Когда Atom быстрее чем Core

Помощь 12.07.2019
Помощь

Intel Atom — это процессоры для недорогих и небольших ноутбуков, нетбуков, неттопов и планшетов/смартфонов. Их архитектура позволила сделать их энергоэффективными и совсем не дорогими.

Изначально серия Atom включает в себя два семейства: серию Z (кодовое имя Silverthorne) для планшетов и некоторых неттопов и серию N (кодовое имя Diamondville) для более традиционных нетбуков и неттопов. Оба семейства производятся по 45-нм техпроцессу и включают в себя поддержку MMX, SSE, SSE2, SSE3, SSSE3, Intel 64, XD-Bit и IVT. Производительные модели также поддерживают Hyper-Threading.

Производительность самых быстрых процессоров Intel Atom лучше, чем у Celeron. Например, Atom 1,6 ГГц вполне сравнима с Pentium M 1,2 ГГц.

Ближе к концу 2009 года Intel представила второе поколение процессоров Atom — Pineview. Они комплектовались графикой GMA 3150 и контроллером памяти DDR2. Atom N450 и N470, произведенные по 45-нм техпроцессу, в свое время были весьма популярными, так же, как и N280 до этого. Самые последние модели линейки включают поддержку памяти DDR3 (например, N455) и варианты с двумя ядрами.

Платформа Oak Trail (32-нм техпроцесс) была представлена в 2011 году, и она напрямую произошла от Silverthorne. Она предназначена для планшетов и нетбуков, ее индекс — Z600. Ядро очень похоже на серию Pineview, однако система-на-чипе теперь включает в себя графику GMA 600 от PowerVR.

Современные процессоры Intel Atom

Saltwell (32 нм), 2012-2013 год

Penwell (32 нм), 2013-2014 год

Cloverview (32 нм), 2013 год

Cloverview (32 нм), 2013 год

Cedarview (32 нм), 2011-1012 год

Являются частью платформы Cedar Trail. Встроенная графика обеспечивает воспроизведение видео 1080р, разрешение экрана — до 2560х1600 пикселей.

Cedarview-M (32 нм), 2011 год

Поддерживается до 2 Гб оперативной памяти DDR3-800.

Merrifield (22 нм), 2014 год

Энергопотребление в 4,7 раза меньше, чем у Saltwell. Два ядра Silvermont, графическое ядро — PowerVR G6400. Контроллер памяти LPDDR3 -533 до 4 Гб.

Bay Trail-T (22 нм), 2014 год

Прирост производительности по сравнению с Clover Trail — 50-60%. Имеют низкое энергопотребление. Графика (Gen 7) в чипах без индекса D поддерживает разрешение 2560х1600 пикселей, с индексом D — 1920х1200. Контроллер памяти — LPDDR3-1066 до 4 Гб. Все процессоры — четырехъядерные. Нет поддержки Hyper-Threading.

Модель Кэш Тактовая частота — Turbo, ГГц Ядра/потоки
Intel Atom Z3795 2 Мб 1,59-2,39 4/4
Intel Atom Z3785 2 Мб 1,49-2,41 4/4
Intel Atom Z3775 2 Мб 1,46-2,39 4/4
Intel Atom Z3775D 2 Мб 1,49-2,41 4/4
Intel Atom Z3770 2 Мб 1,46-2,4 4/4
Intel Atom Z3770D 2 Мб 1,5-2,41 4/4
Intel Atom Z3736F 2 Мб 1,33-2,16 4/4
Intel Atom Z3736G 2 Мб 1,33-2,16 4/4
Intel Atom Z3745 2 Мб 1,33-1,86 4/4
Intel Atom Z3745D 2 Мб 1,33-1,83 4/4
Intel Atom Z3740 2 Мб 1,33-1,86 4/4
Intel Atom Z3740D 2 Мб 1,33-1,83 4/4
Intel Atom Z3735D 2 Мб 1,33-1,83 4/4
Intel Atom Z3735E 2 Мб 1,33-1,83 4/4
Intel Atom Z3735F 2 Мб 1,33-1,83 4/4
Intel Atom Z3735G 2 Мб 1,33-1,83 4/4
Intel Atom Z3680 1 Мб 1,33-2,0 2/2
Intel Atom Z3680D 1 Мб 1,33-2,0 2/2

