Межсетевые экраны или файерволы. Информационная безопасность

Для Symbian 13.08.2019
Для Symbian

Межсетевые экраны - это специальные защитные комплексы программ (файрволы), предотвращающие несанкционированные а также создающие заслон как отдельному компьютеру, так и всей локальной сети от проникновения вредоносных Исходя из их основного предназначения - не пропускать подозрительные пакеты, такие программы получили еще одно название - фильтры. На сегодняшний день самыми известными производителями защитных файрволов являются следующие: ZyXEL, Firewall, TrustPort Total Protection, ZoneAlarm, D-Link, Secure Computing, Watchguard Technologies.

Настройка сетевых экранов

Межсетевые экраны настраиваются вручную, что предоставляет возможность детальной установки защиты. Одна из важнейших возможностей - настройка антивируса непосредственно USB-порта. Задав необходимые установки, вы с помощью такой программы можете создать обеспечение полного контроля над входом и выходом в локальной сети и в каждом электронном устройстве в ее составе.

Осуществив ручную настройку защитного экрана на одном из компьютеров сети, можно в кратчайшие сроки перенести уже готовые настройки на другие сетевые единицы. Причем синхронность работы обеспечивается даже при беспроводном сетевом соединении. Задание необходимых параметров работы файрвола требует некоторого времени, но если пренебрежительно к нему отнестись, то ограничения защиты могут заблокировать некоторые необходимые для работы службы.

Дополнительные возможности сетевых фильтров

Существуют межсетевые экраны, которые можно настроить на дополнительную защиту отдельных сервисов и приложений. Например, на предотвращение взлома «родительского контроля» или установить «антиспам». Настройка доступа в интернет и права функционирования в закрытой локальной сети для каждой программы и приложения могут быть определены отдельно. Межсетевой фильтр позволяет управлять доступом к сайтам, может отслеживать сканирование шлюзов, производить фильтрацию Web-содержимого. Также он способен блокировать доступ с подозрительных IP-адресов, уведомлять о попытках атаки или зондирования.

Виды межсетевых файрволов

Межсетевые экраны подразделяются на следующие типы:

Традиционный сетевой экран, обеспечивающий фильтрацию доступа отправки и получения пакетов;

Сеансовый сетевой экран, отслеживающий отдельные сеансы между установленными приложениями, обеспечивающий своевременное закрытие доступа несертифицированных пакетов, используемых, как правило, для взломов, сканирования конфиденциальных данных и т. д.;

Аналитический сетевой экран, осуществляющий фильтрацию на основе анализа внутренней информации пакета с последующей блокировкой выявленных троянов;

Аппаратный межсетевой экран, оборудованный встроенным ускорителем, позволяющим одновременно осуществлять предотвращение вторжений (IPS), антивирусное сканирование, предотвращение пользователей внутри частной сети, и VPN-анонимность, а также осуществлять работу файрвола более производительно.

Меры предосторожности

Для гарантии обеспечения качественной и надежной от несанкционированных вторжений и взломов, необходимо устанавливать на узлы сети только сертифицированный межсетевой экран. В настоящий момент законодательными актами РФ предусмотрена сертификация ФСТЭК, Газпромсерт и ФСБ. Например, удостоверяет, что данный межсетевой фильтр соответствует всем требованиям, изложенным в первой части документа Гостехкомиссии России. А сертификаты ФСБ показывают, что система программ защиты соответствует российскому Госстандарту по требованиям обеспечения безопасности и конфиденциальности сведений.

Классификация межсетевых экранов

Одним из эффективных механизмом обеспечения информационной безопасности распределенных вычислительных сетях является экранирование, выполняющее функции разграничения информационных потоков на границе защищаемой сети.

Межсетевое экранирование повышает безопасность объектов внутренней сети за счет игнорирования неавторизованных запросов из внешней среды, тем самым, обеспечивая все составляющие информационной безопасности. Кроме функций разграничения доступа, экранирование обеспечивает регистрацию информационных обменов.

Функции экранирования выполняет межсетевой экран или брандмауэр (firewall), под которым понимают программную или программно-аппаратную систему, которая выполняет контроль информационных потоков, поступающих в информационную систему и/или выходящих из нее, и обеспечивает защиту информационной системы посредством фильтрации информации. Фильтрация информации состоит в анализе информации по совокупности критериев и принятии решения о ее приеме и/или передаче.

Межсетевые экраны классифицируются по следующим признакам:

· по месту расположения в сети – на внешние и внутренние, обеспечивающие защиту соответственно от внешней сети или защиту между сегментами сети;

· по уровню фильтрации, соответствующему эталонной модели OSI/ISO.

Внешние межсетевые экраны обычно работают только с протоколом TCP/IP глобальной сети Интернет. Внутренние сетевые экраны могут поддерживать несколько протоколов, например, при использовании сетевой операционной системы Novell Netware, следует принимать во внимание протокол SPX/IPX.

Характеристика межсетевых экранов

Работа всех межсетевых экранов основана на использовании информации разных уровней модели OSI. Как правило, чем выше уровень модели OSI, на котором межсетевой экран фильтрует пакеты, тем выше обеспечиваемый им уровень защиты.

Межсетевые экраны разделяют на четыре типа:

· шлюзы сеансового уровня;

· шлюзы прикладного уровня;

Таблица 4.5.1. Типы межсетевых экранов и уровни модели ISO OSI

Межсетевые экраны с фильтрацией пакетов представляют собой маршрутизаторы или работающие на сервере программы, сконфигурированные таким образом, чтобы фильтровать входящие и исходящие пакеты. Поэтому такие экраны называют иногда пакетными фильтрами. Фильтрация осуществляется путем анализа IP-адреса источника и приемника, а также портов входящих TCP- и UDP-пакетов и сравнением их со сконфигурированной таблицей правил. Эти межсетевые экраны просты в использовании, дешевы, оказывают минимальное влияние на производительность вычислительной системы. Основным недостатком является их уязвимость при подмене адресов IP. Кроме того, они сложны при конфигурировании: для их установки требуется знание сетевых, транспортных и прикладных протоколов.

Шлюзы сеансового уровня контролируют допустимость сеанса связи. Они следят за подтверждением связи между авторизованным клиентом и внешним хостом (и наоборот), определяя, является ли запрашиваемый сеанс связи допустимым. При фильтрации пакетов шлюз сеансового уровня основывается на информации, содержащейся в заголовках пакетов сеансового уровня протокола TCP, т. е. функционирует на два уровня выше, чем межсетевой экран с фильтрацией пакетов. Кроме того, указанные системы обычно имеют функцию трансляции сетевых адресов, которая скрывает внутренние IP-адреса, тем самым, исключая подмену IP-адреса. Однако в таких межсетевых экранах отсутствует контроль содержимого пакетов, генерируемых различными службами. Для исключения указанного недостатка применяются шлюзы прикладного уровня.

