Курсовая работа выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ

Прочие модели 23.07.2019
Прочие модели

ВВЕДЕНИЕ.................................................................................................. 3

1. ..…………….4

2. МЕТОД ВЕТВЕЙ И ГРАНИЦ ………………………………………..6

2.1 Алгоритм метода ветвей и грани ц…………………………………....10

ЗАКЛЮЧЕНИЕ………………………………………………………….14

СПИСОК ЛИТЕРАТУРЫ………………………………………… ………….15

ВВЕДЕНИЕ

Впервые метод ветвей и границ был предложен Лендом и Дойгом в 1960 для решения общей задачи целочисленного линейного программирования. Интерес к этому методу и фактически его “второе рождение” связано с работой Литтла, Мурти, Суини и Кэрела, посвященной задаче комивояжера. Начиная с этого момента, появилось большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех объясняется тем, что авторы первыми обратили внимание на широту возможностей метода, отметили важность использования специфики задачи и сами воспользовались спецификой задачи коммивояжера.

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества (стратегия “разделяй и властвуй”). На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из не отброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т. д.

1. МЕТОД ВЕТВЕЙ И ГРАНИЦ ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ. ОСНОВНЫЕ ПОНЯТИЯ

Целочисленным (иногда его называют также дискретным) программированием называется раздел математического программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна.

Огромное количество экономических задач носит дискретный, чаще всего целочисленный характер, что связано, как правило с физической неделимостью многих элементов расчета: например, нельзя построить два с половиной завода, купить полтора автомобиля и т. д. В ряде случаев такие задачи решаются обычными методами, например, симплексным методом, с последующим округлением до целых чисел.

Однако такой подход оправдан, когда отдельная единица составляет очень малую часть всего объема (например, товарных запасов); в противном случае он может внести значительные искажения в действительно оптимальное решение. Поэтому разработаны специальные методы решения целочисленных задач.

1. Количество целочисленных переменных уменьшать насколько возможно. Например, целочисленные переменные, значения которых должно быть не менее 20, можно рассматривать как непрерывные.

2. В отличие от общих задач ЛП, добавление новых ограничений особенно включающих целочисленные переменные, обычно уменьшают время решения задач ЦП.

3. Если нет острой необходимости в нахождении точного оптимального целочисленного решения, отличающегося от непрерывного решения, например, 3%. Тогда реализацию метода ветвей и границ для задачи максимизации можно заканчивать, если отношение разницы между верхней и нижней границ к верхней границы меньше 0,03.

Метод ветвей и границ можно применять для решения задач нелинейного программирования.

Метод ветвей и границ - один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

2. МЕТОД ВЕТВЕЙ И ГРАНИЦ

Одним из широко распространенных методов решения целочислен­ных задач является метод ветвей и границ, который может быть ис­пользован как для задач линейного программирования, так и для задач, не сводимых к задачам линейного программирования. Рассмотрим идею метода ветвей и границ на примере общей задачи дискретного про­граммирования

f(X) -> max,

Х€D,

где D - конечное множество.

Сначала найдем оценку £(D) (границу) функции f(X), X е D: f(X) ≤ £(D) для V X е D. Если для некоторого плана Х° задачи справедливо равенствоf(X0) = £(D), то Х° = X* является решением задачи. Если указанное условие не выполняется, то возмож­но разбиение (ветвление) множества D на конечное число непересека­ющихся подмножеств D1i: ỤD1i. = D, ∩D1i = Ө, и вычисление оценки £(D1i) (границ), 1≤i≤m (Рисунок 2.1)

Рисунок 2. 1

Если для некоторого плана X1i е Di1, 1 ≤ / ≤ m выполняется условие f(Xkl)= £(D1k)≥ £(D1i), 1≤i≤m то Xk1=X* является оптимальным планом (решением) задачи (7.9)-(7.10).

Если такого плана нет, то выбирается подмножество Dkl с наиболь­шей оценкой £(D1i) и разбивается на конечное число непересекающихся подмножеств D2kj: UD2kj=D1k, ∩D2kj=Ө. Для каждого подмножества находится оценка £(D2kj), 1≤j≤n (Рисунок 2.2)

Рисунок 2.2

Если при этом найдется план X2j е D2kJ, 1 ≤j ≤n, такой, что f(X2r)= £(D2kr)≥ £(D2kj), 1≤j≤n, то X2r= X* является решением задачи. Если такого плана нет, то процедуру ветвления осуществля­ют для множества D2kj с наибольшей оценкой £(D2kj) , 1≤j≤n. Способ ветвления определяется спецификой конкретной задачи.

