Методология тестирования программного обеспечения. Метрика программного обеспечения. Тестирование на основе рисков

Для Windows Phone 09.05.2019
Для Windows Phone

При создании типичного программного проекта около 50 % общего времени и более 50 % общей стоимости расходуется на тестирование. Эти цифры могут вызвать целую дискуссию, однако основным здесь является вопрос: как сократить расходы и повысить качество программного обеспечения?

Ручное тестирование (manual testing) - часть процесса тестирования на этапе контроля качества в процессе разработки программного обеспечения. Оно проводится тестировщиками или обычными пользователи путем моделирования возможных сценариев действия пользователя.

Задача тестировщика заключается в поиске наибольшего количества ошибок. Он должен хорошо знать наиболее часто допускаемые ошибки и уметь находить их за минимально короткий период времени. Остальные ошибки, которые не являются типовыми, обнаруживаются только тщательно созданными наборами тестов. Однако, из этого не следует, что для типовых ошибок не нужно составлять тесты.

Ручное тестирование заключается в выполнении задокументированной процедуры, где описана методика выполнения тесто. Методика задает порядок тестов и для каждого теста – список значений параметров, который подается на вход со список результатов на выходе. Так как процедура предназначена для выполнения человеком, в ее описании для краткости могут использоваться некоторые значения по умолчанию, ориентированные на здравый смысл, или ссылки на информацию, хранящуюся в другом документе.

Пример фрагмента процедуры

  1. Подать на вход три разных целых числа;
  2. Запустить тестовое исполнение;
  3. Проверить, соответствует ли полученный результат таблице [ссылка на документ1] с учетом поправок [ссылка на документ2];
  4. Убедиться в понятности и корректности выдаваемой сопроводительной информации.

В этой процедуре тестировщик использует дополнительные документы и собственное понимание того, какую сопроводительную информацию считать “понятной и корректной”. Успех от использования процедурного подхода достигается в случае однозначного понимания тестировщиком всех пунктов процедуры. Например, в п.1 приведенной процедуры не уточняется, из какого диапазона должны быть заданы три целых числа, и не описывается дополнительно, какие числа считаются “разными”.

Попытка автоматизировать приведенный выше тест приводит к созданию скрипта, задающего тестируемому продукту три конкретных числа и перенаправляющего вывод продукта в файл с целью его анализа, а также содержащего конкретное значение желаемого результата, с которым сверяется получаемое при прогоне теста значение. Таким образом, вся необходимая информация должна быть явно помещена в текст (скрипт) теста, что требует дополнительных по сравнению с ручным подходом усилий. Также дополнительных усилий и времени требует создание разборщика вывода (программы согласования форматов представления эталонных значений из теста и вычисляемых при прогоне результатов) и, возможно, создание базы хранения состояний эталонных данных.

Методы ручного тестирования достаточно эффективны с точки зрения нахождения ошибок. Их обязательно следует использовать в каждом программном продукте. Описанные методы предназначены для периода разработки, когда программа закодирована, но активный этап тестирования еще не начался. Похожие методы могут применяться и на более ранних этапах процесса создания программ, в конце каждого этапа проектирования.

Данные методы способствуют существенному увеличению производительности и повышению надежности программы. Во-первых, они обычно позволяют раньше обнаружить ошибки, уменьшить стоимость исправления последних и увеличить вероятность того, что корректировка произведена правильно. Во-вторых, психология программистов, по-видимому, изменяется, когда начинается тестирование перед релизом. Возрастает внутреннее напряжение и появляется тенденция «исправлять ошибки так быстро, как только это возможно». В итоге программисты допускают больше промахов при корректировке ошибок, уже найденных во время тестирования, чем при корректировке ошибок, найденных на более ранних этапах. Кроме того, скептицизм связан с тем, что это «первобытный метод». Сейчас стоимость машинного времени очень низка, а стоимость труда тестировщиков высока и ряд руководителей пойдут на все, чтобы сократить расходы. Однако, есть другая сторона ручного тестирования – при тестировании за компьютером причины ошибок выявляются только в программе, а самая глубокая их причина – мышление программиста, как правило, не претерпевает изменений, при ручном же тестировании, программист глубоко анализирует свой код, попутно выявляя возможные пути его оптимизации, и изменяет собственный стиль мышления, повышая квалификацию. Таким образом, можно прийти к выводу, что ручное тестирование можно и нужно проводить на первичном этапе, особенно, если нет прессинга времени и бюджета.

Сравнение ручного и автоматизированного подхода к тестированию

Сравнение показывает тенденцию современного тестирования, ориентирующую на максимальную автоматизацию процесса тестирования и генерацию тестового кода, что позволяет справляться с большими объемами данных и тестов, необходимых для обеспечения качества при производстве программных продуктов.

Ручное Автоматизированное
Задание входных значений Гибкость в задании данных. Позволяет использовать разные значения на разных циклах прогона тестов, расширяя покрытие Входные значения строго заданы
Проверка результата Гибкая, позволяет тестировщику оценивать нечетко сформулированные критерии Строгая. Нечетко сформулированные критерии могут быть проверены только путем сравнения с эталоном
Повторяемость Низкая. Человеческий фактор и нечеткое определение данных приводят к неповторяемости тестирования Высокая
Надежность Низкая. Длительные тестовые циклы приводят к снижению внимания тестировщика Высокая, не зависит от длины тестового цикла
Чувствительность к незначительным изменениям в продукте Зависит от детальности описания процедуры. Обычно тестировщик в состоянии выполнить тест, если внешний вид продукта и текст сообщений несколько изменились Высокая. Незначительные изменения в интерфейсе часто ведут к коррекции эталонов
Скорость выполнения тестового набора Низкая Высокая
Возможность генерации тестов Отсутствует. Низкая скорость выполнения обычно не позволяет исполнить сгенерированный набор тестов Поддерживается

Инспекции и сквозные просмотры

Инспекции исходного текста и сквозные просмотры являются основными методами ручного тестирования. Так как эти два метода имеют много общего, они рассматриваются здесь совместно. Инспекции и сквозные просмотры включают в себя чтение или визуальную проверку программы группой лиц. Оба метода предполагают проведение подготовительной работы. Завершающим этапом является «обмен мнениями» – собрание, проводимое участниками проверки. Цель такого собрания – нахождение ошибок, но не их устранение (т. е. тестирование, а не отладка). Программа, тестируется не автором, а другими людьми и фактически «инспекция» и «сквозной просмотр» – просто новые названия старого метода «проверки за столом», однако они более эффективны потому что в процессе участвует не только автор программы, но и другие лица. Результатом использования этих методов является, обычно, точное определение природы ошибок. К тому же этим методом можно обнаруживать группы ошибок, что позволяет в дальнейшем корректировать сразу несколько ошибок.