Шлюзы прикладного уровня проверяют содержимое каждого проходящего через шлюз пакета и могут фильтровать отдельные виды команд или информации в протоколах прикладного уровня, которые им поручено обслуживать. Это более совершенный и надежный тип межсетевого экрана, использующий программы-посредники (proxies) прикладного уровня или агенты. Агенты составляются для конкретных служб сети Интернет (HTTP, FTP, Telnet и т. д.) и служат для проверки сетевых пакетов на наличие достоверных данных.

Шлюзы прикладного уровня снижают уровень производительности системы из-за повторной обработки в программе-посреднике. Это незаметно при работе в Интернет при работе по низкоскоростным каналам, но существенно при работе во внутренней сети.

Межсетевые экраны экспертного уровня сочетают в себе элементы всех трех описанных выше категорий. Как и межсетевые экраны с фильтрацией пакетов, они работают на сетевом уровне модели OSI, фильтруя входящие и исходящие пакеты на основе проверки IP-адресов и номеров портов. Межсетевые экраны экспертного уровня также выполняют функции шлюза сеансового уровня, определяя, относятся ли пакеты к соответствующему сеансу. И, наконец, брандмауэры экспертного уровня берут на себя функции шлюза прикладного уровня, оценивая содержимое каждого пакета в соответствии с политикой безопасности, выработанной в конкретной организации.

Вместо применения связанных с приложениями программ-посредников, брандмауэры экспертного уровня используют специальные алгоритмы распознавания и обработки данных на уровне приложений. С помощью этих алгоритмов пакеты сравниваются с известными шаблонами данных, что теоретически должно обеспечить более эффективную фильтрацию пакетов.

Выводы по теме

1. Межсетевое экранирование повышает безопасность объектов внутренней сети за счет игнорирования неавторизованных запросов из внешней среды, тем самым, обеспечивая все составляющие информационной безопасности. Кроме функций разграничения доступа экранирование обеспечивает регистрацию информационных обменов.

2. Функции экранирования выполняет межсетевой экран или брандмауэр (firewall), под которым понимают программную или программно-аппаратную систему, которая выполняет контроль информационных потоков, поступающих в информационную систему и/или выходящих из нее, и обеспечивает защиту информационной системы посредством фильтрации информации.

3. Межсетевые экраны классифицируются по следующим признакам: по месту расположения в сети и по уровню фильтрации, соответствующему эталонной модели OSI/ISO.

4. Внешние межсетевые экраны обычно работают только с протоколом TCP/IP глобальной сети Интернет. Внутренние сетевые экраны могут поддерживать несколько протоколов.

5. Межсетевые экраны разделяют на четыре типа:

· межсетевые экраны с фильтрацией пакетов;

· шлюзы сеансового уровня;

· шлюзы прикладного уровня;

· межсетевые экраны экспертного уровня.

6. Наиболее комплексно задачу экранирования решают межсетевые экраны экспертного уровня, которые сочетают в себе элементы всех типов межсетевых экранов.

Вопросы для самоконтроля

1. В чем заключается механизм межсетевого экранирования?

2. Дайте определение межсетевого экрана.

3. Принцип функционирования межсетевых экранов с фильтрацией пакетов.

4. На уровне каких протоколов работает шлюз сеансового уровня?

5. В чем особенность межсетевых экранов экспертного уровня?

Межсетевой экран или сетевой экран - комплекс аппаратных или программных средств, осуществляющий контроль и фильтрацию проходящих через него сетевых пакетов на различных уровнях модели OSI в соответствии с заданными правилами.

Основной задачей сетевого экрана является защита компьютерных сетей или отдельных узлов от несанкционированного доступа. Также сетевые экраны часто называют фильтрами, так как их основная задача - не пропускать (фильтровать) пакеты, не подходящие под критерии, определённые в конфигурации (рис.6.1).

Межсетовой экран имеет несколько названий. Рассмотрим их.

Брандмауэр (нем. Brandmauer) - заимствованный из немецкого языка термин, являющийся аналогом английского firewall в его оригинальном значении (стена, которая разделяет смежные здания, предохраняя от распространения пожара). Интересно, что в области компьютерных технологий в немецком языке употребляется слово «firewall».

Файрвол, файервол, фаервол - образовано транслитерацией английского термина firewall, эквивалентного термину межсетевой экран, в настоящее время не является официальным заимствованным словом в русском языке.

Рис.6.1 Типовое размещение МЭ в корпоративной сети

Есть два четко различающихся типа межсетевых экранов, повседневно используемых в современном интернет. Первый тип правильнее называть маршрутизатор с фильтрацией пакетов. Этот тип межсетевого экрана работает на машине, подключенной к нескольким сетям и применяет к каждому пакету набор правил, определяющий переправлять ли этот пакет или блокировать. Второй тип, известный как прокси сервер, реализован в виде демонов, выполняющих аутентификацию и пересылку пакетов, возможно на машине с несколькими сетевыми подключениями, где пересылка пакетов в ядре отключена.

Иногда эти два типа межсетевых экранов используются вместе, так что только определенной машине (известной как защитный хост (bastion host)) позволено отправлять пакеты через фильтрующий маршрутизатор во внутреннюю сеть. Прокси сервисы работают на защитном хосте, что обычно более безопасно, чем обычные механизмы аутентификации.

Межсетевые экраны имеют различный вид и размер, и иногда это просто набор не­скольких различных компьютеров. Здесь под межсетевым экраном подразумевается компьютер или компьютеры между доверенными сетями (например, внутренними) и недоверенными (например, Интернетом), которые проверяют весь проходящий между ними трафик. Эффективные межсетевые экраны обладают следующими свой­ствами:

· Все соединения должны проходить через межсетевой экран. Его эффективность сильно снижается, если есть альтернативный сетевой маршрут, - несанкцио­нированный трафик будет передан в обход межсетевого экрана.

· Межсетевой экран пропускает только авторизованный трафик. Если он не спо­собен четко дифференцировать авторизованный и неавторизованный трафик, или если он настроен на пропуск опасных или ненужных соединений, то польза от него значительно снижается. При сбое или перегрузке межсетевой экран дол­жен всегда переключаться в состояние «отказ» или закрытое состояние. Лучше прервать соединения, чем оставить системы незащищенными.

· Межсетевой экран должен противостоять атакам против самого себя, так как для его защиты не устанавливаются дополнительные устройства.

Межсетевой экран можно сравнить с замком на входной двери. Он может быть самым надежным в мире, но если дверь не заперта, злоумышленники смогут запро­сто ее открыть. Межсетевой экран защищает сеть от несанкционированного досту­па, как замок - вход в помещение. Стали бы вы оставлять ценные вещи дома, если бы замок на входной двери был ненадежным?