Рассмотрим задачу, которую можно свести к задаче целочисленного линейного программирования.

Пример.

Контейнер объемом 5 м3 помещен на контейнеровоз грузо­подъемностью 12 т. Контейнер требуется заполнить грузом двух наиме­нований. Масса единицы груза mj (в тоннах), объем единицы груза Vj (в м3), стоимости Cj (в условных денежных единицах) приведены в таблице 2.1.

Таблица 2.1

Вид груза у

С j

Требуется загрузить контейнер таким образом, чтобы стоимость пе­ревозимого груза была максимальной.

Решение. Математическая модель задачи имеет вид

Z(X) = 10x1+12x2→max,

3x1+x2≤12,

x1+2x2≤5

x1≥0

x2≥0

x1, x2- целые числа

где x1, x2 - число единиц соответственно первого и второго груза.

Множество планов этой задачи обозначим через D - это множество целых точек многогранника ОАВС (Рисунок 2.3).

Рисунок 2. 3

Сначала решаем задачу без условия целочисленности, получим оценку множества D - значение функции Z(X) на оптималь­ном плане Х° = (19/5, 3/5).

Точка X не является оптимальным планом задачи. По­этому в соответствии с методом ветвей и границ требуется разбить множество D на непересекающиеся подмножества. Выберем первую нецелочисленную переменную x1=19/5=34/5 и разобьем множество D на два непересекающихся подмножества D11 и D22. Линии x1=3 (L3) и x4= (L3) являются линиями разбиения.

Рисунок 2. 4


L \


Найдем оценки £(D11) и £(D12), для чего решим задачи линейного программирования.

Z(X)=10x1+12x2→max,

3x1+x2≤12

x1+2x2≤5

x1≤3

x1≥0, x2 – целые числа

Z(X)=10x1+12x2→max,

3x1+ x2≤12

x1+2x2≤5

x1≥4

x1≥0, x2 – целые числа

Например, графическим методом:

X11eD11→X01= (3,1); £(D11)=42; X12eD12→X02= (4,0); £(D12)=40.

Результат ветвления приведен на Рисунок 2.5

Рисунок 2. 5


План X01 удовлетворяет условиям задачи, и для него выполняется условие: Z(X11)= £(D11)=42 > £(/)/) = 42 >£(D12) = 40. Следовательно, план X°1= (3, 1) является решением задачи (7.11)-(7.13), т. е. надо взять три единицы первого груза и одну единицу второго груза.

2.1 Алгоритм метода ветвей и границ

· Находим решение задачи линейного программирования без учета целочисленности.

· Составляет дополнительные ограничения на дробную компоненту плана.

· Находим решение двух задач с ограничениями на компоненту.

· Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Алгоритм действия метода ветвей и границ

Первоначально находим, к примеру, симплекс-методом оптимальный план задачи без учета целочисленности переменных. Пусть им является план X0. Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и Fmax = F(X0).

Если же среди компонент плана X0 имеются дробные числа, то X0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X0) ³ F(X) для всякого последующего плана X в связи с увеличением количества ограничений.

Предполагая, что найденный оптимальный план X0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу font-size:14.0pt">font-size:14.0pt">Найдем решение задач линейного программирования (5) и (6). Очевидно, здесь возможен один из следующих четырех случаев:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (5) и (6).

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой.

3.1. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

3.2. Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (5) и (6).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (5) и (6).

Общий алгоритм решения задач с помощью метода границ и ветвей, его суть

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х0, а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (5) и (6). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования методом ветвей и границ включает следующие основные этапы:

1. Находят решение задачи линейного программирования.

2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане является дробным числом.

3. Находят решение задач (5) и (6), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.

4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (5) и (6), и находят их решение.

Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(4) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

Пример использования метода ветвей и границ

В качестве примера к методу ветвей и границ рассмотрим функцию z=4х1+х2+1®max при ограничениях:

font-size:14.0pt">Пусть Х0 = (0; 0), z0 = 1 - «оптимальное» решение. Выполним 1-й этап общего алгоритма и найдем с помощью симплекс-метода, а затем и двойственного симплекс-метода (см. Приложение 1) X1, исходя из ограничений Итак, X1 = (3; 0,5; 0; 1; 0; 2,5), z1= 13,5. Так как z1 дробное, то «оптимальным» так и остается план Х0,

Согласно 2-му пункту нашего плана, составим 2 новых системы ограничений для:

https://pandia.ru/text/79/453/images/image012_25.gif" alt="Описание: http://*****/images/paper/93/79/4327993.png" width="108" height="98"> .