Инспекции исходного текста это набор процедур и приемов обнаружения ошибок при изучении текста группой тестировщиков. Во время инспекции исходного текста внимание сосредоточено на методах, процедурах, формах выполнения и т. д. Группа включает обычно четыре человека, один из которых выполняет функции председателя. Председатель должен быть компетентным программистом, но не автором программы; он не должен быть знаком с ее деталями. В обязанности председателя входят подготовка материалов для заседаний инспектирующей группы и составление графика их проведения, ведение заседаний, регистрация всех найденных ошибок и принятие мер по их последующему исправлению.

Инспекционное заседание разбивается на две части:

  1. Программиста просят рассказать о логике работы программы. Во время беседы возникают вопросы, преследующие цель обнаружения ошибки. Практика показала, что даже только чтение своей программы слушателям представляется эффективным методом обнаружения ошибок и многие ошибки находит сам программист, а не другие члены группы.
  2. Программа анализируется по списку вопросов для выявления исторически сложившихся общих ошибок программирования. Ее участники должны сосредоточить свое внимание на нахождении ошибок, а не на их корректировке. Корректировка ошибок выполняется программистом после инспекционного заседания. Список ошибок анализируется и они распределяются по категориям, что позволяет совершенствовать его с целью повышения эффективности будущих инспекций. Можно вести учет типов ошибок, на основании которого следует проводить дополнительную стажировку программиста в слабых областях. Процесс инспектирования в дополнение к своему основному назначению, выполняет еще ряд полезных функций. Результаты инспекции позволяют программисту увидеть сделанные им ошибки и способствуют его обучению на собственных ошибках, он обычно получает возможность оценить свой стиль программирования и выбор алгоритмов и методов тестирования. Остальные участники приобретают опыт, рассматривая ошибки и стиль программирования других программистов. Инспекция является способом раннего выявления наиболее склонных к ошибкам частей программы, позволяющим сконцентрировать внимание на этих частях в процессе выполнения тестирования.

Сквозной просмотр, представляет собой набор процедур и способов обнаружения ошибок, осуществляемых группой лиц, просматривающих текст программы. Метод имеет много общего с процессом инспектирования, но их процедуры несколько отличаются и в нем используются другие методы обнаружения ошибок. Сквозной просмотр проводится как непрерывное заседание, группа состоит из 3–5 человек. Процедура отличается от процедуры инспекционного заседания тем, что участники «выполняют роль компьютера». Комиссии предлагают небольшое число написанных на бумаге тестов, представляющих собой наборы входных данных и ожидаемых выходных данных для программы или модуля. Тестовые данные подвергаются обработке в соответствии с логикой программы, состояние программы и значения переменных отслеживается на бумаге или доске.Тесты сами по себе не играют критической роли, а служат средством для первоначального понимания программы и основой для вопросов программисту о логике проектирования и принятых допущениях.

Проверка за столом может рассматриваться как проверка исходного текста или сквозные просмотры, осуществляемые одним человеком, который читает текст программы, проверяет его по списку ошибок или пропускает через программу тестовые данные. Большей частью проверка за столом является относительно непродуктивной, так как представляет собой полностью неупорядоченный процесс. К тому же проверка за столом противопоставляется одному из принципов тестирования, согласно которому программист обычно неэффективно тестирует собственные программы. Поэтому проверка за столом наилучшим образом может быть выполнена человеком, не являющимся автором программы, например, два программиста могут обмениваться программами вместо того, чтобы проверять за столом свои собственные программы. Однако даже в этом случае такая проверка менее эффективна, чем сквозные просмотры или инспекции. Данная причина является главной для образования группы при сквозных просмотрах или инспекциях исходного текста. Заседание группы благоприятствует созданию атмосферы здоровой конкуренции: участники хотят показать себя с лучшей стороны при нахождении ошибок. При проверке за столом этот, безусловно, ценный эффект отсутствует. Короче говоря, проверка за столом, конечно, полезна, но она гораздо менее эффективна, чем инспекция исходного текста или сквозной просмотр.

— процесс исследования программного обеспечения (ПО) с целью получения информации о качестве продукта.

Введение

Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью выявить все дефекты и установить корректность функционирования анализируемой программы, поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки или верификации может доказать, что дефекты отсутствуют с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов — это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

С точки зрения ISO 9126, Качество (программных средств) можно определить как совокупную характеристику исследуемого ПО с учётом следующих составляющих:

· Надёжность

· Сопровождаемость

· Практичность

· Эффективность

· Мобильность

· Функциональность

Более полный список атрибутов и критериев можно найти в стандарте ISO 9126 Международной организации по стандартизации. Состав и содержание документации, сопутствующей процессу тестирования, определяется стандартом IEEE 829-1998 Standard for Software Test Documentation.

Тестирование программного обеспечения

Существует несколько признаков, по которым принято производить классификацию видов тестирования. Обычно выделяют следующие:

По объекту тестирования:

· Функциональное тестирование (functional testing)

· Нагрузочное тестирование

· Тестирование производительности (perfomance/stress testing)

· Тестирование стабильности (stability/load testing)

· Тестирование удобства использования (usability testing)

· Тестирование интерфейса пользователя (UI testing)

· Тестирование безопасности (security testing)

· Тестирование локализации (localization testing)

· Тестирование совместимости (compatibility testing)

По знанию системы:

· Тестирование чёрного ящика (black box)

· Тестирование белого ящика (white box)

· Тестирование серого ящика (gray box)

По степени автоматизированности:

· Ручное тестирование (manual testing)

· Автоматизированное тестирование (automated testing)

· Полуавтоматизированное тестирование (semiautomated testing)

По степени изолированности компонентов:

· Компонентное (модульное) тестирование (component/unit testing)

· Интеграционное тестирование (integration testing)

· Системное тестирование (system/end-to-end testing)

По времени проведения тестирования:

· Альфа тестирование (alpha testing)

· Тестирование при приёмке (smoke testing)

· Тестирование новых функциональностей (new feature testing)

· Регрессионное тестирование (regression testing)

· Тестирование при сдаче (acceptance testing)

· Бета тестирование (beta testing)

По признаку позитивности сценариев:

· Позитивное тестирование (positive testing)

· Негативное тестирование (negative testing)

По степени подготовленности к тестированию:

· Тестирование по документации (formal testing)

· Эд Хок (интуитивное) тестирование (ad hoc testing)

Уровни тестирования

Модульное тестирование (юнит-тестирование) — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто модульное тестирование осуществляется разработчиками ПО.