Межсетевой экран - это лишь элемент обшей архитектуры безопасности. Однако он играет очень важную роль в структуре сети и, как любое другое устройство, име­ет свои преимущества и недостатки.

Преимущества межсетевого экрана:

· Межсетевые экраны - это прекрасное средство реализации корпоративных по­литик безопасности. Их следует настраивать на ограничение соединений соглас­но мнению руководства по этому вопросу.

· Межсетевые экраны ограничивают доступ к определенным службам. Например, общий доступ к веб-серверу может быть разрешен, а к telnet и другим непублич­ным службам - запрещен. Большинство межсетевых экранов предоставляет се­лективный доступ посредством аутентификации.

· Цель применения межсетевых экранов вполне конкретна, поэтому не нужно искать компромисс между безопасностью и удобством использования.

· Межсетевые экраны - это отличное средство аудита. При достаточном объеме пространства на жестких дисках или при поддержке удаленного ведения журна­ла они могут заносить в журналы информации о любом проходящем трафике.

· Межсетевые экраны обладают очень хорошими возможностями по оповещению персонала о конкретных событиях.

Недостатки межсетевых экранов:

· Межсетевые экраны не обеспечивают блокировку того, что было авторизовано. Они разрешают установку обычных соединений санкционированных приложе­ний, но если приложения представляют угрозу, межсетевой экран не сможет предотвратить атаку, воспринимая это соединение как авторизованное. Напри­мер, межсетевые экраны разрешают прохождение электронной почты на почто­вый сервер, но не находят вирусы в сообщениях.

· Эффективность межсетевых экранов зависит от правил, на соблюдение кото­рых они настроены. Правила не должны быть слишком лояльны.

· Межсетевые экраны не предотвращают атаки социального инжиниринга или атаки авторизованного пользователя, который умышленно и злонамеренно ис­пользует свой адрес.

· Межсетевые экраны не могут противостоять некачественным подходам к адми­нистрированию или некорректно разработанным политикам безопасности.

· Межсетевые экраны не предотвращают атаки, если трафик не проходит через них.

Некоторые люди предсказывали конец эры межсетевых экранов, которые с трудом разграничивают санкционированный и несанкционированный трафик приложе­ний. Многие приложения, например средства мгновенного обмена сообщениями, становятся все более и более мобильными и совместимыми с работой через многие порты. Таким образом, они могут действовать в обход межсетевого экрана через порт, открытый для другой авторизованной службы. Кроме того, все больше при­ложений предусматривают передачу трафика через другие авторизованные порты, доступные с наибольшей долей вероятности. Примерами таких популярных приложений являются HTTP-Tunnel (www.http-tunnel.com) и SocksCap (www.socks.permeo.com). Более того, разрабатываются приложения, специально пред­назначенные для обхода межсетевых экранов, например приложение удаленного контроля над компьютерами GoToMyPC (www.gotomypc.com).

Однако межсетевые экраны не сдаются без боя. Текущие релизы ПО от крупней­ших производителей содержат усовершенствованные средства по предотвращению вторжений и возможности экранирования прикладного уровня. Такие межсетевые экраны выявляют и фильтруют несанкционированный трафик, например, приложе­ний по мгновенному обмену сообщениями, пытающийся проникнуть через порты, открытые для других санкционированных служб. Кроме того, сейчас межсетевые экраны сопоставляют результаты функционирования с опубликованными стандар­тами протоколов и признаками различной активности (аналогично антивирусному ПО) для обнаружения и блокировки атак, содержащихся в передаваемых пакетах. Таким образом, они остаются основным средством зашиты сетей. Однако если за­щита приложений, обеспечиваемая межсетевым экраном, недостаточна или неспо­собна к корректному разграничению авторизованного и неавторизованного трафи­ка, следует рассмотреть альтернативные компенсирующие методы безопасности.

Межсетевым экраном может быть маршрутизатор, персональный компьютер, специально сконструированная машина или набор узлов, специально настроенный на защиту частной сети от протоколов и служб, которые могут злонамеренно ис­пользоваться вне доверенной сети.

Метод защиты зависит от самого межсетевого экрана, а также от политик или правил, которые на нем настроены. Сегодня используются четыре технологии меж­сетевых экранов:

· Пакетные фильтры.

· Прикладные шлюзы.

· Шлюзы контурного уровня.

· Устройства адаптивной проверки пакетов.

Прежде чем изучать функции межсетевых экранов, рассмотрим пакет протоко­лов контроля передачи и Интернета (TCP/IP).

TCP/IP обеспечивает метод передачи данных с одного компьютера на другой через сеть. Задача межсетевого экрана - контроль над передачей пакетов TCP/IP между узлами и сетями.

TCP/IP - это набор протоколов и приложений, выполняющих отдельные фун­кции в соответствии с конкретными уровнями модели взаимодействия открытых систем (OSI). TCP/IP осуществляет независимую передачу блоков данных через сеть в форме пакетов, и каждый уровень модели TCP/IP добавляет в пакет заголовок. В зависимости от используемой технологии межсетевой экран обрабатывает инфор­мацию, содержащуюся в этих заголовках, в целях контроля доступа. Если он под­держивает разграничение приложений как шлюзы приложений, то контроль дос­тупа также может осуществляться по самим данным, содержащимся в теле пакета.

Контроль информационных потоков состоит в их фильтрации и преобразовании в соответствие с заданным набором правил. Поскольку в современных МЭ фильтрация может осуществляться на разных уровнях эталонной модели взаимодействия открытых систем (OSI), МЭ удобно представить в виде системы фильтров. Каждый фильтр на основе анализа проходящих через него данных, принимает решение – пропустить дальше, перебросить за экран, блокировать или преобразовать данные (рис.6.2).

Рис.6.2 Схема фильтрации в МЭ.

Неотъемлемой функцией МЭ является протоколирование информационного обмена. Ведение журналов регистрации позволяет администратору выявить подозрительные действия, ошибки в конфигурации МЭ и принять решение об изменении правил МЭ.

Классификация экранов

Выделяют следующую классификацию МЭ, в соответствие с функционированием на разных уровнях МВОС (OSI):

· Мостиковые экраны (2 уровень OSI).

· Фильтрующие маршрутизаторы (3 и 4 уровни OSI).

· Шлюзы сеансового уровня (5 уровень OSI).

· Шлюзы прикладного уровня (7 уровень OSI).

· Комплексные экраны (3-7 уровни OSI).

