Линейное программирование означает. Нетрадиционные методы

Faq 23.07.2019
Faq

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

Назначение сервиса . Онлайн-калькулятор предназначен для решения задач линейного программирования симплексным методом путем перехода к КЗЛП и СЗЛП . При этом задача на минимум целевой функции сводятся к задаче на поиск максимума через преобразование целевой функции F*(X) = -F(X) . Также имеется возможность составить двойственную задачу .

Решение происходит в три этапа:

  1. Переход к КЗЛП. Любая ЗЛП вида ax ≤ b , ax ≥ b , ax = b (F(X) → extr) сводится к виду ax = b , F(X) → max ;
  2. Переход к СЗЛП. КЗЛП вида ax = b сводится к виду ax ≤ b , F(X) → max ;
  3. Решение симплексным методом;

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10

Переход от задачи минимизации целевой функции к задаче максимизации

Задача минимизации целевой функции F(X) легко может быть сведена к задаче максимизации функции F*(X) при тех же ограничениях путем введения функции: F*(X) = -F(X) . Обе задачи имеют одно и то же решение X*, и при этом min(F(X)) = -max(F*(X)) .
Проиллюстрируем этот факт графически:
F(x) → min
F(x) → max
Для оптимизации функции цели используем следующие понятия и методы.
Опорный план – план с определёнными через свободные базисными переменными.
Базисный план – опорный план с нулевыми базисными переменными.
Оптимальный план – базисный план, удовлетворяющий оптимальной функции цели (ФЦ).

Ведущий (разрешающий) элемент – коэффициент свободной неизвестной, которая становится базисной, а сам коэффициент преобразуется в единицу.
Направляющая строка – строка ведущего элемента, в которой расположена с единичным коэффициентом базисная неизвестная, исключаемая при преобразовании (строка с минимальным предельным коэффициентом, см. далее).
Направляющий столбец – столбец ведущего элемента, свободная неизвестная которого переводится в базисную (столбец с максимальной выгодой, см. далее).

Переменные x 1 , …, x m , входящие с единичными коэффициентами только в одно уравнение системы, с нулевыми - в остальные, называются базисными или зависимыми . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Переход осуществляется с помощью метода Гаусса-Жордана . Основная идея этого метода состоит в сведении системы m уравнений с n неизвестными к каноническому виду при помощи элементарных операций над строками.
Остальные n-m переменных (x m +1 ,…, x n) называются небазисными или независимыми переменными .

Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных x j ≥0, что эквивалентно условию неотрицательности b j ≥0.
Допустимое базисное решение является угловой точкой допустимого множества S задачи линейного программирования и называется иногда опорным планом .
Если среди неотрицательных чисел b j есть равные нулю, то допустимое базисное решение называется вырожденным (вырожденной угловой точкой) и соответствующая задача линейного программирования называется вырожденной .

Пример №1 . Свести задачу линейного программирования к стандартной ЗЛП.
F(X) = x 1 + 2x 2 - 2x 3 → min при ограничениях:
4x 1 + 3x 2 - x 3 ≤10
- 2x 2 + 5x 3 ≥3
x 1 + 2x 3 =9
Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции. Сведем задачу F(X) → min к задаче F(X) → max. Для этого умножаем F(X) на (-1). В первом неравенстве смысла (≤) вводим базисную переменную x 4 ; во втором неравенстве смысла (≥) вводим базисную переменную x 5 со знаком минус.
4x 1 + 3x 2 -1x 3 + 1x 4 + 0x 5 = 10
0x 1 -2x 2 + 5x 3 + 0x 4 -1x 5 = 3
1x 1 + 0x 2 + 2x 3 + 0x 4 + 0x 5 = 9
F(X) = - x 1 - 2x 2 + 2x 3
Переход к СЗЛП .
Расширенная матрица системы ограничений-равенств данной задачи:

4 3 -1 1 0 10
0 -2 5 0 -1 3
1 0 2 0 0 9

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x 4 .
2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-2. Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(0 3):-2 3-(-2 3):-2 -1-(5 3):-2 1-(0 3):-2 0-(-1 3):-2 10-(3 3):-2
0: -2 -2: -2 5: -2 0: -2 -1: -2 3: -2
1-(0 0):-2 0-(-2 0):-2 2-(5 0):-2 0-(0 0):-2 0-(-1 0):-2 9-(3 0):-2