Интеграционное тестирование — тестируются интерфейсы между компонентами, подсистемами. При наличии резерва времени на данной стадии тестирование ведётся итерационно, с постепенным подключением последующих подсистем.

Системное тестирование — тестируется интегрированная система на её соответствие требованиям.

Альфа-тестирование — имитация реальной работы с системой штатными разработчиками, либо реальная работа с системой потенциальными пользователями/заказчиком. Чаще всего альфа-тестирование проводится на ранней стадии разработки продукта, но в некоторых случаях может применяться для законченного продукта в качестве внутреннего приёмочного тестирования. Иногда альфа-тестирование выполняется под отладчиком или с использованием окружения, которое помогает быстро выявлять найденные ошибки. Обнаруженные ошибки могут быть переданы тестировщикам для дополнительного исследования в окружении, подобном тому, в котором будет использоваться ПО.

Бета-тестирование — в некоторых случаях выполняется распространение версии с ограничениями (по функциональности или времени работы) для некоторой группы лиц, с тем чтобы убедиться, что продукт содержит достаточно мало ошибок. Иногда бета-тестирование выполняется для того, чтобы получить обратную связь о продукте от его будущих пользователей.

Часто для свободного/открытого ПО стадия Альфа-тестирования характеризует функциональное наполнение кода, а Бета тестирования — стадию исправления ошибок. При этом как правило на каждом этапе разработки промежуточные результаты работы доступны конечным пользователям.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования (программного и некоторого аппаратного обеспечения), фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании белого ящика (англ. white-box testing, также говорят — прозрачного ящика), разработчик теста имеет доступ к исходному коду программ и может писать код, который связан с библиотеками тестируемого ПО. Это типично для юнит-тестирования (англ. unit testing), при котором тестируются только отдельные части системы. Оно обеспечивает то, что компоненты конструкции — работоспособны и устойчивы, до определённой степени. При тестировании белого ящика используются метрики покрытия кода.

При тестировании чёрного ящика, тестировщик имеет доступ к ПО только через те же интерфейсы, что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Статическое и динамическое тестирование

Описанные выше техники — тестирование белого ящика и тестирование чёрного ящика — предполагают, что код исполняется, и разница состоит лишь в той информации, которой владеет тестировщик. В обоих случаях это динамическое тестирование.

При статическом тестировании программный код не выполняется — анализ программы происходит на основе исходного кода, который вычитывается вручную, либо анализируется специальными инструментами. В некоторых случаях, анализируется не исходный, а промежуточный код (такой как байт-код или код на MSIL).

Также к статическому тестированию относят тестирование требований, спецификаций, документации.

Регрессионное тестирование

Регрессио́нное тести́рование (англ. regression testing, от лат. regressio — движение назад) — собирательное название для всех видов тестирования программного обеспечения, направленных на обнаружение ошибок в уже протестированных участках исходного кода. Такие ошибки — когда после внесения изменений в программу перестает работать то, что должно было продолжать работать, — называют регрессионными ошибками (англ. regression bugs).

Обычно используемые методы регрессионного тестирования включают повторные прогоны предыдущих тестов, а также проверки, не попали ли регрессионные ошибки в очередную версию в результате слияния кода.

Из опыта разработки ПО известно, что повторное появление одних и тех же ошибок — случай достаточно частый. Иногда это происходит из-за слабой техники управления версиями или по причине человеческой ошибки при работе с системой управления версиями. Но настолько же часто решение проблемы бывает «недолго живущим»: после следующего изменения в программе решение перестаёт работать. И наконец, при переписывании какой-либо части кода часто всплывают те же ошибки, что были в предыдущей реализации.

Поэтому считается хорошей практикой при исправлении ошибки создать тест на неё и регулярно прогонять его при последующих изменениях программы. Хотя регрессионное тестирование может быть выполнено и вручную, но чаще всего это делается с помощью специализированных программ, позволяющих выполнять все регрессионные тесты автоматически. В некоторых проектах даже используются инструменты для автоматического прогона регрессионных тестов через заданный интервал времени. Обычно это выполняется после каждой удачной компиляции (в небольших проектах) либо каждую ночь или каждую неделю.

Регрессионное тестирование является неотъемлемой частью экстремального программирования. В этой методологии проектная документация заменяется на расширяемое, повторяемое и автоматизированное тестирование всего программного пакета на каждой стадии цикла разработки программного обеспечения.

Регрессионное тестирование может быть использовано не только для проверки корректности программы, часто оно также используется для оценки качества полученного результата. Так, при разработке компилятора, при прогоне регрессионных тестов рассматривается размер получаемого кода, скорость его выполнения и время компиляции каждого из тестовых примеров.

Цитата

«Фундаментальная проблема при сопровождении программ состоит в том, что исправление одной ошибки с большой вероятностью (20-50%) влечет появление новой. Поэтому весь процесс идет по принципу "два шага вперед, шаг назад".

Почему не удается устранять ошибки более аккуратно? Во-первых, даже скрытый дефект проявляет себя как отказ в каком-то одном месте. В действительности же он часто имеет разветвления по всей системе, обычно неочевидные. Всякая попытка исправить его минимальными усилиями приведет к исправлению локального и очевидного, но если только структура не является очень ясной или документация очень хорошей, отдаленные последствия этого исправления останутся незамеченными. Во-вторых, ошибки обычно исправляет не автор программы, а зачастую младший программист или стажер.

Вследствие внесения новых ошибок сопровождение программы требует значительно больше системной отладки на каждый оператор, чем при любом другом виде программирования. Теоретически, после каждого исправления нужно прогнать весь набор контрольных примеров, по которым система проверялась раньше, чтобы убедиться, что она каким-нибудь непонятным образом не повредилась. На практике такое возвратное (регрессионное) тестирование действительно должно приближаться к этому теоретическому идеалу, и оно очень дорого стоит.»

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования.

Тестовые скрипты

Тестировщики используют тестовые скрипты на разных уровнях: как в модульном, так и в интеграционном и системном тестировании. Тестовые скрипты, как правило, пишутся для проверки компонентов, в которых наиболее высока вероятность появления отказов или вовремя не найденная ошибка может быть дорогостоящей.

Покрытие кода

Покрытие кода — мера, используемая при тестировании программного обеспечения. Она показывает процент, насколько исходный код программы был протестирован. Техника покрытия кода была одной из первых методик, изобретённых для систематического тестирования ПО. Первое упоминание покрытия кода в публикациях появилось в 1963 году.

Критерии

Существует несколько различных способов измерения покрытия, основные из них:

· Покрытие операторов — каждая ли строка исходного кода была выполнена и протестирована?