Рис.6.3 Модель OSI

Мостиковые МЭ

Данный класс МЭ, функционирующий на 2-м уровне модели OSI, известен также как прозрачный (stealth), скрытый, теневой МЭ. Мостиковые МЭ появились сравнительно недавно и представляют перспективное направление развития технологий межсетевого экранирования. Фильтрация трафика ими осуществляется на канальном уровне, т.е. МЭ работают с фреймами (frame, кадр). К достоинствам подобных МЭ можно отнести:

· Нет необходимости в изменении настроек корпоративной сети, не требуется дополнительного конфигурирования сетевых интерфейсов МЭ.

· Высокая производительность. Поскольку это простые устройства, они не требуют больших затрат ресурсов. Ресурсы требуются либо для повышения возможностей машин, либо для более глубокого анализа данных.

· Прозрачность. Ключевым для этого устройства является его функционирование на 2 уровне модели OSI. Это означает, что сетевой интерфейс не имеет IP-адреса. Эта особенность более важна, чем легкость в настройке. Без IP-адреса это устройство не доступно в сети и является невидимым для окружающего мира. Если такой МЭ недоступен, то, как его атаковать? Атакующие даже не будут знать, что существует МЭ, проверяющий каждый их пакет.

Фильтрующие маршрутизаторы

Маршрутизатор это машина, пересылающая пакеты между двумя или несколькими сетями. Маршрутизатор с фильтрацией пакетов запрограммирован на сравнение каждого пакета со списком правил, перед тем как решить, пересылать его или нет.

Packet-filtering firewall (МЭ с фильтрацией пакетов)

Межсетевые экраны обеспечивают безопасность сетей, фильтруя сетевые соедине­ния по заголовкам TCP/IP каждого пакета. Они проверяют эти заголовки и исполь­зуют их для пропуска и маршрутизации пакета к пункту назначения или для его блокировки посредством сброса или отклонения (т. е. сброса пакета и уведомления об этом отправителя).

Фильтры пакетов выполняют разграничение, основываясь на следующих дан­ных:

· IP-адрес источника;

· IP-адрес назначения;

· используемый сетевой протокол (TCP, UDP или ICMP);

· исходный порт TCP или UDP;

· порт TCP или UDP назначения;

· тип сообщения ICMP (если протоколом является ICMP).

Хороший фильтр пакетов также может функционировать на базе информации, не содержащейся непосредственно в заголовке пакета, например, о том, на каком интерфейсе происходит получение пакета. По сути, фильтр пакетов содержит не­доверенный, или «грязный» интерфейс, набор фильтров и доверенный интерфейс. «Грязная» сторона граничит с недоверенной сетью и первой принимает трафик. Проходя через нее, трафик обрабатывается согласно набору фильтров, используе­мому межсетевым экраном (эти фильтры называются правилами). В зависимости от них трафик либо принимается и отправляется далее через «чистый» интерфейс в пункт назначения, либо сбрасывается или отклоняется. Какой интерфейс является «грязным», а какой - «чистым», зависит от направления движения конкретного пакета (качественные фильтры пакетов действуют и для исходящего, и для входя­щего трафика).

Стратегии реализации пакетных фильтров различны, но есть основные методы, которыми следует руководствоваться.

· Построение правил - от наиболее конкретных до наиболее общих. Большин­ство фильтров пакетов осуществляет обработку с помощью наборов правил «сни­зу вверх» и останавливает ее, когда обнаруживается соответствие. Внедрение в верхнюю часть набора правил более конкретных фильтров делает невозможным сокрытие общим правилом специфичного правила далее по направлению к ниж­нему элементу набора фильтров.

· Размещение наиболее активных правил в верхней части набора фильтров. Эк­ранирование пакетов занимает значительную часть процессорного времени, и. как уже говорилось ранее, фильтр пакетов прекращает обработку пакета, обна­ружив его соответствие какому-либо правилу. Размещение популярных правил на первом или втором месте, а не на 30 или 31 позиции, экономит процессорное время, которое потребовалось бы для обработки пакета более чем 30 правила­ми. Когда требуется единовременная обработка тысяч пакетов, не следует пре­небрегать экономией мощности процессора.

Определение конкретных и корректных правил фильтрации пакетов - очень сложный процесс. Следует оценить преимущества и недостатки пакетных фильт­ров. Приведем некоторые преимущества.

· Высокая производительность. Фильтрация может осуществляться с линейной скоростью, сравнимой с быстродействием современных процессоров.

· Окупаемость. Пакетные фильтры являются относительно недорогими или вов­се бесплатными. Большая часть маршрутизаторов снабжена возможностями по фильтрации пакетов, интегрированными в их операционные системы.

· Прозрачность. Действия пользователя и приложения не требуется корректиро­вать, чтобы обеспечить прохождение пакетов через пакетный фильтр.

· Широкие возможности по управлению трафиком. Простые пакетные фильтры можно использовать для сброса очевидно нежелательного трафика на сетевом периметре и между различными внутренними подсетями (например, применять граничные маршрутизаторы для сброса пакетов с исходными адресами, соот­ветствующими внутренней сети (речь идет о подмененных пакетах), «частным» IP-адресам (RFC 1918) и пакетам вешания).

Рассмотрим недостатки фильтров пакетов.

· Разрешены прямые соединения между узлами без доверия и доверенными узлами.

· Низкий уровень масштабируемости. По мере роста наборов правил становится все труднее избегать «ненужных» соединений. Со сложностью правил связана проблема масштабируемости. Если невозможно быстро сканировать набор пра­вил для просмотра результата внесенных изменений, придется его упростить.

· Возможность открытия больших диапазонов портов. Из-за динамической приро­ды некоторых протоколов необходимо открывать большие диапазоны портов для правильного функционирования протоколов. Наихудший случай здесь - протокол FTP. FTP требует входящего соединения от сервера к клиенту, и па­кетным фильтрам потребуется открыть широкие диапазоны портов для разре­шения такой передачи данных.

· Подверженность атакам с подменой данных. Атаки с подменой данных (спуфинг), как правило, подразумевают присоединение фальшивой информации в заго­ловке TCP/IP. Распространены атаки с подменой исходных адресов и маски­ровкой пакетов под видом части уже установленных соединений.

Шлюз сеансового уровня

Circuit-level gateway (Шлюз сеансового уровня) - межсетевой экран, который исключает прямое взаимодействие между авторизированным клиентом и внешним хостом. Сначала он принимает запрос доверенного клиента на определенные услуги и, после проверки допустимости запрошенного сеанса, устанавливает соединение с внешним хостом.

После этого шлюз просто копирует пакеты в обоих направлениях, не осуществляя их фильтрации. На этом уровне появляется возможность использования функции сетевой трансляции адресов (NAT, network address translation). Трансляция внутренних адресов выполняется по отношению ко всем пакетам, следующим из внутренней сети во внешнюю. Для этих пакетов IP-адреса компьютеров-отправителей внутренней сети автоматически преобразуются в один IP-адрес, ассоциируемый с экранирующим МЭ. В результате все пакеты, исходящие из внутренней сети, оказываются отправленными МЭ, что исключает прямой контакт между внутренней и внешней сетью. IP- адрес шлюза сеансового уровня становится единственным активным IP- адресом, который попадает во внешнюю сеть.