Часть 1: Предыстория, Теория, Ядро, Сила

До Атома

Компания Intel давно стала обращать пристальное внимание на мобильный потребительский сектор и выпускать ориентированные на него продукты. Поначалу это были процессоры, подобранные по малому энергопотреблению при прочих равных параметрах (разве что частоты пониже, да корпус поменьше). Затем стали выпускать ЦП, специально доработанные для подобных применений. Историю можно начать с чипа i80386SL, у которого впервые появился SMM (System Management Mode - режим управления системой), динамическое ядро было заменено на статическое (т. е. для сохранения энергии частота может падать до нуля), и добавлены контроллеры кэша, памяти и шин ISA и PI (Peripheral Interface). Все эти изменения увеличили число транзисторов аж втрое (с 275 000 у обычного 386SX/DX до 855 000), но инженеры посчитали, что такой бюджет оправдан. Помимо этого также были версии i386CX и i386EX без встроенной периферии с тремя режимами энергосбережения.

Много воды утекло, каждый следующий ЦП (кроме серверных) выпускался как в обычном, так и в мобильном (иногда ещё и во встроенном) варианте, но все манипуляции в основном заключались в добавлении к ядру энергосберегающих режимов и отборе чипов, способных работать на пониженном напряжении при пониженных частотах. Между тем, конкуренция со стороны архитектур, разработанных специально для мобильных устройств, усилилась: 1990-е принесли появление PDA (начиная с Apple Newton MessagePad), а 2000-е дали коммуникаторы, интернет-планшеты (полузабытая аббревиатура MID) и ультрамобильные ПК (UMPC). В довесок ко всему оказалось, что основные задачи для пользователя таких устройств имеют небольшие вычислительные потребности, так что почти любой ЦП, выпущенный после 2000 г., уже обладал нужной мощностью для мобильного применения, кроме, разве что, современных игр (для которых как раз тогда появились мобильные консоли с 3D-графикой).

Назрела необходимость сделать специальную архитектуру для компактного мобильного устройства, где главное - не скорость, а энергоэффективность. В Intel такую задачу взяло на себя израильское отделение компании, создавшее до этого весьма удачное семейство мобильных процессоров Pentium M (ядра Banias и Dothan). В этих ЦП энергосберегающие принципы были поставлены во главу угла с самого начала разработки, так что динамическое отключение блоков в зависимости от их загрузки и плавное изменение напряжения и частоты стало залогом экономности серии. Особенно ярко Pentium M смотрелись на фоне выпускаемых тогда же Pentium 4, которые в сравнении с ними казались раскалёнными сковородками. Причём, работая на одной частоте, Pentium M выигрывали у «четвёрок» по производительности, что вообще впервые случилось в практике процессоростроения - обычно мобильный компьютер расплачивается за свою компактность всеми остальными характеристиками. Впрочем, и сами-то Pentium 4 были, скажем так, не очень хороши в роли универсального ЦП…

Успех платформы показал, что такая высокая скорость нужна не всем, а вот сэкономить ещё энергии было бы неплохо. На тот момент (середина 2007 г.) Intel выпустила «папу» наших сегодняшних героев - процессоры A100 и A110 (ядро Stealey). Это 1-ядерные 90-нанометровые Pentium M с четвертью кэша L2 (всего 512 КБ), сильно заниженными частотами (600 и 800 МГц) и потреблением 0,4–3 Вт. Для сравнения - стандартные Dothan при частотах 1400–2266 МГц имеют энергорасход 7,5–21 Вт, низковольтные (подсерия LV) - 1400–1600 МГц и 7,5–10 Вт, а впервые введённые ультранизковольтные (ULV) - 1000–1300 МГц и 3–5 Вт. Резонно полагая, что современный компьютер большую часть времени проводит в ожидании очередного нажатия клавиши или сдвига мыши ещё на один пиксель, главным отличием A100/A110 от подсерии ULV Intel сделала умение очень глубоко засыпать, когда считать не надо совсем, благодаря чему потребление при простое падает на порядок. А сильно сокращённый кэш (большой L2 на таких частотах не очень-то и нужен) помог уменьшить размер кристалла, что сделало его дешевле. Размер корпуса процессора уменьшился впятеро, а суммарная площадь ЦП и чипсета - втрое. Как мы увидим далее, такие приёмы были использованы и в серии Atom.