· Покрытие условий — каждая ли точка решения (вычисления истинно ли или ложно выражение) была выполнена и протестирована?

· Покрытие путей — все ли возможные пути через заданную часть кода были выполнены и протестированы?

· Покрытие функций — каждая ли функция программы была выполнена

· Покрытие вход/выход — все ли вызовы функций и возвраты из них были выполнены

Для программ с особыми требованиями к безопасности часто требуется продемонстрировать, что тестами достигается 100 % покрытие для одного из критериев. Некоторые из приведённых критериев покрытия связаны между собой; например, покрытие путей включает в себя и покрытие условий и покрытие операторов. Покрытие операторов не включает покрытие условий, как показывает этот код на Си:

printf("this is ");

if (bar < 1)

printf("not ");

printf (" a positive integer ");

Если здесь bar = −1, то покрытие операторов будет полным, а покрытие условий — нет, так как случай несоблюдения условия в операторе if — не покрыт. Полное покрытие путей обычно невозможно. Фрагмент кода, имеющий n условий содержит 2n путей; конструкция цикла порождает бесконечное количество путей. Некоторые пути в программе могут быть не достигнуты из-за того, что в тестовых данных отсутствовали такие, которые могли привести к выполнению этих путей. Не существует универсального алгоритма, который решал бы проблему недостижимых путей (этот алгоритм можно было бы использовать для решения проблемы останова). На практике для достижения покрытия путей используется следующий подход: выделяются классы путей (например, к одному классу можно отнести пути отличающиеся только количеством итераций в одном и том же цикле), 100 % покрытие достигнуто, если покрыты все классы путей (класс считается покрытым, если покрыт хотя бы один путь из него).

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Практическое применение

Обычно исходный код снабжается тестами, которые регулярно выполняются. Полученный отчёт анализируется с целью выявить невыполнявшиеся области кода, набор тестов обновляется, пишутся тесты для непокрытых областей. Цель состоит в том, чтобы получить набор тестов для регрессионного тестирования, тщательно проверяющих весь исходный код.

Степень покрытия кода обычно выражают в виде процента. Например, «мы протестировали 67 % кода». Смысл этой фразы зависит от того какой критерий был использован. Например, 67 % покрытия путей — это лучший результат чем 67 % покрытия операторов. Вопрос о связи значения покрытия кода и качеством тестового набора ещё до конца не решён.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях. E-mail: [email protected]

Рано или поздно многие организации, использующие то или иное программное обеспечение приходят к необходимости организовывать процесс тестирования. Причин обычно несколько, либо это стартап, который сразу требует тестирования своего ПО, либо руководство начинает понимать, что помимо тестирования бизнесом, сопровождением, разработкой да всеми кого только можно привлечь в компании все таки требуются профессиональные специалисты по тестированию, которые разгрузят всех других людей, не имеющих никакого нормального представления о тестировании, И вот именно с этого момента зачастую начинается традиционное для нашей работы назначение одного из текущих сотрудников на должность руководителя отдела тестирования. Мол, вот тебе поле, засеивай… А как, что ты будешь делать не важно, но отдел должен быть и должен приносить результаты. Конечно, не всегда бывает все так плохо, кто-то все таки ищет на эту должность грамотных специалистов по тестированию, но тем не менее процесса тестирования на этом этапе все равно нет и его нужно создавать.

И очень часто многие руководители начинают создавать процесс тестирования не системно, а выборочно. Но при этом, если организовывать процесс тестирования, выдирая просто лучшие практики, не имея при этом системного подхода, то такой процесс не принесет положительных результатов ни через месяц, ни через год.

Я думаю многие знают, что если процесс тестирования с самого начала организовать не правильно, то потом изменить его будет уже крайне сложно. Поэтому нужно определить, как же правильно организовать процесс тестирования?

С чего же начинать организацию процесса тестирования?

Я выделяю 11 основных критериев в организации процесса тестирования:

  1. Цели и область тестирования
  2. Команда
  3. Управление
  4. Коммуникация и взаимодействие
  5. Методология тестирования
  6. Документированность процесса
  7. Управление рисками
  8. Измерение процесса
  9. Инструменты
  10. Тестовые среды
  11. Совершенствование процесса

Именно выполнение всех этих критериев позволяет равномерно развивать процесс тестирования, что в короткие сроки позволяет достигать того уровня, когда процесс тестирования будет приносить положительные результаты.

Поэтому, любой руководитель, перед которым стоит задача организации процесса тестирования, должен задать следующие вопросы:

  • Зачем нам нужно тестирование?
  • Что мы имеем, чтобы сделать тестирование?
  • Какие процессы нужно формализовать или создать?
  • Как и что мы должны тестировать?

Только после того, как мы получим ответы на эти вопросы, можно начинать переходить к стандартам.

Я выделяю следующие стандарты, которые действительно нужно изучить перед тем, как начинать строить процесс:

  • ISO 29119
  • IEEE 829\1008
  • TPI Next&TMap
  • ISTQB

Естественно, использование полностью практик, изложенных в стандартах нельзя. Любой стандарт должен быть кастомизирован под потребности именно вашего процесса тестирования, потому что необдуманное внедрение практик стандартов может привести к неблагоприятным последствиям, потому что ваш процесс тестирования не будет выполнять требований бизнеса.

Любой ИТ процесс всегда должен удовлетворять потребностям бизнеса!

Мы разберем основные критерии построения процесса тестирования.

Цели и область тестирования

Целью тестирования является обнаружение дефектов, проверка соответствия ПО заявленным требованиям, а также предоставление обратной связи о дефектах всем заинтересованным сторонам.

Это стандартная цель процесса тестирования, но также могут быть цели, которые определяются потребностями бизнеса организации. К примеру, для банков характерно, чтобы различные требования ЦБ внедрялись своевременно, поэтому дополнительно к общей цели тестирования, еще добавляется своевременность выполнение тестирования с требуемым качеством для критичных задач.

Говоря об области тестирования, мы должны прекрасно понимать, что именно нам предстоит тестировать. Это могут быть системы, компоненты, бизнес процессы. Для того, чтобы это понять, то нужно просто ответить на два вопроса:

  • Что надо тестировать?
  • Что будем тестировать?

Зачастую, то что надо тестировать и то что будем может сильно различаться. Это зависит от возможностей вашего процесса тестирования. «Что надо» часто диктуется бизнесом и руководством, поэтому хороший руководитель должен всегда понимать, «что нужно» тестировать. Как говорится в поговорке: «За двумя зайцами погонишься, ни одного не поймаешь», так и тут. Всегда лучше качественно тестировать то, что действительно вы можете тестировать вашей командой, чем хвататься за все, что просит бизнес и ничего не успевать в срок, да еще и пропускать критичные дефекты.