Особенности:

· Работает на 4 уровне.

· Передает TCP подключения, основываясь на порте.

· Недорогой, но более безопасный, чем фильтр пакетов.

· Вообще требует работы пользователя или программы конфигурации для полноценной работы.

· Пример: SOCKS файрвол.

Шлюз прикладного уровня

Application-level gateways (Шлюз прикладного уровня) - межсетевой экран, который исключает прямое взаимодействие между авторизированным клиентом и внешним хостом, фильтруя все входящие и исходящие пакеты на прикладном уровне модели OSI.

Связанные с приложением программы-посредники перенаправляет через шлюз информацию, генерируемую конкретными сервисами TCP/IP.

Возможности:

· Идентификация и аутентификация пользователей при попытке установления соединения через МЭ;

· Фильтрация потока сообщений, например, динамический поиск вирусов и прозрачное шифрование информации;

· Регистрация событий и реагирование на события;

· Кэширование данных, запрашиваемых из внешней сети.

На этом уровне появляется возможность использования функций посредничества (Proxy).

Для каждого обсуживаемого протокола прикладного уровня можно вводить программных посредников – HTTP-посредник, FTP-посредник и т.д. Посредник каждой службы TCP/IP ориентирован на обработку сообщений и выполнение функций защиты, относящихся именно к этой службе. Также, как и шлюз сеансового уровня, прикладной шлюз перехватывает с помощью соответствующих экранирующих агентов входящие и сходящие пакеты, копирует и перенаправляет информацию через шлюз, и функционирует в качестве сервера-посредника, исключая прямые соединения между внутренней и внешней сетью. Однако, посредники, используемые прикладным шлюзом, имеют важные отличия от канальных посредников шлюзов сеансового уровня. Во-первых, посредники прикладного шлюза связаны с конкретными приложениями программными серверами), а во-вторых, они могут фильтровать поток сообщений на прикладном уровне модели OSI.

Особенности:

· Работает на 7 уровне.

· Специфический для приложений.

· Умеренно дорогой и медленный, но более безопасный и допускает регистрацию деятельности пользователей.

· Требует работы пользователя или программы конфигурации для полноценной работы.

· Пример: Web (http) proxy.

МЭ экспертного уровня

Stateful inspection firewall - межсетевой экран экспертного уровня, который проверяет содержимое принимаемых пакетов на трех уровнях модели OSI: сетевом, сеансовом и прикладном. При выполнении этой задачи используются специальные алгоритмы фильтрации пакетов, с помощью которых каждый пакет сравнивается с известным шаблоном авторизированных пакетов.

Особенности:

· Фильтрация 3 уровня.

· Проверка правильности на 4 уровне.

· Осмотр 5 уровня.

· Высокие уровни стоимости, защиты и сложности.

· Пример: CheckPoint Firewall-1.

Некоторые современные МЭ используют комбинацию вышеперечисленных методов и обеспечивают дополнительные способы защиты, как сетей, так и систем.

«Персональные» МЭ

Этот класс МЭ позволяет далее расширять защиту, допуская управление по тому, какие типы системных функций или процессов имеют доступ к ресурсам сети. Эти МЭ могут использовать различные типы сигнатур и условий, для того, чтобы разрешать или отвергать трафик. Вот некоторые из общих функций персональных МЭ:

· Блокирование на уровне приложений – позволять лишь некоторым приложениям или библиотекам исполнять сетевые действия или принимать входящие подключения

· Блокирование на основе сигнатуры – постоянно контролировать сетевой трафик и блокировать все известные атаки. Дополнительный контроль увеличивает сложность управления безопасностью из-за потенциально большого количества систем, которые могут быть защищены персональным файрволом. Это также увеличивает риск повреждения и уязвимости из-за плохой настройки.

Динамические МЭ

Динамические МЭ объединяют в себе стандартные МЭ (перечислены выше) и методы обнаружения вторжений, чтобы обеспечить блокирование «на лету» сетевых подключений, которые соответствуют определённой сигнатуре, позволяя при этом подключения от других источников к тому же самому порту. Например, можно блокировать деятельность сетевых червей, не нарушая работу нормального трафика.

Схемы подключения МЭ:

· Схема единой защиты локальной сети

· Схема защищаемой закрытой и не защищаемой открытой подсетями

· Схема с раздельной защитой закрытой и открытой подсетей.

Наиболее простым является решение, при котором межсетевой экран просто экранирует локальную сеть от глобальной. При этом WWW-сервер, FTP-сервер, почтовый сервер и другие сервера, оказываются также защищены межсетевым экраном. При этом требуется уделить много внимания на предотвращение проникновения на защищаемые станции локальной сети при помощи средств легкодоступных WWW-серверов.

Рис.6.4 Схема единой защиты локальной сети

Для предотвращения доступа в локальную сеть, используя ресурсы WWW-сервера, рекомендуется общедоступные серверы подключать перед межсетевым экраном. Данный способ обладает более высокой защищенностью локальной сети, но низким уровнем защищенности WWW- и FTP-серверов.

Рис.6.5 Схема защищаемой закрытой и не защищаемой открытой подсетями


Похожая информация.


сеть , предназначенное для блокировки всего трафика, за исключением разрешенных данных. Этим оно отличается от маршрутизатора, функцией которого является доставка трафика в пункт назначения в максимально короткие сроки.

Существует мнение, что маршрутизатор также может играть роль межсетевого экрана. Однако между этими устройствами существует одно принципиальное различие: маршрутизатор предназначен для быстрой маршрутизации трафика, а не для его блокировки. Межсетевой экран представляет собой средство защиты, которое пропускает определенный трафик из потока данных, а маршрутизатор является сетевым устройством, которое можно настроить на блокировку определенного трафика.

Кроме того, межсетевые экраны, как правило, обладают большим набором настроек. Прохождение трафика на межсетевом экране можно настраивать по службам, IP -адресам отправителя и получателя, по идентификаторам пользователей, запрашивающих службу. Межсетевые экраны позволяют осуществлять централизованное управление безопасностью . В одной конфигурации администратор может настроить разрешенный входящий трафик для всех внутренних систем организации. Это не устраняет потребность в обновлении и настройке систем, но позволяет снизить вероятность неправильного конфигурирования одной или нескольких систем, в результате которого эти системы могут подвергнуться атакам на некорректно настроенную службу.