Несмотря на в принципе верное целеполагание, A100/A110 остались мало востребованы рынком. То ли 600–800 МГц оказалось всё же маловато даже для простенького интернет-планшета, то ли всего два чипа (что даже модельным рядом назвать трудно) с самого начала были экспериментальным продуктом для обкатки технологии, то ли процессор просто не раскрутили маркетологи, зная, что ему на смену идёт кое-что куда более продвинутое… Менее чем через полгода после выпуска A100/A110 26 октября 2007 г. Intel объявила о близком выпуске новых мобильных ЦП с кодовыми именами Silverthorne и Diamondville и ядром Bonnell - будущих Атомов. Кстати, название Bonnell произошло от имени холмика высотой 240 м в окрестностях г. Остин (штат Техас), где в местном центре разработки Intel располагалась малочисленная группа разработчиков Атома. «Как вы яхту назовёте, так она и поплывёт.» ©Капитан Врунгель

В 2004 г. эта группа, после отмены ведомого ею проекта Tejas (наследника Pentium 4), получила прямо противоположное задание - проект Snocone по разработке крайне малопотребляющего x86-ядра, десятки которых объединит в себе суперпроизводительный чип с потреблением 100–150 Вт (будущий Larrabee, недавно переведённый в статус «демонстрационного прототипа»). В группе оказалось несколько микроэлектронных архитекторов из других компаний, включая и «заклятого друга» AMD, а её глава Belli Kuttanna работал в Sun и Motorola. Инженеры быстро обнаружили, что различные варианты имеющихся архитектур не подходят их нуждам, а пока думали дальше, в конце года CEO Intel Пол Отеллини сообщил им, что этот же ЦП также будет и 1-2-ядерным для мобильных устройств. Тогда было тяжело предположить, как именно и с какими требованиями такой процессор будет применяться через отведённые на разработку 3 года - руководство с большой долей риска указало на наладонники и 0,5 Вт мощности. История показала, что почти всё было предсказано верно.

Устройство CE4100

Интересно, что уже вслед за Атомом летом 2008 г. был выпущен EP80579 (Tolapai) для встраиваемых применений с ядром Pentium М, 256 КБ L2, 64-битным каналом памяти, полным набором контроллеров периферии, частотами 600–1200 МГц и потреблением 11–21 Вт. А почти сразу после него - модель Media Processor CE3100 (Canmore) для цифрового дома и развлечений: архитектура Pentium М, частота 800 МГц, 256 КБ L2, три 32-битных канала контроллера памяти, 250 МГц RISC-видеосопроцессор и два 340 МГц ядра DSP (цифровой сигнальный процессор) для аудио. Как покупались эти штуки - не ясно, т. к. после анонса о них не было слышно ничего в т. ч. и от Intel. Видимо, не очень… Уже после расцвета Атома, в сентябре 2009-го, Intel повторила попытку и выпустила CE4100, CE4130 и CE4150 (Sodaville) уже на «атомном» ядре частотой 1200 МГц, двумя 32-битными каналами DDR3, обновлённой периферией и технормой 45 нм. И вновь с тех пор об этих высокоинтегрированных системах-на-чипе (SOC) мало слышно. Может быть, рынок не готов встретить героя?
Слева CE4100, справа - CE3100