Команда и управление

Команда — это самая важная составляющая процесса тестирования. Без команды вы, как руководитель, ничего не сделаете. Зачастую к формированию команды подходят несколькими подходами:

Инструменты и инфраструктура

Какой же процесс тестирования без инструментов? Это получается ручной труд ради ручного труда 🙂 Я думаю многие из вас часто слышали о написании тест-кейсов в документах ворд, о построения графиков и диаграмм в экселе. Но, зачем тратить усилия, если рынок предлагает нам готовые продукты управления тестирования, такие как HP ALM, MS TFS, TestRail, TestLink, JIRA Zephyr и многие другие.
Поэтому, если вы приступили к организации процесса тестирования, то делайте этот процесс удобным и эффективным. Пишите тест-кейсы в удобных формах готовых продуктов, интегрируйте инструменты с системой управления задачами, настраивайте и т.д.

Подходя к выбору инструмента нужно всегда понимать:

  • Какие задачи вы планируете выполнять?
  • Какой у вас бюджет на инструменты?

Получив ответы на эти вопросы вы сможете определить наиболее удобные для вас инструменты тестирования, а возможно и разработать собственные.

Помимо инструментов управления тестирования, к инструментам тестирования также можно отнести:

  • Система управления дефектами и задачами (может включаться в систему управления тестированием)
  • Вспомогательные инструменты (для скриншотов, снятия логов, работы с БД, SOUP UI для XML и т.д.)
  • Инструменты автоматизации ( , Selenium и т.д.)
  • Системы управления знаниями (на wiki движке)

Теперь поговорим об инфраструктуре. В текущем контексте своего повествования я подразумеваю тестовые среды.

Практически в любой организации, особенно если организация крупная и не разрабатывает мобильные приложения для плеймаркета, вам потребуется тестовая (ые) среда (ы) для тестирования. Мощности и объемы интеграции систем в тестовых средах могут быть различными в зависимости от объемов тестирования.

Стандартно я выделяю следующие типы тестовых сред:

  • Среда разработки (можно ли ее относить к тестовой?, но тем не менее)
  • Среда тестирования системы (может быть развернута одна или несколько систем, компонент, не требует серьезных мощностей)
  • Среда интеграции (полноценный интеграционная среда для проверки работоспособности сквозных бизнес процессов)
  • Среда (основное требования — соответствие мощностями боевому контуру)
  • Среда ПродЛайк/ПреПрод (среда для отладки готового протестированного билда, проведение инсталяционного тестирования)

Возможность организации такого большого количества тестовых сред позволяет выполнять работы по тестированию с наложением их друг на друга, тем самым увеличивая кол-во изменений (релизов, спринтов), которые могут идти параллельно, но на разных этапах тестирования.

Совершенствование процесса

Я очень часто говорю такую фразу, что «Любой процесс, неважно какой, всегда должен постоянно совершенствоваться», на что очень часто слышу «Зачем, наш процесс и так хорошо работает».

Но это не так. Почему мы должны постоянно совершенствовать процесс тестирования:

1. Цели тестирования не могут быть одинаковыми, они постоянно меняются в зависимости от потребностей бизнеса, что диктуется рынком.

2. ИТ сфера постоянно развивается. Приходят новые технологи подходы, которые всегда позволяются совершенствовать процесс тестирования.

Как говорится, совершенству нет предела!

Ну а как совершенствовать — это стандартный цикл Демминга.

Запланировали — .Сделали — Проанализировали — Скорректировали

Ну и в заключение скажу, что правильная позволяет в кротчайшие сроки создать действительно эффективный процесс тестирования, решающий поставленные ему цели и задачи.

  • Tutorial

Доброго времени суток!

Хочу собрать всю самую необходимую теорию по тестирвоанию, которую спрашивают на собеседованиях у trainee, junior и немножко middle. Собственно, я собрал уже не мало. Цель сего поста в том, чтобы сообща добавить упущенное и исправить/перефразировать/добавить/сделатьЧтоТоЕщё с тем, что уже есть, чтобы стало хорошо и можно было взять всё это и повторить перед очередным собеседованием про всяк случай. Вообщем, коллеги, прошу под кат, кому почерпнуть что-то новое, кому систематизировать старое, а кому внести свою лепту.

В итоге должна получиться исчерпывающая шпаргалка, которую нужно перечитать по дороге на собеседование.

Всё ниже перечисленное не выдумано мной лично, а взято с разных источников, где мне лично формулировка и определение понравилось больше. В конце список источников.

В теме: определение тестирования, качество, верификация / валидация, цели, этапы, тест план, пункты тест плана, тест дизайн, техники тест дизайна, traceability matrix, tets case, чек-лист, дефект, error/deffect/failure, баг репорт, severity vs priority, уровни тестирования, виды / типы, подходы к интеграционному тестированию, принципы тестирования, статическое и динамическое тестирование, исследовательское / ad-hoc тестирование, требования, жизненный цикл бага, стадии разработки ПО, decision table, qa/qc/test engineer, диаграмма связей.

Поехали!

Тестирование программного обеспечения - проверка соответствия между реальным и ожидаемым поведением программы, осуществляемая на конечном наборе тестов, выбранном определенным образом. В более широком смысле, тестирование - это одна из техник контроля качества, включающая в себя активности по планированию работ (Test Management), проектированию тестов (Test Design), выполнению тестирования (Test Execution) и анализу полученных результатов (Test Analysis).

Качество программного обеспечения (Software Quality) - это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Верификация (verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе .
Также можно встретить иную интерпритацию:
Процесс оценки соответствия продукта явным требованиям (спецификациям) и есть верификация (verification), в то же время оценка соответствия продукта ожиданиям и требованиям пользователей - есть валидация (validation). Также часто можно встретить следующее определение этих понятий:
Validation - ’is this the right specification?’.
Verification - ’is the system correct to specification?’.

Цели тестирвоания
Повысить вероятность того, что приложение, предназначенное для тестирования, будет работать правильно при любых обстоятельствах.
Повысить вероятность того, что приложение, предназначенное для тестирования, будет соответствовать всем описанным требованиям.
Предоставление актуальной информации о состоянии продукта на данный момент.

Этапы тестирования:
1. Анализ
2. Разработка стратегии тестирования
и планирование процедур контроля качества
3. Работа с требованиями
4. Создание тестовой документации
5. Тестирование прототипа
6. Основное тестирование
7. Стабилизация
8. Эксплуатация

Тест план (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Отвечает на вопросы:
Что надо тестировать?
Что будете тестировать?
Как будете тестировать?
Когда будете тестировать?
Критерии начала тестирования.
Критерии окончания тестирования.