Определение типов межсетевых экранов

Существуют два основных типа межсетевых экранов: межсетевые экраны прикладного уровня и межсетевые экраны с пакетной фильтрацией . В их основе лежат различные принципы работы, но при правильной настройке оба типа устройств обеспечивают правильное выполнение функций безопасности, заключающихся в блокировке запрещенного трафика. Из материала следующих разделов вы увидите, что степень обеспечиваемой этими устройствами защиты зависит от того, каким образом они применены и настроены.

Межсетевые экраны прикладного уровня

Межсетевые экраны прикладного уровня, или прокси-экраны, представляют собой программные пакеты, базирующиеся на операционных системах общего назначения (таких как Windows NT и Unix) или на аппаратной платформе межсетевых экранов. Межсетевой экран обладает несколькими интерфейсами, по одному на каждую из сетей, к которым он подключен. Набор правил политики определяет, каким образом трафик передается из одной сети в другую. Если в правиле отсутствует явное разрешение на пропуск трафика, межсетевой экран отклоняет или аннулирует пакеты.

Правила политики безопасности усиливаются посредством использования модулей доступа. В межсетевом экране прикладного уровня каждому разрешаемому протоколу должен соответствовать свой собственный модуль доступа. Лучшими модулями доступа считаются те, которые построены специально для разрешаемого протокола. Например, модуль доступа FTP предназначен для протокола FTP и может определять, соответствует ли проходящий трафик этому протоколу и разрешен ли этот трафик правилами политики безопасности.

При использовании межсетевого экрана прикладного уровня все соединения проходят через него (см. рис. 10.1). Как показано на рисунке, соединение начинается на системе-клиенте и поступает на внутренний интерфейс межсетевого экрана. Межсетевой экран принимает соединение, анализирует содержимое пакета и используемый протокол и определяет, соответствует ли данный трафик правилам политики безопасности. Если это так, то межсетевой экран инициирует новое соединение между своим внешним интерфейсом и системой-сервером.

Межсетевые экраны прикладного уровня используют модули доступа для входящих подключений. Модуль доступа в межсетевом экране принимает входящее подключение и обрабатывает команды перед отправкой трафика получателю. Таким образом, межсетевой экран защищает системы от атак, выполняемых посредством приложений.


Рис. 10.1.

Примечание

Здесь подразумевается, что модуль доступа на межсетевом экране сам по себе неуязвим для атаки. Если же программное обеспечение разработано недостаточно тщательно, это может быть и ложным утверждением.

Дополнительным преимуществом архитектуры данного типа является то, что при ее использовании очень сложно, если не невозможно, "скрыть" трафик внутри других служб. Например, некоторые программы контроля над системой, такие как NetBus и

Межсетевой экран или брандмауэр (по-нем. brandmauer , по-англ. , по-рус. граница огня ) - это система или комбинация систем, позволяющих разделить сеть на две или более частей и реализовать набор правил, определяющих условия прохождения пакетов из одной части в другую (см. рис.1). Чаще всего эта граница проводится между локальной сетью предприятия и INTERNET , хотя ее можно провести и внутри локальной сети предприятия. Брандмауэр, таким образом, пропускает через себя весь трафик. Для каждого проходящего пакета брандмауэр принимает решение пропускать его или отбросить. Для того чтобы брандмауэр мог принимать эти решения, ему необходимо определить набор правил. О том, как эти правила описываются и какие параметры используются при их описании, речь пойдет чуть позже.
рис.1

Как правило, брандмауэры функционируют на какой-либо UNIX платформе - чаще всего это BSDI, SunOS, AIX, IRIX и т.д., реже - DOS, VMS, WNT, Windows NT. Из аппаратных платформ встречаются INTEL, Sun SPARC, RS6000, Alpha, HP PA-RISC, семейство RISC процессоров R4400-R5000. Помимо Ethernet, многие брандмауэры поддерживают FDDI, Token Ring, 100Base-T, 100VG-AnyLan, различные серийные устройства. Требования к оперативной памяти и объему жесткого диска зависят от количества машин в защищаемом сегменте сети.

Обычно в операционную систему, под управлением которой работает брандмауэр, вносятся изменения, цель которых - повышение защиты самого брандмауэра. Эти изменения затрагивают как ядро ОС, так и соответствующие файлы конфигурации. На самом брандмауэре не разрешается иметь счета пользователей (а значит и потенциальных дыр), только счет администратора. Некоторые брандмауэры работают только в однопользовательском режиме. Многие брандмауэры имеют систему проверки целостности программных кодов. При этом контрольные суммы программных кодов хранятся в защищенном месте и сравниваются при старте программы во избежание подмены программного обеспечения.

Все брандмауэры можно разделить на три типа:

Все типы могут одновременно встретиться в одном брандмауэре.

Пакетные фильтры

Брандмауэры с пакетными фильтрами принимают решение о том, пропускать пакет или отбросить, просматривая IP-адреса, флаги или номера TCP портов в заголовке этого пакета. IP-адрес и номер порта - это информация сетевого и транспортного уровней соответственно, но пакетные фильтры используют и информацию прикладного уровня, т.к. все стандартные сервисы в TCP/IP ассоциируются с определенным номером порта.

Для описания правил прохождения пакетов составляются таблицы типа:

Поле "действие" может принимать значения пропустить или отбросить.
Тип пакета - TCP, UDP или ICMP.
Флаги - флаги из заголовка IP-пакета.
Поля "порт источника" и "порт назначения" имеют смысл только для TCP и UDP пакетов.

Сервера прикладного уровня

Брандмауэры с серверами прикладного уровня используют сервера конкретных сервисов (proxy server) - TELNET, FTP и т.д., запускаемые на брандмауэре и пропускающие через себя весь трафик, относящийся к данному сервису. Таким образом, между клиентом и сервером образуются два соединения: от клиента до брандмауэра и от брандмауэра до места назначения.

Полный набор поддерживаемых серверов различается для каждого конкретного брандмауэра, однако чаще всего встречаются сервера для следующих сервисов:

  • терминалы (Telnet, Rlogin);
  • передача файлов (Ftp);
  • электронная почта (SMTP, POP3);
  • WWW (HTTP);
  • Gopher;
  • Wais;
  • X Window System (X11);
  • сетевая печать (LP);
  • удаленное выполнение задач (Rsh);
  • Finger;
  • новости Usenet (NNTP);
  • Whois;
  • RealAudio.

Использование серверов прикладного уровня позволяет решить важную задачу - скрыть от внешних пользователей структуру локальной сети, включая информацию в заголовках почтовых пакетов или службы доменных имен (DNS). Другим положительным качеством является возможность аутентификации на пользовательском уровне (напоминаю, что аутентификация - процесс подтверждения идентичности чего-либо; в данном случае это процесс подтверждения, действительно ли пользователь является тем, за кого он себя выдает).