Теория Атома

Для начала рассмотрим основные характеристики процессора с точки зрения потребителя. Их три: скорость, энергоэффективность, цена. (Правда, энергоэффективность - не очень-то «потребительская» характеристика, но, тем не менее, именно по ней проще всего судить о некоторых важных параметрах конечного устройства.) Далее вспомним, что у идеальной КМОП-микросхемы (по этой технологии изготавливаются все современные цифровые чипы) потребление энергии пропорционально частоте и квадрату напряжения питания, а пиковая частота линейно зависит от напряжения. В результате, уполовинив частоту, мы можем уполовинить напряжение, что в теории уменьшит потребление энергии в 8 раз (на практике - в 4–5 раз). Таким образом, мобильный процессор должен быть низкочастотным и низковольтным. Как же тогда он окажется быстрым? Для этого надо, чтобы за каждый такт он выполнял как можно больше команд, что чаще всего означает увеличение числа конвейеров (степени суперскалярности) и/или числа ядер. Но это ведёт к резкому росту транзисторного бюджета, что увеличивает площадь чипа, а значит и его стоимость.

Таким образом, выиграть по всем трём пунктам не получится даже теоретически (чем и объясняется присутствие на рынке такого разнообразия процессорных архитектур). Поэтому где-то придётся сдать позиции. Исторический экскурс говорит, что сдать надо в скорости, что даст возможность сделать ядро ЦП максимально простым. Именно по этому пути и пошли инженеры из Остина. Обдумав варианты, они решили вернуться к архитектуре 15-летней давности, первый и последний раз (среди процессоров Intel) использовавшейся в первых Pentium. А именно: процессор остаётся суперскалярным (т. е. 2 команды за такт у нас будет - но не 3–4, как в современниках Атома), лишается механизма перетасовки команд перед исполнением (OoO), но приобретает то, чего у Pentium не было - технологию гиперпоточности (HyperThreading, HT), позволяющую на базе одного физического ядра эмулировать для ОС и ПО наличие двух логических. Чтобы объяснить, почему был сделан именно такой выбор, читателю рекомендуется сначала вспомнить все возможные способы увеличения производительности ЦП . А теперь оценим их с позиции потребления энергии и транзисторных затрат.

Использование многопроцессорной конфигурации в карманном или наколенном устройстве недопустимо, а вот многоядерность - вполне, если не хватает скорости одного ядра. Поначалу Intel сделала это тем же способом, что и в первых 2-ядерных Pentium 4 - поставив пару одинаковых 1-ядерных чипов на общую подложку и общую шину до чипсета. Из других разделяемых ресурсов есть лишь питающее напряжение, которое выбирается из максимума двух запросов. Т. е. ядра могут отдельно изменять свои частоты, но засыпают и пробуждаются синхронно. В декабре 2009 г. Intel выпустила первые интегрированные версии Атомов, где на одном кристалле есть 1–2 ядра и северный мост. На плате остался южный мост, соединённый с ЦП шиной DMI, что чуть быстрее и экономней предыдущей комбинации. Больше двух ядер нам скоро не предложат, так что основной скоростной упор сделан на их внутренности.

Вопрос повышения частотного потолка инженеров Intel на этом этапе тоже не очень волновал, хотя отказываться от принципа конвейерности и декодирования команд х86 во внутренние микрооперации (мопы) никто не собирался - это был бы слишком радикальный шаг назад. А вот предсказатели переходов, предзагрузчики данных и прочие вспомогательные системы заполнения конвейера стали очень важны, т. к. простаивающий конвейер, не умеющий исполнять другие команды в обход застрявшей, означает выкинутые насмарку драгоценные ватты - и у Атома все необходимые «подпорки» сделаны ненамного хуже, чем у Pentium M и более современных ему Core 2, разве что размеры буферов поменьше (опять же ради экономии). В итоге, основная битва разыгрывается вокруг производительности за такт.