Получаем новую матрицу:
4 0 6 1 / 2 1 -1 1 / 2 14 1 / 2
0 1 -2 1 / 2 0 1 / 2 -1 1 / 2
1 0 2 0 0 9

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ=2. Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 3 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(1 6 1 / 2):2 0-(0 6 1 / 2):2 6 1 / 2 -(2 6 1 / 2):2 1-(0 6 1 / 2):2 -1 1 / 2 -(0 6 1 / 2):2 14 1 / 2 -(9 6 1 / 2):2
0-(1 -2 1 / 2):2 1-(0 -2 1 / 2):2 -2 1 / 2 -(2 -2 1 / 2):2 0-(0 -2 1 / 2):2 1 / 2 -(0 -2 1 / 2):2 -1 1 / 2 -(9 -2 1 / 2):2
1: 2 0: 2 2: 2 0: 2 0: 2 9: 2

Получаем новую матрицу:
3 / 4 0 0 1 -1 1 / 2 -14 3 / 4
1 1 / 4 1 0 0 1 / 2 9 3 / 4
1 / 2 0 1 0 0 4 1 / 2

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,2,3).
Соответствующие уравнения имеют вид:
3 / 4 x 1 + x 4 - 1 1 / 2 x 5 = -14 3 / 4
1 1 / 4 x 1 + x 2 + 1 / 2 x 5 = 9 3 / 4
1 / 2 x 1 + x 3 = 4 1 / 2
Выразим базисные переменные через остальные:
x 4 = - 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4
x 2 = - 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4
x 3 = - 1 / 2 x 1 +4 1 / 2
Подставим их в целевую функцию:
F(X) = - x 1 - 2(- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4) + 2(- 1 / 2 x 1 +4 1 / 2)
или

Система неравенств:
- 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4 ≥ 0
- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4 ≥ 0
- 1 / 2 x 1 +4 1 / 2 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 4 x 1 - 1 1 / 2 x 5 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 5 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 5 -10 1 / 2 → max
Упростим систему.
3 / 4 x 1 - 1 1 / 2 x 2 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 2 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 2 -10 1 / 2 → max

Пример №2 . Найдите сначала графическим методом, а затем симплекс-методом решение задачи
F(X) = x 1 + x 2 - x 3 + x 5 +15 → max (min) при ограничениях:
-3x 1 + x 2 + x 3 =3
4x 1 + 2x 2 - x 4 =12
2x 1 - x 2 + x 5 =2
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0, x 5 ≥ 0

Линейное программирование – направление математики, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием оптимальности.

Несколько слов о самом термине линейное программирование. Он требует правильного понимания. В данном случае программирование - это, конечно, не составление программ для ЭВМ. Программирование здесь должно интерпретироваться как планирование, формирование планов, разработка программы действий.

К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

Круг задач, решаемых при помощи методов линейного программирования достаточно широк. Это, например:

· задача об оптимальном использовании ресурсов при производственном планировании;

· задача о смесях (планирование состава продукции);

· задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или "задача о рюкзаке");

· транспортные задачи (анализ размещения предприятия, перемещение грузов).

Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

· математические модели большого числа экономических задач линейны относительно искомых переменных;

· данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

· многие задачи линейного программирования, будучи решенными, нашли широкое применение;

· некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

В общем виде модель записывается следующим образом:

целевая функция:

F = c1x1 + c2x2 + ... + cnxn → max(min);

ограничения:

a11x1 + a12x2 + ... + a1nxn {≤ = ≥} b1,

a21x1 + a22x2 + ... + a2nxn {≤ = ≥} b2,

am1x1 + am2x2 + ... + amnxn {≤ = ≥} bm;

требование неотрицательности:

Задача состоит в нахождении оптимального значения функции при соблюдении ограничений.

Итак , Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующих систему ограничений, которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F), которые удовлетворяют системе ограничений, называется допустимым планом задачи линейного программирования. Функция F, максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F, называется оптимальным планом задачи.

Система ограничений, определяющая множество планов, диктуется условиями производства. Задачей линейного программирования (ЗЛП) является выбор из множества допустимых планов наиболее выгодного (оптимального).

Симплекс-метод является основным в линейном программировании . Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.