    При описании правил доступа используются такие параметры, как
  • название сервиса,
  • имя пользователя,
  • допустимый временной диапазон использования сервиса,
  • компьютеры, с которых можно пользоваться сервисом,
  • схемы аутентификации.

Сервера прикладного уровня позволяют обеспечить наиболее высокий уровень защиты, т.к. взаимодействие с внешним миров реализуется через небольшое число прикладных программ, полностью контролирующих весь входящий и выходящий трафик.

Сервера уровня соединения

Сервер уровня соединения представляет из себя транслятор TCP соединения. Пользователь образует соединение с определенным портом на брандмауэре, после чего последний производит соединение с местом назначения по другую сторону от брандмауэра. Во время сеанса этот транслятор копирует байты в обоих направлениях, действуя как провод.

Как правило, пункт назначения задается заранее, в то время как источников может быть много (соединение типа один - много). Используя различные порты, можно создавать различные конфигурации.

Такой тип сервера позволяет создавать транслятор для любого определенного пользователем сервиса, базирующегося на TCP, осуществлять контроль доступа к этому сервису, сбор статистики по его использованию.

Сравнительные характеристики пакетных фильтров и серверов прикладного уровня

Ниже приведены основные достоинства и недостатки пакетных фильтров и серверов прикладного уровня относительно друг друга.

    Достоинства пакетных фильтров:
  • относительно невысокая стоимость;
  • гибкость в определении правил фильтрации;
  • небольшая задержка при прохождении пакетов.
    Недостатки пакетных фильтров:
  • локальная сеть видна (маршрутизируется) из INTERNET;
  • правила фильтрации пакетов трудны в описании, требуются очень хорошие знания технологий TCP и UDP;
  • при нарушении работоспособности брандмауэра все компьютеры за ним становятся полностью незащищенными либо недоступными;
  • аутентификацию с использованием IP-адреса можно обмануть использованием IP-спуфинга (атакующая система выдает себя за другую, используя ее IP-адрес);
  • отсутствует аутентификация на пользовательском уровне.
    Достоинства серверов прикладного уровня:
  • локальная сеть невидима из INTERNET;
  • при нарушении работоспособности брандмауэра пакеты перестают проходить через брандмауэр, тем самым не возникает угрозы для защищаемых им машин;
  • защита на уровне приложений позволяет осуществлять большое количество дополнительных проверок, снижая тем самым вероятность взлома с использованием дыр в программном обеспечении;
  • аутентификация на пользовательском уровне может быть реализована система немедленного предупреждения о попытке взлома.
    Недостатки серверов прикладного уровня:
  • более высокая, чем для пакетных фильтров стоимость;
  • невозможность использовании протоколов RPC и UDP;
  • производительность ниже, чем для пакетных фильтров.

Виртуальные сети

Ряд брандмауэров позволяет также организовывать виртуальные корпоративные сети (Virtual Private Network ), т.е. объединить несколько локальных сетей, включенных в INTERNET в одну виртуальную сеть. VPN позволяют организовать прозрачное для пользователей соединение локальных сетей, сохраняя секретность и целостность передаваемой информации с помощью шифрования. При этом при передаче по INTERNET шифруются не только данные пользователя, но и сетевая информация - сетевые адреса, номера портов и т.д.

Схемы подключения брандмауэров

Для подключения брандмауэров используются различные схемы. Брандмауэр может использоваться в качестве внешнего роутера, используя поддерживаемые типы устройств для подключения к внешней сети (см. рис.1). Иногда используется схема, изображенная на рис.2, однако пользоваться ей следует только в крайнем случае, поскольку требуется очень аккуратная настройка роутеров и небольшие ошибки могут образовать серьезные дыры в защите.

рис.2

Чаще всего подключение осуществляется через внешний маршрутизатор, поддерживающий два Ethernet интерфейса(так называемый dual-homed брандмауэр) (две сетевые карточки в одном компьютре) (см. рис.3).

рис.3

При этом между внешним роутером и брандмауэром имеется только один путь, по которому идет весь трафик. Обычно роутер настраивается таким образом, что брандмауэр является единственной видимой снаружи машиной. Эта схема является наиболее предпочтительной с точки зрения безопасности и надежности защиты.

Другая схема представлена на рис.4.

рис.4

При этом брандмауэром защищается только одна подсеть из нескольких выходящих из роутера. В незащищаемой брандмауэром области часто располагают серверы, которые должны быть видимы снаружи (WWW, FTP и т.д.). Большинство брандмауэров позволяет разместить эти сервера на нем самом - решение, далеко не лучшее с точки зрения загрузки машины и безопасности самого брандмауэра.

Существуют решения (см. рис.5), которые позволяют организовать для серверов, которые должны быть видимы снаружи, третью сеть; это позволяет обеспечить контроль за доступом к ним, сохраняя в то же время необходимый уровень защиты машин в основной сети.

рис.5

При этом достаточно много внимания уделяется тому, чтобы пользователи внутренней сети не могли случайно или умышленно открыть дыру в локальную сеть через эти сервера. Для повышения уровня защищенности возможно использовать в одной сети несколько брандмауэров, стоящих друг за другом.

Администрирование

Легкость администрирования является одним из ключевых аспектов в создании эффективной и надежной системы защиты. Ошибки при определении правил доступа могут образовать дыру, через которую может быть взломана система. Поэтому в большинстве брандмауэров реализованы сервисные утилиты, облегчающие ввод, удаление, просмотр набора правил. Наличие этих утилит позволяет также производить проверки на синтаксические или логические ошибки при вводе или редактирования правил. Как правило, эти утилиты позволяют просматривать информацию, сгруппированную по каким-либо критериям, например, все что относится к конкретному пользователю или сервису.

Системы сбора статистики и предупреждения об атаке

Еще одним важным компонентом брандмауэра является система сбора статистики и предупреждения об атаке. Информация обо всех событиях - отказах, входящих, выходящих соединениях, числе переданных байт, использовавшихся сервисах, времени соединения и т.д. - накапливается в файлах статистики. Многие брандмауэры позволяют гибко определять подлежащие протоколированию события, описать действия брандмауэра при атаках или попытках несанкционированного доступа - это может быть сообщение на консоль, почтовое послание администратору системы и т.д. Немедленный вывод сообщения о попытке взлома на экран консоли или администратора может помочь, если попытка оказалась успешной и атакующий уже проник в систему. В состав многих брандмауэров входят генераторы отчетов, служащие для обработки статистики. Они позволяют собрать статистику по использованию ресурсов конкретными пользователями, по использованию сервисов, отказам, источникам, с которых проводились попытки несанкционированного доступа и т.д.

Аутентификация

Аутентификация является одним из самых важных компонентов брандмауэров. Прежде чем пользователю будет предоставлено право воспользоваться тем или иным сервисом, необходимо убедиться, что он действительно тот, за кого он себя выдает.

