой особые приборы. Основная их задача - преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи вольтметр, амперметр или любой другой измерительный прибор.

Также имеется дополнительная функция - возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).

Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.

Трансформаторы напряжения

Трансформаторы тока и напряжения имеют разное предназначение.

Вторые созданы для изменения напряжения с высокого на низкое и наоборот. Это отличный способ «подогнать» определенную электрическую сеть под нужный стандарт.

Подобные трансформаторы позволяют достичь необходимого уровня безопасности, предотвратить огромное количество чрезвычайных происшествий, спасти жизни и здоровье людей, а также оставить огромное количество приборов исправными.

Мало кто знает, что трансформаторы напряжения присутствуют практически в каждом приборе для того, чтобы защитить его от внезапного повышения напряжения, например, при ударе молнии или же в случае нарушения правил эксплуатации.

Основное отличие

Основное отличие этих двух трансформаторов (напряжения и тока) заключается именно в их предназначении и функциях, которые они надежно выполняют.

Основная задача устройства для тока состоит в защите или в обеспечении точности, которая просто необходима для различных измерений или же любого обслуживания электрических сетей как в конкретном месте, так и в комплексе.

Назначение же трансформатора напряжения связано не с проверками и измерениями и даже не с ремонтом и профилактикой, а непосредственно с эксплуатацией. Невозможно запустить сеть без данного аппарата. Обязательно нужно преобразовывать напряжение с пониженного на повышенное. Именно с помощью подобных трансформаторов можно использовать везде универсальную электрическую сеть, ток в которой изменяется данным аппаратом и подходит под любую технику, будь то бытовые приборы или же устройства промышленного назначения.

Также стоит отдельно отметить опасность каждого трансформатора. Угрожает безопасности отсутствие или неработоспособность устройства, регулирующего напряжение: если неожиданно единица измерения повысится в большую сторону, то могут быть очень серьезные последствия, которые чреваты разнообразными трагедиями - от пожаров до других бедствий. Также отсутствие изоляции угрожает ремонтникам, а отсутствие точных измерений может нарушить работу; но слишком серьезных последствий практически невозможно добиться.

Предназначение в электрической сети

Присутствие и одного, и другого трансформатора в электрической сети незаменимо. Трансформатор напряжения встречается практически везде. Он может быть встроен в каждый бытовой прибор. Обязательно находится в общедомовой сети, не говоря уже о более серьезных промышленных объектах. Отличительной особенностью работы трансформатора тока является то, что он не нужен на каждом мелком объекте, он подходит для достаточно крупных предприятий, куда подводится сеть очень большой мощности. Настолько большой, что необходима дополнительная изоляция даже для того, чтобы просто измерить все величины.

Не стоит путать эти трансформаторы, это может иметь очень печальные последствия. Нужно грамотно разбираться в данной технике для того, чтобы устанавливать и ремонтировать ее, правильно пользоваться и знать все опасности.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.

Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.

Основное определение

Чтобы понимать, «чем принципиально отличаются трансформатор и автотрансформатор», нужно рассмотреть их определение.

Трансформатор – электромагнитный прибор статического типа, преобразующий электрический ток переменного значения с определенным показателем напряжения в электроэнергию другого уровня. Прибор способен повышать или понижать этот показатель. Система способна преобразовывать частоту и количество фаз электрического тока. Также рекомендуем ознакомиться с конструкцией и принципами работы .

Оборудование включает несколько обмоток. Контуры находятся на сердечнике из специального сплава. Первичная катушка подключается к сети переменного типа. Вторичная катушка или все остальные обмотки соединены с установкой, потребляющей исходящее электричество.

Основным принципом работы прибора является закон Фарадея. При перемещении через обмотку магнитного потока определяется некоторая электродвижущая сила.

При необходимости менять параметры незначительно, разрешается применять «автотрансформатор ». Этот агрегат представляет собой систему с двумя обмотками, объединенными в одну катушку. Это обеспечивает возникновение электромагнитной, электрической связи. Подробнее о автотрансформаторе мы писали .

Основные отличия

Существует всего 5 основных отличий трансформатора и автотрансформатора. Их можно кратко перечислить:

  1. В первую очередь оба этих агрегата отличаются «тем», что у них присутствует разное количество обмоток.
  2. Надежность и безопасность автотрансформатора уступает обычному трансформатору.
  3. Автотрансформаторы стоят дешевле.
  4. Трансформатор имеет меньший уровень КПД.
  5. Габариты автотрансформатора меньше.

У трансформаторов, отличающихся количеством обмоток, есть две катушки и более. Второй тип агрегатов обладает одной совмещенной катушкой. Она имеет минимум три выхода для подключения к различным коммуникациям и получения на выходе различных показателей сети.

Автотрансформаторы применяются в сетях с напряжением от 150 кВ и более. Они компактные, удобные и стоят значительно дешевле. Их главным преимуществом является высокий уровень КПД. Однако существенным недостатком является отсутствие между обмотками изоляционного материала. Это понижает безопасность представленных приборов при его эксплуатации и обслуживании. Для промышленных сетей это не столь важно, но для бытового применения подобный факт является существенным недостатком.

Если применять этот прибор в бытовых сетях, при возникновении аварийной ситуации электричество может быть приложено из первичной обмотки к низшему напряжению. Это происходит из-за пробоя изоляции частей, проводящих электричество. Части агрегата будут соединены с высоковольтными частями. Поэтому для бытовых нужд применяют трансформаторы, а в промышленности – автотрансформаторы.

Рассмотрев основные отличия автотрансформаторов и трансформаторов, каждый пользователь сможет правильно применять подобное оборудование в своих целях.



Рекомендуем почитать

Наверх