Этот метод является универсальным, применимым к любой задаче линейного программирования в канонической форме . Система ограничений здесь - система линейных уравнений, в которой количество неизвестных больше количества уравнений. Если ранг системы равен r , то мы можем выбрать r неизвестных, которые выразим через остальные неизвестные. Для определенности предположим, что выбраны первые, идущие подряд, неизвестные X 1 , X 2 , ..., X r . Тогда наша система уравнений может быть записана как

К такому виду можно привести любую совместную систему , например, методом Гаусса. Правда, не всегда можно выражать через остальные первые r неизвестных (мы это сделали для определенности записи). Однако такие r неизвестных обязательно найдутся. Эти неизвестные (переменные) называются базисными, остальные свободными.

Придавая определенные значения свободным переменным и вычисляя значения базисных (выраженных через свободные), мы будем получать различные решения нашей системы ограничений. Таким образом, можно получить любое ее решение. Нас будут интересовать особые решения, получаемые в случае, когда свободные переменные равны нулю. Такие решения называются базисными , их столько же, сколько различных базисных видов у данной системы ограничений. Базисное решение называется допустимым базисным решением или опорным решением , если в нем значения переменных неотрицательны. Если в качестве базисных взяты переменные X 1 , X 2 , ..., X r , то решение {b 1 , b 2 ,..., b r , 0, ..., 0} будет опорным при условии, что b 1 , b 2 ,..., b r ≥ 0 .

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.

Итак, симплексный метод вносит определенный порядок как при нахождении первого (исходного) базисного решения, так и при переходе к другим базисным решениям. Его идея состоит в следующем.

Имея систему ограничений , приведенную к общему виду, то есть к системе m линейных уравнений с n переменными (m < n) , находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще.

Если первое же найденное базисное решение оказалось допустимым , то проверяют его на оптимальность . Если оно не оптимально , то, осуществляется переход к другому, обязательно допустимому базисному решению .

Симплексный метод гарантирует, что при этом новом решении линейная форма, если и не достигнет оптимума, то приблизится к нему. С новым допустимым базисным решением поступают так же, пока не находят решение, которое является оптимальным.

Если первое найденное базисное решение окажется недопустимым , то с помощью симплексного метода осуществляется переход к другим базисным решениям , которые приближают нас к области допустимых решений, пока на каком-то шаге решения либо базисное решение окажется допустимым и к нему применяют алгоритм симплексного метода, либо мы убеждаемся в противоречивости системы ограничений.

Таким образом, применение симплексного метода распадается на два этапа: нахождение допустимого базисного решения системы ограничений или установление факта ее несовместности; нахождение оптимального решения.
При этом каждый этап может включать несколько шагов, соответствующих тому или иному базисному решению. Но так как число базисных решений всегда ограниченно, то ограниченно и число шагов симплексного метода.

Приведенная схема симплексного метода явно выражает его алгоритмический характер (характер четкого предписания о выполнении последовательных операций), что позволяет успешно программировать и реализовать этот метод на ЭВМ. Задачи же с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

Не останавливаясь подробнее на сути алгоритма, опишем его вычислительную сторону. Вычисления по симплекс-методу организуются в виде симплекс-таблиц , которые являются сокращенной записью задачи линейного программирования в канонической форме. Перед составлением симплекс-таблицы задача должна быть преобразована , система ограничений приведена к допустимому базисному виду , c помощью которого из целевой функции должны быть исключены базисные переменные. Вопрос об этих предварительных преобразованиях мы рассмотрим ниже. Сейчас же будем считать, что они уже выполнены и задача имеет вид.

Линейное программирование сформировалось как отдельный раздел прикладной математики в 40 – 50-х гг. ХХ в. благодаря работам советского ученого, лауреата Нобелевской премии Л.В. Канторовича. В 1939 году им была опубликована работа «Математические методы организации и планирования производства», в которой он с использованием математики решил экономические задачи о наилучшей загрузке машин, раскрое материалов с наименьшими расходами, распределении грузов по нескольким видам транспорта и другие, предложив метод разрешающих множителей 8 .

Л.В. Канторович впервые сформулировал такие широко используемые экономико-математические понятия, как оптимальный план, оптимальное распределение ресурсов, объективно обусловленные оценки, указав многочисленные области экономики, где они могут быть применены.

Понятие линейного программирования было введено американским математиком Д. Данцигом, который в 1949 г. предложил алгоритм решения задачи линейного программирования, получивший название «симплексный метод».

Математическое программирование, в которое входит линейное программирование, в настоящее время является одним из направлений исследования операций. В зависимости от вида решаемых задач в нем выделяют такие области, как линейное, нелинейное, дискретное, динамическое программирование и др. Термин «программирование» введен в связи с тем, что неизвестные переменные, которые находятся в процессе решения задачи, обычно определяют программу или план работы некоторого экономического объекта.