Выполним 3-й пункт алгоритма. Для начала, решим задачу с помощью табличного процессора Microsoft Excel (Приложение 2) и получим X2 = (2; 1) z2= 10. Так как z2 ≥ z0, «оптимальным» становится план Х0.

Решим задачу. Из последнего уравнения очевидно, что x2 = 0. Отсюда следует, что x1 = 3 (максимально возможное). Тогда Х3 = (3; 0), z3 = 13, а следовательно, данный план является оптимальным (теперь уже без кавычек).

Нам не пришлось выполнять 4-й пункт нашего алгоритма в связи с тем, что оптимальное решение найдено, переменные целочисленные. Пример, в котором всё складывается не так просто, приведен в Приложении 3.

ЗАКЛЮЧЕНИЕ

В данной работе была рассмотрена сущность целочисленного программирования. Затронуты специальные методы решения целочисленных задач. Такие задачи возникают при моделировании разнообразных производственно-экономических, технических, военных и других ситуаций. В то же время ряд проблем самой математики может быть сформулирован как целочисленные экстремальные задачи.

Задачи такого типа весьма актуальны, так как к их решению сводится анализ разнообразных ситуаций, возникающих в экономике, технике, военном деле и других областях. Эти задачи интересны и с математической точки зрения. С появлением ЭВМ, ростом их производительности повысился интерес к задачам такого типа и к математике в целом.

СПИСОК ЛИТЕРАТУРЫ

1. А. Схрейвер. Теория линейного и целочисленного программирования: в 2-х томах.; перевод с английского. 1991г. 360с.

2. Т. Ху. Целочисленное программирование и потоки в сетях.; перевод с английского. 1974г.

3. , . Высшая математика: Математическое программирование. Ученик - 2-е издание. 2001г. 351с.

4. . Математическое программирование: Учебное пособие – 5-е издание, стереотип-М:ФИЗМАТ, 2001г.-264с.

5. , .: Экономико-математические методы и прикладные модели: Учеб. пособие для вузов/ЮНИТИ, 1999г.-391с.

6. , ; под ред. Проф. . : Исследование операций в экономике; учеб. Пособие для вузов.

Приложение 2

Решение задачи z = 4х1 + х2 +1 ® max при ограничениях:

с помощью табличного процессора Microsoft Excel.

Метод можно применять как к полностью, так и частично целочисленным задачам.

Метод заключается в построении дерева задач. Оценка V – это значение критерия, заведомо не хуже оптимального, а рекорд Z – достигнутое в процессе решения значение критерия исходной задачи. Задача будет порождающей только при условии, что ее оценка лучше рекорда. При этом уровень, на котором находится задача, не имеет значения.

Рассмотрим метод применительно к линейной целочисленной задаче. Используется разбиение на две задачи, то есть строится бинарное дерево. При этом для целочисленных множеств выполняются соотношения (9)

Алгоритм:

1. Задается начальное значение рекорда и в список задач помещается исходная задача без требования целочисленности переменных.

2. Анализируется список задач: если он пуст, то переход на шаг 6. Иначе выбирается одна из задач с удалением ее из списка.

3. Выбранная задача решается одним из методов линейного программирования. Если задача неразрешима или оптимальное значение критерия L* £ Z , ветвь обрывается (задача прозондирована). Переход на шаг 2.

4. Полученное решение анализируется на целочисленность. Если решение целочисленное, оно фиксируется, рекорду присваивается оптимальное значение критерия решенной непрерывной задачи (Z :=L* ), ветвь обрывается и осуществляется переход на шаг 2.

5. Выбирается одна из переменных, имеющих нецелочисленные значения. По ней производится ветвление: порождаются 2 задачи, одна образуется присоединением к решенной (родительской) задаче условия х j £ , другая – добавлением к родительской ограничения х j ³ +1. Эти задачи заносятся в список задач. Переход на шаг2.

6. Вывод результатов (если значение рекорда больше начального, получено оптимальное решение исходной задачи, иначе задача неразрешима).

Число решаемых задач существенно зависит от выбора задачи из списка и переменной для ветвления. Из алгоритма, что ветвь обрывается по одной из трех причин:

Неразрешимость задачи;

Задача имеет целочисленное решение;

Верхняя оценка не больше рекорда.