Как правило, используется принцип, получивший название "что он знает" - т.е. пользователь знает некоторое секретное слово, которое он посылает серверу аутентификации в ответ на его запрос.

Одной из схем аутентификации является использование стандартных UNIX паролей. Эта схема является наиболее уязвимой с точки зрения безопасности - пароль может быть перехвачен и использован другим лицом.

Классы защищенности брандмауэров

Применительно к обработке конфиденциальной информации автоматизированные системы (АС) делятся на три группы:

  1. Многопользовательские АС, обрабатывающие информацию различных уровней конфиденциальности.
  2. Многопользовательские АС, в которых все пользователи имеют равный доступ ко всей обрабатываемой информации, расположенной на носителях разного уровня конфиденциальности.
  3. Однопользовательские АС, в которых пользователль имеет подный доступ ко всей обрабатываемой информации, расположенной на носителях разного уровня конфиденциальности.

В первой группе выделяют 5 классов защищенности АС: 1А, 1Б, 1В, 1Г, 1Д, во второй и третьей группах - по 2 класса защищенности: 2А, 2Б и 3А, 3Б сооответственно. Класс А соответствует максимальной, класс Д - минимальной защищенности АС.

Брандмауэры позволяют поддерживать безопасность объектов внутренней области, игнорируя несанкционированные запросы из внешней области, т.е. осуществляют экранирование . В результате уменьшается уязвимость внутренних объектов, поскольку первоначально сторонний нарушитель должен преодолеть брандмауэр, где защитные механизмы сконфигурированы особенно тщательно и жестко. Кроме того, экранирующая система в отличие от универсальной устроена более простым, а следовательно, более безопасным образом. На ней присутствуют только те компоненты, которые необходимы для выполнения функций экранирования. Экранирование дает также возможность контролировать информационные потоки, направленные во внешнюю область, что способствует поддержанию во внутренней области режима конфиденциальности. Помимо функций разграничения доступа, брандмауэры осуществляют регистрацию информационных потоков.

По уровню защищенности брандмауэры делятся на 5 классов. Самый низкий класс защищенности - пятый. Он применяется для безопасного взаимодействия АС класса 1Д с внешней средой, четвертый - для 1Г, третий - для 1В, второй - для 1Б, самый высокий - первый - для 1А.

Для АС класса 2Б, 3Б применяются брандмауэры не ниже пятого класса.

Для АС класса 2А, 3А в зависимости от важности обрабатываемой информации применяются брандмауэры следующих классов:

  • при обработки информации с грифом "секретно" - не ниже третьего класса;
  • при обработки информации с грифом "совершенно секретно" - не ниже второго класса;
  • при обработки информации с грифом "особой важности" - только первого класса.

Показатели защищенности сведены в табл.1.

Обозначения:

Таблица 1
Показатели защищенности Классы защищенности
5 4 3 2 1
Управление доступом (фильтрация данных и трансляция адресов) + + + + =
Идентификация и аутентификация - - + = +
Регистрация - + + + =
Администрирование: идентификация и аутентификация + = + + +
Администрирование: регистрация + + + = =
Администрирование: простота использования - - + = +
Целостность + = + + +
Восстановление + = = + =
Тестирование + + + + +
Руководство администратора защиты + = = = =
Тестовая документация + + + + +
Конструкторская (проектная) документация + = + = +

Руководство для приобретающих брандмауэр

Исследовательским подразделением компании TruSecure - лабораторией ICSA - разработан документ "Firewall Buyers Guide" (Гид покупателей межсетевого экрана). В одном из разделов этого документа дана следующая форма оценки покупателя:

  1. Контактная информация - адрес и ответственные лица.
  2. Бизнес-среда работы:
    • количество и расположение отдельных учреждений (зданий) предприятия;
    • указание подразделений и информации ограниченного характера и информации, для которой важна доступность данных для взаимодействия подразделений, их размещение;
    • Указание внешних партнеров, с которыми необходимо организовать взаимодействие;
    • описание сервисов, открытых публично;
    • трребования к организации удаленного доступа во внутреннее информационное пространство предприятия;
    • сервисы электронных служб, использующие публичные каналы связи (например, электронная коммерция).
  3. Планируемые изменения в бизнес-среде по перечисленным параметрам.
  4. Информационная среда:
    • количество пользовательских рабочих станций с указанием аппаратного обеспечения, системного и прикладного программного обеспечения;
    • структура сети с указанием топологии, среды передачи данных, используемых устройств и протоколов;
    • структура удаленного доступа с указанием используемых устройств, а также методов аутентификации;
    • количество серверов с указанием аппаратного обеспечения,системного и прикладного программного обеспечения;
    • существующая система поддержки информационных систем со стороны поставщиков с их указанием и границами сферы деятельности;
    • антивирусные системы и другие системы контроля программного обеспечения;
    • технология упрравления сетью и информационными системами;
    • аутентификационные технологии - список и описание.
  5. Планируемые изменения в информационной среде по перечисленням параметрам.
  6. Связь с Интернетом:
    • тип интернет-соединения;
    • существующие межсетевые экраны (если они есть);
    • Средства связи с внешней средой, используемые внутренними системами;
    • внутренние системы и сервисы, доступные извне;
    • серверы электронной коммерции и других транзакционных систем;
    • указание на наличие утвержденной политики безопасности доступа и использования Интернета.
  7. Планируемые мероприятия (для которых приобретается межсетевой экран):
    • изменение в способах доступа к Интернету и в политике безопасности предприятия;
    • появление новых протокоолов, которые необходимо поддерживать отдельно для внутренних пользователей, пользователей с удаленным доступом или специальных пользователей, доступных публично.
  8. Требуемая функциональность межсетевого экрана:
    • по контролю доступа;
    • выдаваемым сообщениям;
    • аутентификации;
    • управлению конфигурацией;
    • контролю содержимого проходящего трафика;
    • регистрационным журналам;
    • распознаванию атак;
    • сетевым опциям (количество интерфейсов, способ доступа);
    • удаленному администрированию;
    • системным требованиям (под ключ, интеграция с другими продуктами и т.д.).
  9. Прочие условия:
    • предполагаемая стоимость межсетевого экрана (сколько предприятие может потратить);
    • предполагаемая дата начала работы продукта;
    • требования к наличию у продукта сертификатов;
    • требования к предполагаемому администратору продукта и к службе поддержки;
    • специальные условия контракта (если есть);
    • другие замечания, которые не включены в данную форму.

Предполагается, что предприятие, заполнив данную форму и отправив ее производителю, позволит последнему сформировать наиболее качественное предложение для покупателя. Заполнение данной формы, впрочем, и без отправки ее кому-либо, позволит организации лучше понять, какое решение ей необходимо.



Рекомендуем почитать

Наверх