В классическом математическом анализе исследуются общая постановка задачи определения условного экстремума. Однако в связи с развитием промышленного производства, транспорта, агропромышленного комплекса, банковского сектора традиционных результатов математического анализа оказалось недостаточно. Потребности практики и развитие вычислительной техники привели к необходимости определения оптимальных решений при анализе сложных экономических систем.

Главным инструментом для решения таких задач является математическое моделирование. При этом сначала строится простая модель, затем проводится ее исследование, позволяющее понять, какие из интегрирующих свойств объекта не улавливаются формальной схемой, после чего за счет усложнения модели обеспечивается большая ее адекватность реальности. Во многих случаях первым приближением к действительности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, являются линейными. Практика показывает, что достаточное количество экономических процессов достаточно полно описывается линейными моделями. Следовательно, линейное программирование как аппарат, позволяющий отыскивать условный экстремум на множестве, заданном линейными уравнениями и неравенствами, играет важную роль при анализе этих процессов.

Линейное программирование получило широкое развитие в связи с тем, что было установлено: ряд задач сферы планирования и управления может быть сформулирован в виде задач линейного программирования, для решения которых имеются эффективные методы. По оценкам специалистов примерно 80–85 % всех решаемых на практике задач оптимизации относится к задачам линейного программирования.

Созданный математический аппарат в сочетании с компьютерными программами, производящими трудоемкие расчеты, позволяет широко использовать модели линейного программирования в экономической науке и практике.

Определение 1 9 . Линейное программирование (ЛП) – это область математического программирования, являющегося разделом математики и изучающего методы поиска экстремальных (наибольших и наименьших) значений линейной функции конечного числа переменных, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые представляют количественные соотношения между переменными, выражающие условия и требования экономической задачи и математически записываются в виде уравнений или неравенств, называются системой ограничений.

К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.

Общая задача линейного программирования (ЗЛП) состоит в нахождении экстремального значения (максимума или минимума) линейной функции, называемой целевой 10:

от n переменных x 1 , x 2 , …, х n при наложенных функциональных ограничениях:

(3.2)

и прямых ограничениях (требовании неотрицательности переменных)

, (3.3)

где a ij , b i , c j – заданные постоянные величины.

В системе ограничений (3.2) знаки «меньше или равно», «равно», «больше или равно» могут встречаться одновременно.

ЗЛП в более краткой записи имеет вид:

,

при ограничениях:

;

.

Вектор `Х = (x 1 , x 2 , …, х n ) компоненты которого удовлетворяют функциональным и прямым ограничениям задачи называют планом (или допустимым решением ) ЗЛП.

Все допустимые решения образуют область определения задачи линейного программирования, или область допустимых решений (ОДР). Допустимое решение, которое доставляет максимум или минимум целевой функции f (`X ), называется оптимальным планом задачи и обозначается f (`X * ), где ` Х * =(x 1 * , x 2 * , …, х n * ).

Еще одна форма записи ЗЛП:

,

где f (`X * ) есть максимальное (минимальное) значение f (С , х ), взятое по всем решениям, входящим в множество возможных решений Х .

Определение 2 11 . Математическое выражение целевой функции и ее ограничений называются математической моделью экономической задачи.

Для составления математической модели необходимо:

1) обозначить переменные;

2) составить целевую функцию исходя из цели задачи;

3) записать систему ограничений, учитывая имеющие в условии задачи показатели и их количественные закономерности.

15. Аналитические методы. Методы линейного программирования.

15.1. Аналитические методы

На протяжении всей своей эволюции человек, совершая те или иные деяния, стремился вести себя таким образом, чтобы результат, достигаемый как следствие некоторого поступка, оказался в определенном смысле наилучшим. Двигаясь из одного пункта в другой, он стремился найти кратчайший среди возможных путь. Строя жилище, он искал такую его геометрию, которая при наименьшем расходе топлива, обеспечивала приемлемо комфортные условия существования. Занимаясь строительством кораблей, он пытался придать им такую форму, при которой вода оказывала бы наименьшее сопротивление. Можно легко продолжить перечень подобных примеров.

Наилучшие в определенном смысле решения задач принято называть оптимальными . Без использования принципов оптимизации в настоящее время не решается ни одна более или менее сложная проблема. При постановке и решении задач оптимизации возникают два вопроса: что и как оптимизировать?