Метода ветвей и границ имеет преимущества в сравнении с методом отсечений: накопление ошибок менее значительное, так как решение идет по разным ветвям; при принудительной остановке процесса решения высока вероятность получения целочисленного результата, но без установления его оптимальности; при решении непрерывных задач размеры симплекс-таблиц не увеличиваются.

Недостатки метода ветвей и границ:

Нельзя оценить число задач, которые придется решать; Отсутствие признака оптимальности. Оптимальность устанавливается только по исчерпании списка задач; Размерность ограничена примерно 100.

Метод ветвей и границ − один из комбинаторных методов. В отличие от метода Гомори применим как к полностью, так и частично целочисленнным задачам.

Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам полезными для нахождения оптимального решения.

Идея метода ветвей и границ состоит в следующем: пусть решена ослабленная задача без ограничения целочисленности, и - целочисленная переменная, значение которой в оптимальном плане является дробным. Тогда интервал

не содержит допустимых решений с целочисленной координатой . Следовательно, допустимое целое значениедолжно удовлетворять

или
, или

Введение этих условий в задачу порождает две несвязанные между собой задачи с одной и той же целевой функцией, но непересекающимися областями допустимых значений переменных. В этом случае говорят, что задача разветвляется.

Очевидно, что возможен один из следующих четырех случаев.

    Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

    Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи на новых ограничениях по этой переменной, полученных разделением ее ближайших к решению целочисленных значений.

    Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Для определенности здесь и далее полагаем, что решается задача о максимуме целевой функции. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, произвести ветвление по дробной переменной и построить две новые задачи.

    Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и производим ветвление на две новые задачи, разбивая область изменения этой переменной на две, ограниченные целыми числами справа и слева соответственно.

Таким образом, процесс построения все новых и новых задач может быть представлен на рисунке в виде ветвистого дерева, с вершиной, обозначенной «задача 1», и отходящими от этой вершины ветвями. Такая последовательность действий при нахождении оптимального решения задачи целочисленного программирования нашла свое отражение в названии этого метода.

Исходная вершина отвечает оптимальному плану исходной задачи 1, а каждая соединенная с ней ветвью вершина отвечает оптимальным планам новых задач, построенных для новых ограничений по одной из переменных, имеющих в оптимальном плане задачи 1 значение в виде дробного числа.

Каждая из вершин имеет свои ответвления, при этом на каждом шаге выбирается та вершина, для которой значение целевой функции будет наибольшим.

Если на некотором шаге будет получен план, имеющий целочисленные значения, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Пример . Найти методом ветвей и границ решение задачи целочисленного программирования

Решение . Находим оптимальный план сформулированной задачи симплексным методом без учета целочисленности переменных, а именно решаем задачу 1.

Оптимальный план задачи 1 линейного программирования

при
.

Для исходной задачи, с учетом целочисленности переменных, полученное решение не является оптимальным.

Для поиска целочисленного оптимального решения разделим интервал изменения переменной x 1 на две области, а именно x 1  и x 1 = 10 , и разобьем заданную задачу на две новые задачи.

Нижняя граница линейной функции не изменилась: Z 0 = 0. Решаем одну из задач, например задачу 3, симплексным методом. Получаем, что условия задачи противоречивы.

Решаем задачу 2 симплексным методом. Получаем оптимальный целочисленный план поставленной задачи 2, который является также оптимальным планом задачи 1:

при
.

Таким образом, в результате одного ветвления задачи было найдено ее оптимальное решение.

Рассмотрим следующую задачу целочисленного линейного программирования. Максимизировать при ограничениях

На рис.1 пространство допустимых решений задачи целочисленного линейного программирования представлено точками. Соответствующая начальная задача линейного программирования (обозначим ее ЛП0) получается путем отбрасывания условия целочисленности. Ее оптимальным решением будет =3.75, =1.25, z=23.75.

Рис.1.

Так как оптимальное решение задачи ЛП0 не удовлетворяет условия целочисленности, метод ветвей и границ изменяет пространство решений задачи линейного программирования так, что в конечном счете получается оптимальное решение задачи целочисленного линейного программирования. Для этого сначала выбирается одна из целочисленных переменных, значение которой в оптимальном решении задачи ЛП0 не является целочисленным. Например, выбирая (=3.75), замечаем, что область 3 ? ?4 пространства допустимых решений задачи ЛП0 не содержит целочисленных значений переменной и, следовательно, может быть исключена из рассмотрения, как бесперспективная. Это эквивалентно замене исходной задачи ЛП0 двумя новыми задачами линейного программирования ЛП1 и ЛП2, которые определяются следующим образом:

Пространство допустимых решений ЛП1 = пространство допустимых решений ЛП0 + (), пространство допустимых решений ЛП2 = пространство допустимых решений ЛП0 + ().