В 80ые годы, когда появились первые ноутбуки, они мало отличались от персональных компьютеров - это был большой ящик со встроенной клавиатурой, материнской платой, экраном и ручкой для переноски, даже аккумулятор был не всегда. И это было понятно - не было смысла разрабатывать специальные процессоры для ноутбуков, так как существующие на рынке решения не требовали даже 1 ватта. К концу 90ых процессоры уже требовали как минимум радиаторов для охлаждения, ну а к началу нулевых Intel поняли, что нужно выпускать отдельные процессоры для ноутбуков со сниженным потреблением энергии - так появилась линейка Intel Pentium M: такие процессоры имели теплопакет в 20-25 Ватт, что вполне подходило для их установки в ноутбуки. По сути эти процессоры являются сильно переработанными Intel Pentium III с меньшими частотами:


Однако еще через пару лет, когда Microsoft представила Windows XP Tablet Edition, встал вопрос о еще большем снижении тепловыделения - так родилась линейка Intel Celeron ULV (пра-прадедушка всех современных Intel Core i ULV): эти процессоры представляли еще более урезанные Pentium M - если последние работали на частотах в 1.5-2 ГГц, то частоты Celeron зачастую были меньше гигагерца! В принципе, этого хватало для запуска XP (она требовала процессор с частотой хотя бы 233 МГц), но система работала достаточно задумчиво.

В 2007 году Intel представили «папу» Intel Atom - процессоры A100 и A110, которые представляли собой урезанные одноядерные 90 нм Pentium M с частотами около 600-800 МГц. Пожалуй единственным их плюсом было то, что их тепловыделение не превышало 3 Вт, то есть они могли охлаждаться пассивно. Однако производительность так же была пассивной - даже хуже, чем у Celeron M, поэтому такие процессоры на рынке популярности не сыскали. Intel поняли, что, во-первых, пора переводить процессоры на новый техпроцесс, а во-вторых делать решения с пассивной системой охлаждения еще ох как рано - и в 2008 они представили Intel Atom.

Intel Atom Bonnel

Первое поколение Intel Atom представляло из себя ядро Pentium M на 45 нм техпроцессе с интегрированной графикой от PowerVR, кэшем L2 до 1 Мб и контроллером памяти DDR2. Пожалуй, самым популярным процессором, который стоял в большинстве нетбуков того времени, был Atom N450. Это был одноядерный двухпоточный процессор с частотой около 1.5 ГГц, интегрированная видеокарта называлась Intel GMA 3150, а комплектовался он 1-2 Гб ОЗУ. Его тепловыделение не превышало 6.5 Вт, так что для охлаждения требовался небольшой кулер.

Производительность такого процессора была, конечно, невысокой - в 3Dmark 06 процессор набирал всего 500 очков, а видеокарта 150. К примеру, процессор в оригинальном Macbook Air 2008 года, Intel Core 2 Duo T7500, набирал 1900 очков, а его видеокарта, GMA X3100, 430 очков. В итоге на нетбуке с таким процессором можно было открывать документы, сидеть в интернете, но не более того - тормозило даже 720p c YouTube, а про игры вообще можно было забыть. Но тем не менее нетбуки с такими процессорами пользовались огромной популярностью - во-первых они были очень компактными и легкими (10-11", 1-1.2 кг), во-вторых дешевыми - в основном не дороже 200-300 долларов, и в-третьих долгоживущими - 6 часов при смешанной нагрузке достигались легко, что было редкостью в 2010ом. В итоге такие устройства массово раскупали студенты и школьники, ибо это был идеальный вариант печатной машинки с возможностью выхода в интернет.

Intel Atom Saltwell

Время шло, уже стали появляться процессоры на 32 нм техпроцессе, и Intel разумеется решила обновить линейку Atom. Самая основная проблема была не сколько в слабой видеокарте, где поддежка DX 9 была прикручена на скорую руку, а в процессоре, который категорически отказывался нормально тянуть новую Windows 8, да и отсутствие возможности просмотра хотя бы 720р в 2012 году уже выглядело нелепо.