Ответ на первый вопрос получается как результат глубокого изучения проблемы, которую предстоит решить. Выявляется тот параметр, который определяет степень совершенства решения возникшей проблемы. Этот параметр обычно называют целевой функцией иликритерием качества . Далее устанавливается совокупность величин, которые определяют целевую функцию. Наконец, формулируются все ограничения, которые должны учитываться при решении задачи. После этого строится математическая модель, заключающаяся в установлении аналитической зависимости целевой функции от всех аргументов и аналитической формулировки сопутствующих задаче ограничений. Далее приступают к поиску ответа на второй вопрос.

Итак, пусть в результате формализации прикладной задачи установлено, что целевая функция , где множество Х – обобщение ограничений, его называют множеством допустимых решений. Существо проблемы оптимизации заключается в поиске на множестве Х – множестве допустимых решений такого решения
, при котором целевая функцияf достигает наименьшего или наибольшего значения.

Составной частью методов оптимизации является линейное программирование.

15.2. Основные понятия линейного программирования

Первое упоминание (1938 г.) о математических методах в эффективном управлении производством принадлежит советскому математику Л. В. Канторовичу. Год спустя,в 1939 г., Л. В. Канторович опубликовал работу «Математические методы организации и планирования производства» и практически применил полученные результаты. Термин «линейное программирование» ввели американские математики Дж. Данциг и Т. Купманс в конце 40-х годов. Дж. Данциг разработал математический аппарат симплексного метода решения задач линейного программирования (1951 г.). Симплексный метод находит применение для решения широкого круга задач линейного программирования и до настоящего времени является одним из основных методов.

Линейное программирование - это раздел математики, ориентированный на нахождение экстремума (максимума или минимума) в задачах, которые описываются линейными уравнениями. Причем линейными уравнениями описывается как сама целевая функция, так и входные параметры (переменные) условия ограничений на входные параметры. Необходимым условием задач линейного программирования является обязательное наличие ограничений на ресурсы (сырье, материалы, финансы, спрос произведенной продукции и т.д.). Другим важным условием решения задачи является выбор критерия останова алгоритма, т. е. целевая функция должна быть оптимальна в некотором смысле. Оптимальность целевой функции должна быть выражена количественно. Если целевая функция представлена одним или двумя уравнениями, то на практике такие задачи решаются достаточно легко. Критерий останова алгоритма (или критерий оптимальности) должен удовлетворять следующим требованиям:

    быть единственным для данной задачи;

    измеряться в единицах количества;

    линейно зависеть от входных параметров.

Исходя из вышесказанного, можно сформулировать задачу линейного программирования в общем виде:

найти экстремум целевой функции

при ограничениях в виде равенств:

(2.2)

при ограничениях в виде неравенств:

(2.3)

и условиях неотрицательности входных параметров:

В краткой форме задача линейного программирования может быть записана так:

(2.5)

при условии

где
- входные переменные;

Числа положительные, отрицательные и равные нулю.

В матричной форме эта задача может быть записана так:

Задачи линейного программирования можно решить аналитически и графически.

15.3. Каноническая задача линейного программирования

, i=1,…,m,

, j=1,…,n.

Основные вычислительные методы решения задач линейного программирования разработаны именно для канонической задачи.

15.4. Общая задача линейного программирования

Необходимо максимизировать (минимизировать) линейную функцию от n переменных.

при ограничениях

, i =1,…, k ,

, i =1+ k ,…, m ,

, …,

Здесь k m , r n . Стандартная задача получается как частный случай общей приk = m , r = n ; каноническая – приk =0, r = n .

Пример.

Кондитерская фабрика производит несколько сортов конфет. Назовем их условно "A", "B" и "C". Известно, что реализация десяти килограмм конфет "А" дает прибыль 90 рублей, "В" - 100 рублей и "С" - 160 рублей. Конфеты можно производить в любых количествах (сбыт обеспечен), но запасы сырья ограничены. Необходимо определить, каких конфет и сколько десятков килограмм необходимо произвести, чтобы общая прибыль от реализации была максимальной. Нормы расхода сырья на производство 10 кг конфет каждого вида приведены в таблице 1.

Таблица 1. Нормы расходов сырья

на производство

Экономико-математическая формулировка задачи имеет вид

Найти такие значения переменных Х=(х1, х2, х3) , чтобы

целевая функция

при условиях-ограничениях:



Рекомендуем почитать

Наверх