На рис.2 изображены пространства допустимы решений задач ЛП1 И ЛП2 . Оба пространства содержат все допустимые решения исходной задачи ЦЛП. Это обозначает, что задачи ЛП1 и ЛП2 «не потеряют» решения начальной задачи ЛП0.

Рис.2.

Если продолжим разумно исключать из рассмотрения области, не содержащие целочисленных решений (такие, как), путем введения надлежащих ограничений, то в конечном счете получим задачу линейного программирования, оптимальное решение которой удовлетворяет требованиям целочисленности. Другими словами, будем решать задачу ЦЛП путем решения последовательности непрерывных задач линейного программирования.

Новые ограничения и взаимоисключаемы, так что задачи ЛП1 и ЛП2 необходимо рассматривать как независимые задачи линейного программирования, что и показано на Рис.3. Дихотомизация задач ЛП - основа концепции ветвления в методе ветвей и границ. В этом случае называется переменной ветвления.

Рис.3.

Оптимальное решение задачи ЦЛП находятся в пространстве допустимых решений либо в ЛП1, либо в ЛП2. Следовательно, обе подзадачи должны быть решены. Выбираем сначала задачу ЛП1 (выбор произволен), имеющую дополнительное ограничение?3.

Максимизировать при ограничениях

Оптимальным решением задачи ЛП1 является, и. Оптимальное решение задачи ЛП1 удовлетворяет требованию целочисленности переменных и. В этом случае говорят что задача прозондирована. Это означает, что задача ЛП1 не должна больше зондироваться, так как она не может содержать лучшего решения задачи ЦЛП.

Мы не можем в этой ситуации оценить качество целочисленного решения, полученного из рассмотрения задачи ЛП1, ибо решение задачи ЛП2 может привести к лучшему целочисленному решению (с большим решением в целевой функции z). Пока мы можем лишь сказать, что значение является нижней границей оптимального (максимального) значения целевой функции исходной задачи ЦЛП. Это значит, что любая нерассмотренная подзадача, которая не может привести к целочисленному решению с большим значением целевой функции, должна быть исключена, как бесперспективная. Если же нерассмотренная подзадача может привести к лучшему целочисленному решению, то нижняя граница должна быть надлежащим образом изменена.

При значении нижней границы исследуем ЛП2. Так как в задачи ЛП0 оптимальное значение целевой функции равно 23.75 и вес ее коэффициенты являются целыми числами, то невозможно получить целочисленное решение задачи ЛП2, которое будет лучше имеющегося. В результате мы отбрасываем подзадачу ЛП2 и считаем ее прозондированной.

Реализация метода ветвей и границ завершена, так как обе подзадачи ЛП1 и ЛП2 прозондированы. Следовательно, мы заключаем, что оптимальным решением задачи ЦЛП является решение, соответствующей нижней границе, а именно, и.

Если бы мы выбрали в качестве ветвлении переменную то ветвления и скорость нахождения оптимального решения были бы другими Рис.4.

Рис.4. Дерево ветвлений решений

Метод ветвей и границ

Метод ветвей и границ разработан Литлом, Мерти, Суини и Каре­лом. Рассмотрим основные идеи этого метода. Прежде всего, этот метод связан с некоторой общей схемой допущения и оценки альтернатив. Схема построения альтернативных предположений в общем виде может быть представлена, как это показано на рис. 3.9.

Вершины на рис. 3.9 соответствуют, как и ранее, состояниям зада­чи. Из каждой вершины выходит только два альтернативных направле­ния, что, впрочем, не ограничивает общности рассмотрения. Направле­ния отмечены буквами П с индексами. Идентификатор R(b i) есть неко­торая числовая оценка, приписываемая вершине b i .

Вообще говоря, не имеется ограничений на глубину построения де­рева, хотя ясно, что нужно стремиться к минимальной глубине. Этим, в частности, обосновывается выбор того или иного предположения П m: сначала следует стремиться доказать предположение, достоверность которого в наибольшей степени сомнительна, или наоборот, попытаться опровергнуть предположение, достоверность которого в наибольшей степени правдоподобна, т.е. действовать по принципу reductio ad absurdum, поскольку вероятность получения противоречия здесь наи­большая, это позволяет отсечь соответствующую альтернативу у ее "ис­токов", вместо того, чтобы строить новые альтернативные предполо­жения.