Поэтому Intel подтянулись и выпустили линейку Atom Z2xxx - чаще всего в планшеты и нетбуки на Windows ставился Z2760, его и рассмотрим. Это двухядерный четырехпоточный процессор с частотой около 1.8 Ггц, построенный по 32 нм техпроцессу, с все той же графикой от PowerVR (правда несколько доработанной), 1 Мб L2 и поддержкой до 2 Гб LPDDR2 памяти. По процессорной производительности это был уже совсем другой уровень - в 3Dmark 06 он набирал уже 1000 очков, а видеокарта - порядка 350. Заодно был снижен теплопакет всего до 2 ватт, то есть процессор отлично охлаждался пассивно. Его производительности уже хватало для достаточно быстрой работы системы, а несколько доработанная графика (они теперь имела 6 вычислительных блоков вместо 2 в первом поколении Atom) уже позволяла худо-бедно, но даже делать простейшую обработку фото в Photoshop. Ну и разумеется никаких проблем с воспроизведением 720р и даже некоторых форматов 1080р не было. Однако за два года, с 2010 до 2012, запросы пользователей выросли ощутимо, и Z2760, который умел нормально тянуть только 768р разрешение, несколько блекнул в сравнении с iPad 4, который наура тянул 2048х1536, так что Intel было куда расти.

Intel Atom Silvermont

В 2013 году Intel наконец-то полностью разобралась с 22 нм техпроцессом, выпустив до сих пор актуальный Haswell, и наконец-то обратила внимание на Atom: Z2760 работал, конечно, сносно, но не более того, и ему нужна была замена. И Intel выпустила третье поколение Atom на 22 нм техпроцессе, Bay Trail.

Надо сказать, Intel сделала просто отличные процессоры: во-первых они смогли «запихнуть» 4 ядра в теплопакет в 2-3 Вт, во-вторых процессоры научились работать с DDR3, и в-третьих теперь они комплектуются полноценной Intel HD Graphics поколения Ivy Bridge, так что теперь есть поддержка DX11, SSE 4 и прочих современных инструкций, что позволяло на такой графике в теории запускать практически любую современную игру. Итоговая производительность процессора в 3Dmark 06 была аж 1800 очков - уровень Intel Core i ULV 2ого поколения, что было просто отличным результатом - Windows запускалась и работала быстро, и при наличии 4 Гб ОЗУ не было никаких проблем с многозадачностью. Планшеты на таком железе без труда переваривали не только 1080р, но и 1440р видео. Результат видеокарты был не хуже - 1900 очков: да, полноценная HD 4000 набирает в 3Dmark 06 около 4000 очков, но там 16 вычислительных блоков с частотой около 1000 МГц, а тут всего 4, с частотой около 600 МГц. Тем не менее, на такой графике сносно шла Civilization 5 - в сравнении с мобильной урезанной Цивилизацией это был прорыв. Это же касается и других игр - аналогов того же Dirt 3 под мобильные ОС до сих пор нет, а ведь она на минимальных настройках бодро бегала на этих Atom.

Intel Atom Cherry Trail

После выпуска третьего поколения Intel расслабились, и это понятно - Bay Trail отлично справлялся с планшетными задачами, запас на будущее был. Единственное, что было не очень хорошо, так это графика - процессор мог вытянуть и более мощное решение. И в итоге только на графике Intel и сконцентрировались, выпустив в 2015 году процессоры линейки Z8xxx (логично было бы назвать их Z4xxx, но у Intel своя логика).

Возьмем, пожалуй, самого популярного представителя новой линейки - Z8300. Этот процессор построен на 14 нм техпроцессе, имеет все те же 4 ядра с частотами около 2 ГГц, однако сильно лучшую видеокарту - теперь она, во-первых, базируется на интегрированной графике нового на тот момент поколения Broadwell, а во-вторых имеет или 12 (как в этом процессоре), или 16 (как в Z8700) вычислительных блоков с частотой около 500 МГц. Казалось бы - прирост графики должен быть 3-4 кратный, однако на деле все уперлось в теплопакет: если Bay Trail 2-3 Вт в принципе хватало, то тут для полноценной работы графики требовалось минимум в 2-3 раза больше. Поэтому в итоге видеокарта стала лишь на 30-50% мощнее, процессор же вообще остался на том же уровне. Так что особого смысла менять планшеты с Z3740 на Z8300 нет - система будет работать так же, программы будет запускаться то же самое время. Единственный прирост наблюдается в играх, но в общем-то если игра не шла на Bay Trail, то и на Cherry она скорее всего будет неиграбельной.