Основные пункты тест плана
В стандарте IEEE 829 перечислены пункты, из которых должен (пусть - может) состоять тест-план:
a) Test plan identifier;
b) Introduction;
c) Test items;
d) Features to be tested;
e) Features not to be tested;
f) Approach;
g) Item pass/fail criteria;
h) Suspension criteria and resumption requirements;
i) Test deliverables;
j) Testing tasks;
k) Environmental needs;
l) Responsibilities;
m) StafÞng and training needs;
n) Schedule;
o) Risks and contingencies;
p) Approvals.

Тест дизайн - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Роли, ответственные за тест дизайн:
Тест аналитик - определяет «ЧТО тестировать?»
Тест дизайнер - определяет «КАК тестировать?»

Техники тест дизайна

Эквивалентное Разделение (Equivalence Partitioning - EP) . Как пример, у вас есть диапазон допустимых значений от 1 до 10, вы должны выбрать одно верное значение внутри интервала, скажем, 5, и одно неверное значение вне интервала - 0.

Анализ Граничных Значений (Boundary Value Analysis - BVA) . Если взять пример выше, в качестве значений для позитивного тестирования выберем минимальную и максимальную границы (1 и 10), и значения больше и меньше границ (0 и 11). Анализ Граничный значений может быть применен к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.

Причина / Следствие (Cause/Effect - CE) . Это, как правило, ввод комбинаций условий (причин), для получения ответа от системы (Следствие). Например, вы проверяете возможность добавлять клиента, используя определенную экранную форму. Для этого вам необходимо будет ввести несколько полей, таких как «Имя», «Адрес», «Номер Телефона» а затем, нажать кнопку «Добавить» - эта «Причина». После нажатия кнопки «Добавить», система добавляет клиента в базу данных и показывает его номер на экране - это «Следствие».

Исчерпывающее тестирование (Exhaustive Testing - ET) - это крайний случай. В пределах этой техники вы должны проверить все возможные комбинации входных значений, и в принципе, это должно найти все проблемы. На практике применение этого метода не представляется возможным, из-за огромного количества входных значений.

Traceability matrix - Матрица соответствия требований - это двумерная таблица, содержащая соответсвие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк - тестовые сценарии. На пересечении - отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки.
Матрица соответсвия требований используется QA-инженерами для валидации покрытия продукта тестами. МСТ является неотъемлемой частью тест-плана.

Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Пример:
Action Expected Result Test Result
(passed/failed/blocked)
Open page «login» Login page is opened Passed

Каждый тест кейс должен иметь 3 части:
PreConditions Список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
Test Case Description Список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям
PostConditions Список действий, переводящих систему в первоначальное состояние (состояние до проведения теста - initial state)
Виды Тестовых Случаев:
Тест кейсы разделяются по ожидаемому результату на позитивные и негативные:
Позитивный тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативный тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций (срабатывание валидаторов), а также проверяет, что вызываемая приложением функция не выполняется при срабатывании валидатора.

Чек-лист (check list) - это документ, описывающий что должно быть протестировано. При этом чек-лист может быть абсолютно разного уровня детализации. На сколько детальным будет чек-лист зависит от требований к отчетности, уровня знания продукта сотрудниками и сложности продукта.
Как правило, чек-лист содержит только действия (шаги), без ожидаемого результата. Чек-лист менее формализован чем тестовый сценарий. Его уместно использовать тогда, когда тестовые сценарии будут избыточны. Также чек-лист ассоциируются с гибкими подходами в тестировании.

Дефект (он же баг) - это несоответствие фактического результата выполнения программы ожидаемому результату. Дефекты обнаруживаются на этапе тестирования программного обеспечения (ПО), когда тестировщик проводит сравнение полученных результатов работы программы (компонента или дизайна) с ожидаемым результатом, описанным в спецификации требований.

Error - ошибка пользователя, то есть он пытается использовать программу иным способом.
Пример - вводит буквы в поля, где требуется вводить цифры (возраст, количество товара и т.п.).
В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message), с красным крестиком которые.
Bug (defect) - ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так как планировалось и программа выходит из-под контроля. Например, когда никак не контроллируется ввод пользователя, в результате неверные данные вызывают краши или иные «радости» в работе программы. Либо внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure - сбой (причём не обязательно аппаратный) в работе компонента, всей программы или системы. То есть, существуют такие дефекты, которые приводят к сбоям (A defect caused the failure) и существуют такие, которые не приводят. UI-дефекты например. Но аппаратный сбой, никак не связанный с software, тоже является failure.

Баг Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Шапка
Короткое описание (Summary) Короткое описание проблемы, явно указывающее на причину и тип ошибочной ситуации.
Проект (Project) Название тестируемого проекта
Компонент приложения (Component) Название части или функции тестируемого продукта
Номер версии (Version) Версия на которой была найдена ошибка
Серьезность (Severity) Наиболее распространена пятиуровневая система градации серьезности дефекта:
S1 Блокирующий (Blocker)
S2 Критический (Critical)
S3 Значительный (Major)
S4 Незначительный (Minor)
S5 Тривиальный (Trivial)
Приоритет (Priority) Приоритет дефекта:
P1 Высокий (High)
P2 Средний (Medium)
P3 Низкий (Low)
Статус (Status) Статус бага. Зависит от используемой процедуры и жизненного цикла бага (bug workflow and life cycle)

Автор (Author) Создатель баг репорта
Назначен на (Assigned To) Имя сотрудника, назначенного на решение проблемы
Окружение
ОС / Сервис Пак и т.д. / Браузера + версия /… Информация об окружении, на котором был найден баг: операционная система, сервис пак, для WEB тестирования - имя и версия браузера и т.д.

Описание
Шаги воспроизведения (Steps to Reproduce) Шаги, по которым можно легко воспроизвести ситуацию, приведшую к ошибке.
Фактический Результат (Result) Результат, полученный после прохождения шагов к воспроизведению
Ожидаемый результат (Expected Result) Ожидаемый правильный результат
Дополнения
Прикрепленный файл (Attachment) Файл с логами, скриншот или любой другой документ, который может помочь прояснить причину ошибки или указать на способ решения проблемы.

Severity vs Priority
Серьезность (Severity) - это атрибут, характеризующий влияние дефекта на работоспособность приложения.
Приоритет (Priority) - это атрибут, указывающий на очередность выполнения задачи или устранения дефекта. Можно сказать, что это инструмент менеджера по планированию работ. Чем выше приоритет, тем быстрее нужно исправить дефект.
Severity выставляется тестировщиком
Priority - менеджером, тимлидом или заказчиком

Градация Серьезности дефекта (Severity)

S1 Блокирующая (Blocker)
Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна. Решение проблемы необходимо для дальнейшего функционирования системы.