Пусть ищется состояние b * , в котором R(b *) минимально. Допус­тим далее, что известно некоторое текущее решение b x с текущим рекор­дом R(b x) . Тогда ясно, что любое состояние b i , в котором наилучшее достижимое значение R(b i) ³ R(b x) , может быть удалено (соответствующая часть дерева поиска отмечена, как показано с помощью заштрихованной области на рис. 3.9).


Рассмотрим задачу коммивояжера в следующей частной поста­новке. Пусть дано множество N из 4 городов, соединенных дорогами. Будем интерпретировать N сетью, в которой вершины соответствуют городам, причем дугам, соединяющим вершины, приписаны веса с ij , учитывающие затраты на переход коммивояжера из города i в город j (рис. 3.10а).

Полагаем с ij ³ 0 и с ii = ¥ , причем необязательно, чтобы с ij = с ji . Будем кодировать задачу матрицей затрат С = [с ij ], показанной на рис. 3.10,б.

В задаче коммивояжера требуется найти цикл с минимальной сум­мой затрат образующих его дуг, который обходит каждую вершину не более одного раза, за исключением одной вершины, из которой цикл "стартует" и в которой он же "заканчивается".

Рассмотрим решение этой задачи методом ветвей и границ. Решающими оказываются следующие два обстоятельства.

А1) Решению задачи коммивояжера соответствует выбор ровно од­ного элемента в каждой строке матрицы затрат С и ровно одного эле­мента в каждом столбце этой матрицы, причем сумма выбранных эле­ментов минимальна и они образуют цикл. Последнее замечание сущест­венно. Например, элементы (1, 2), (2, 3), (3, 1), (4, 4) не образуют цикл.

А2) Если из любой строки (столбца) вычесть (добавить) одну и ту же константу D , то результирующее значение С* суммарных затрат в оптимальном цикле Ц* уменьшится (увеличится) ровно на эту величину D .

Воспользуемся свойством А2. Выпишем минимальные элементы h j в каждом столбце j , после чего вычтем их из элементов соответствую­щих столбцов. Затем в полученной матрице выпишем минимальные элементы h i в строках i . Получим приведенную матрицу на рис. 2.11, а. Вычтем из каждой строки соответствующее значение h i (рис. 3.11, б).

Из матрицы на рис. 3.11, б легко устанавливается, что минимально возможное значение С* (которое обозначим ) вычисляется следую­щим образом

Теперь будем строить предположения для приведенной матрицы затрат на рис. 3.11, б.

Сделаем допущение, что дуга принадлежит Ц*; альтернатив­ное допущение означает, что . Если дуга , то полагаем для дуги с 4,3 = ¥, а также удаляем из матрицы затрат на рис. 2.11, б строку 3 и столбец 4, что в итоге дает матрицу, показанную на рис. 2.12, а. Приведенная матрица изображена на рис.2.12, б.

Для матрицы на рис. 2.12,б находим . Таким образом, получаем, что длина оптимального цикла, содержащего дугу суть

В то же время длина цикла равна 5+2+3+2=12, следовательно, делаем вывод, что дуга не входит в оптимальный цикл. Полагаем с 3,4 = ¥ .

Допустим теперь, что дуга . Проведя аналогичные вы­кладки устанавливаем, что минимальная суммарная величина затрат для цикла, содержащего дугу , составляет 13 единиц. Следователь­но, это допущение также отбрасывается, т.к. оно не улучшает текущий рекорд. Полагаем с 1,4 = ¥.

В результате в столбце 4 матрицы на рис. 3.10, б останется единст­венный допустимый элемент с 2,4 = 2 . Полагаем, . Это допущение позволяет удалить строку 2 и столбец 4. В результате получаем приведенную матрицу, изображенную на рис. 3.13, для кото­рой Ц* равно 12.

Допустим, что дуга Тогда автоматически следует, что дуга . Удалим строку 4 и столбец 3: получим приведенную матрицу, изображенную на рис. 3.14, из которой автоматически сле­дует, что дуга . Таким образом, из исходного предположения о том, что дуга , устанавливаем следующий оптимальный цикл, не содержа­щий дуги :



с суммарными затратами, равными 2 + 3 + 2 + 5 = 12.



Рекомендуем почитать

Наверх