S2 Критическая (Critical)
Критическая ошибка, неправильно работающая ключевая бизнес логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, без возможности решения проблемы, используя другие входные точки. Решение проблемы необходимо для дальнейшей работы с ключевыми функциями тестируемой системой.

S3 Значительная (Major)
Значительная ошибка, часть основной бизнес логики работает некорректно. Ошибка не критична или есть возможность для работы с тестируемой функцией, используя другие входные точки.

S4 Незначительная (Minor)
Незначительная ошибка, не нарушающая бизнес логику тестируемой части приложения, очевидная проблема пользовательского интерфейса.

S5 Тривиальная (Trivial)
Тривиальная ошибка, не касающаяся бизнес логики приложения, плохо воспроизводимая проблема, малозаметная посредствам пользовательского интерфейса, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Градация Приоритета дефекта (Priority)
P1 Высокий (High)
Ошибка должна быть исправлена как можно быстрее, т.к. ее наличие является критической для проекта.
P2 Средний (Medium)
Ошибка должна быть исправлена, ее наличие не является критичной, но требует обязательного решения.
P3 Низкий (Low)
Ошибка должна быть исправлена, ее наличие не является критичной, и не требует срочного решения.

Уровни Тестирования

1. Модульное тестирование (Unit Testing)
Компонентное (модульное) тестирование проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).

2. Интеграционное тестирование (Integration Testing)
Проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.

3. Системное тестирование (System Testing)
Основной задачей системного тестирования является проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство использования и т.д.

4. Операционное тестирование (Release Testing).
Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации, как это было определено в бизнес моделе системы. Следует учесть, что и бизнес модель может содержать ошибки. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях; недостаточная производительность системы в среде эксплуатации и др. Очевидно, что нахождение подобных вещей на стадии внедрения - критичная и дорогостоящая проблема. Поэтому так важно проведение не только верификации, но и валидации, с самых ранних этапов разработки ПО.

5. Приемочное тестирование (Acceptance Testing)
Формальный процесс тестирования, который проверяет соответствие системы требованиям и проводится с целью:
определения удовлетворяет ли система приемочным критериям;
вынесения решения заказчиком или другим уполномоченным лицом принимается приложение или нет.

Виды / типы тестирования

Функциональные виды тестирования
Функциональное тестирование (Functional testing)
Тестирование безопасности (Security and Access Control Testing)
Тестирование взаимодействия (Interoperability Testing)

Нефункциональные виды тестирования
Все виды тестирования производительности:
o нагрузочное тестирование (Performance and Load Testing)
o стрессовое тестирование (Stress Testing)
o тестирование стабильности или надежности (Stability / Reliability Testing)
o объемное тестирование (Volume Testing)
Тестирование установки (Installation testing)
Тестирование удобства пользования (Usability Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing)
Конфигурационное тестирование (Configuration Testing)

Связанные с изменениями виды тестирования
Дымовое тестирование (Smoke Testing)
Регрессионное тестирование (Regression Testing)
Повторное тестирование (Re-testing)
Тестирование сборки (Build Verification Test)
Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)

Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функциональности компонента или системы в целом.

Тестирование безопасности - это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.

Тестирование взаимодействия (Interoperability Testing) - это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование

Нагрузочное тестирование - это автоматизированное тестирование, имитирующее работу определенного количества бизнес пользователей на каком-либо общем (разделяемом ими) ресурсе.

Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса. Стрессом в данном контексте может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также одной из задач при стрессовом тестировании может быть оценка деградации производительности, таким образом цели стрессового тестирования могут пересекаться с целями тестирования производительности.

Объемное тестирование (Volume Testing) . Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения

Тестирование стабильности или надежности (Stability / Reliability Testing) . Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.

Тестирование установки направленно на проверку успешной инсталляции и настройки, а также обновления или удаления программного обеспечения.

Тестирование удобства пользования - это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Сюда также входит:
Тестирование пользовательского интерфейса (англ. UI Testing) - это вид тестирования исследования, выполняемого с целью определения, удобен ли некоторый искусственный объект (такой как веб-страница, пользовательский интерфейс или устройство) для его предполагаемого применения.
User eXperience (UX) - ощущение, испытываемое пользователем во время использования цифрового продукта, в то время как User interface - это инструмент, позволяющий осуществлять интеракцию «пользователь - веб-ресурс».

Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети). Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.

Конфигурационное тестирование (Configuration Testing) - специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)

Дымовое (Smoke) тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что после сборки кода (нового или исправленного) устанавливаемое приложение, стартует и выполняет основные функции.

Регрессионное тестирование - это вид тестирования направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.

Повторное тестирование - тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.
В чем разница между regression testing и re-testing?
Re-testing - проверяется исправление багов
Regression testing - проверяется то, что исправление багов не повлияло на другие модули ПО и не вызвало новых багов.

Тестирование сборки или Build Verification Test - тестирование направленное на определение соответствия, выпущенной версии, критериям качества для начала тестирования. По своим целям является аналогом Дымового Тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.

Санитарное тестирование - это узконаправленное тестирование достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.

Предугадывание ошибки (Error Guessing - EG) . Это когда тест аналитик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку. Например, спецификация говорит: «пользователь должен ввести код». Тест аналитик, будет думать: «Что, если я не введу код?», «Что, если я введу неправильный код? », и так далее. Это и есть предугадывание ошибки.

Подходы к интеграционному тестированию:

Снизу вверх (Bottom Up Integration)
Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.

Сверху вниз (Top Down Integration)
Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами. Таким образом мы проводим тестирование сверху вниз.

Большой взрыв («Big Bang» Integration)
Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.

Принципы тестирования

Принцип 1 - Тестирование демонстрирует наличие дефектов (Testing shows presence of defects)
Тестирование может показать, что дефекты присутствуют, но не может доказать, что их нет. Тестирование снижает вероятность наличия дефектов, находящихся в программном обеспечении, но, даже если дефекты не были обнаружены, это не доказывает его корректности.

Принцип 2 - Исчерпывающее тестирование недостижимо (Exhaustive testing is impossible)
Полное тестирование с использованием всех комбинаций вводов и предусловий физически невыполнимо, за исключением тривиальных случаев. Вместо исчерпывающего тестирования должны использоваться анализ рисков и расстановка приоритетов, чтобы более точно сфокусировать усилия по тестированию.

Принцип 3 - Раннее тестирование (Early testing)
Чтобы найти дефекты как можно раньше, активности по тестированию должны быть начаты как можно раньше в жизненном цикле разработки программного обеспечения или системы, и должны быть сфокусированы на определенных целях.

Принцип 4 - Скопление дефектов (Defects clustering)
Усилия тестирования должны быть сосредоточены пропорционально ожидаемой, а позже реальной плотности дефектов по модулям. Как правило, большая часть дефектов, обнаруженных при тестировании или повлекших за собой основное количество сбоев системы, содержится в небольшом количестве модулей.

Принцип 5 - Парадокс пестицида (Pesticide paradox)
Если одни и те же тесты будут прогоняться много раз, в конечном счете этот набор тестовых сценариев больше не будет находить новых дефектов. Чтобы преодолеть этот «парадокс пестицида», тестовые сценарии должны регулярно рецензироваться и корректироваться, новые тесты должны быть разносторонними, чтобы охватить все компоненты программного обеспечения, или системы, и найти как можно больше дефектов.

Принцип 6 - Тестирование зависит от контекста (Testing is concept depending)
Тестирование выполняется по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем сайт электронной коммерции.

Принцип 7 - Заблуждение об отсутствии ошибок (Absence-of-errors fallacy)
Обнаружение и исправление дефектов не помогут, если созданная система не подходит пользователю и не удовлетворяет его ожиданиям и потребностям.

Cтатическое и динамическое тестирование
Статическое тестирование отличается от динамического тем, что производится без запуска программного кода продукта. Тестирование осуществляется путем анализа программного кода (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к статическому тестирвоанию относится тестирования спецификации и прочей документации.

Исследовательское / ad-hoc тестирование
Простейшее определение исследовательского тестирования - это разработка и выполнения тестов в одно и то же время. Что является противоположностью сценарного подхода (с его предопределенными процедурами тестирования, неважно ручными или автоматизированными). Исследовательские тесты, в отличие от сценарных тестов, не определены заранее и не выполняются в точном соответствии с планом.

Разница между ad hoc и exploratory testing в том, что теоретически, ad hoc может провести кто угодно, а для проведения exploratory необходимо мастерство и владение определенными техниками. Обратите внимание, что определенные техники это не только техники тестирования.

Требования - это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения. Что, а не как.

Требования к требованиям:
Корректность
Недвусмысленность
Полнота набора требований
Непротиворечивость набора требований
Проверяемость (тестопригодность)
Трассируемость
Понимаемость

Жизненный цикл бага

Стадии разработки ПО - это этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широко круга пользователей. Разработка ПО начинается с первоначального этапа разработки (стадия «пре-альфа») и продолжается стадиями, на которых продукт дорабатывается и модернизируется. Финальным этапом этого процесса становится выпуск на рынок окончательной версии программного обеспечения («общедоступного релиза»).

Программный продукт проходит следующие стадии:
анализ требований к проекту;
проектирование;
реализация;
тестирование продукта;
внедрение и поддержка.

Каждой стадии разработки ПО присваивается определенный порядковый номер. Также каждый этап имеет свое собственное название, которое характеризует готовность продукта на этой стадии.

Жизненный цикл разработки ПО:
Пре-альфа
Альфа
Бета
Релиз-кандидат
Релиз
Пост-релиз

Таблица принятия решений (decision table) - великолепный инструмент для упорядочения сложных бизнес требований, которые должны быть реализованы в продукте. В таблицах решений представлен набор условий, одновременное выполнение которых должно привести к определенному действию.

QA/QC/Test Engineer


Таким образом, мы можем построить модель иерархии процессов обеспечения качества: Тестирование - часть QC. QC - часть QA.

Диаграмма связей - это инструмент управления качеством, основанный на определении логических взаимосвязей между различными данными. Применяется этот инструмент для сопоставления причин и следствий по исследуемой проблеме.

Введение

Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью выявить все дефекты и установить корректность функционирования анализируемой программы, поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки, или верификации , может доказать, что дефекты отсутствуют с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов - это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

Также к статическому тестированию относят тестирование требований , спецификаций , документации .

Регрессионное тестирование

Основная статья: Регрессионное тестирование

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования .

Тестовые скрипты

Тестировщики используют тестовые скрипты на разных уровнях: как в модульном, так и в интеграционном и системном тестировании. Тестовые скрипты, как правило, пишутся для проверки компонентов, в которых наиболее высока вероятность появления отказов или вовремя не найденная ошибка может быть дорогостоящей.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования, фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании чёрного ящика , тестировщик имеет доступ к ПО только через те же интерфейсы , что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

При тестировании серого ящика разработчик теста имеет доступ к исходному коду, но при непосредственном выполнении тестов доступ к коду, как правило, не требуется.

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Покрытие кода

Основная статья: Покрытие кода

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях.

Цитаты

  • «Тестирование программ может использоваться для демонстрации наличия ошибок, но оно никогда не покажет их отсутствие.» - Дейкстра , 1970 г.

См. также

  • Обратная семантическая трассировка - универсальный метод тестирования любого проектного артефакта

Примечания

Литература

  • Гленфорд Майерс, Том Баджетт, Кори Сандлер Искусство тестирования программ, 3-е издание = The Art of Software Testing, 3rd Edition. - М .: «Диалектика», 2012. - 272 с. - ISBN 978-5-8459-1796-6
  • Лайза Криспин, Джанет Грегори Гибкое тестирование: практическое руководство для тестировщиков ПО и гибких команд = Agile Testing: A Practical Guide for Testers and Agile Teams. - М .: «Вильямс», 2010. - 464 с. - (Addison-Wesley Signature Series). - 1000 экз. - ISBN 978-5-8459-1625-9
  • Канер Кем, Фолк Джек, Нгуен Енг Кек Тестирование программного обеспечения. Фундаментальные концепции менеджмента бизнес-приложений. - Киев: ДиаСофт, 2001. - 544 с. - ISBN 9667393879
  • Калбертсон Роберт, Браун Крис, Кобб Гэри Быстрое тестирование. - М .: «Вильямс», 2002. - 374 с. - ISBN 5-8459-0336-X
  • Синицын С. В., Налютин Н. Ю. Верификация программного обеспечения. - М .: БИНОМ, 2008. - 368 с. - ISBN 978-5-94774-825-3
  • Бейзер Б. Тестирование чёрного ящика. Технологии функционального тестирования программного обеспечения и систем. - СПб. : Питер, 2004. - 320 с. - ISBN 5-94723-698-2

Ссылки

  • Портал специалистов по тестированию и обеспечению качества ПО (рус.)
  • Портал об автоматизированном тестировании ПО (рус.)
  • Качество программного обеспечения (рус.)


Рекомендуем почитать

Наверх