Дальнейшее развитие линейки Intel Atom

На данный момент линейка Intel Atom, как и Core i, является полностью отлаженной, и Intel будет ее обновлять в стиле «+5-10% за поколение» - и, в принципе, большего и не требуется: никто не рассматривает планшеты с Atom как высокопроизводительные устройства, а со своими прямыми обязанностями они справляются неплохо. Для тех, кому нужно не только сидеть в интернете и смотреть фильмы, есть линейка Core M, которая в полтора раза мощнее по процессору и в 3-4 по графике. Ну а тем, кому нужен портативный hi-end, имеет смысла смотреть на линейку процессоров Core i ULV, возможностей которых хватает для большинства пользовательских задач.

Дата публикации:

15.06.2009

Последние полгода значительно увеличился объем продаж ноутбуков, и самую значительную роль в том сыграли нетбуки. Что интересно, при этом упали продажи дорогих ноутбуков. Это и понятно: покупатели научились ценить деньги и вкладывать их с умом.

На общем фоне мирового кризиса, такие гиганты как ASUS, Acer и Dell объявили о высоких процентах прибыли именно благодаря продаже нетбуков.

Откуда растут ноги у нетбуков?

Понятие нетбуков появилось в 2008 году на Форуме Intel для разработчиков в Шанхае. По мнению компании Intel основной вектор развития мобильных устройств - создание дешевых мобильных интернет-устройств (MID). Такие устройства обеспечивают главное - доступ к сетям и информации в любое время и в любом месте в течение продолжительного времени. Эти устройства должны быть компактными и по истине портативными. На IDF Intel и представила соответствующую платформу Intel Centrino Atom и тем самым анонсировали появление устройств, построенных на архитектуре Atom и названных с подачи Intel нетбуками.

Нетбуки (netbook) - это семейство ноутбуков, предназначенных для работы в сети Интернет и ни для чего более (net - сеть, book - сокращение от notebook).

Нетбуки относятся к классу ноутбуков, называемых субноутбуками, то есть маленькими портативными ноутбуками с сверхнизким энергопотреблением. Такие ноутбуки имеют невысокую стоимость (от 200 до 600 у.е.), массу порядка 1 кг, небольшой дисплей (от 7 до 10 дюймов). Как известно, для работы в сети не требуется высокой производительности, следовательно от нетбуков не следует ожидать высокой производительности.

Процессорная технология Intel Centrino Atom, ранее известная под кодовым наименованием Menlow, включает первый процессор Intel Atom (ранее известные как Silverthorne ) и системный контроллер-концентратор Intel System Controller Hub (Poulsbo ). Эти компоненты с самого начала разрабатывались для сегмента MID.

Все мобильные системы оцениваются по соотношению производительности на 1 Ватт потребляемой мощности, показывая, что это всегда компромисс между производительностью и энергопотреблением. Ну а как известно, энергоемкие устройства требуют и больших по габаритам источников питания. Следовательно, снижая потребление энергии, разработчики автоматически уменьшают габариты устройств.

Архитектура Intel Atom

Новая микроархитектура основана на 45-нм производственном процессе, использующем новые транзисторы с металлическим затвором и диэлектриком high-k. На удивление, Atom полностью совместим с набором команд Intel Core 2 Duo, поддерживает Hyper-Threading и расширение набора мультимедиа команд SSE3. Поддерживается даже виртуализация Intel VT. Правда для мобильных задач она не нужна, но видимо разработчики хотят использовать эти процессоры как идеологию развития архитектуры во всех направлениях, создавая как бы универсальный процесс, а потом дорабатывая его в том или ином направлении. Можно сказать, что с учетом заложенных возможностей микроархитектура Intel Atom – основа для будущих процессоров.

В микроархитектуре Intel Atom реализованы революционные функции управления питанием, такие как состояние ожидания Intel Deep Power Down (C6), технология Enhanced Intel SpeedStep, активное стробирование генератора тактовых импульсов, режим CMOS и Split I/O. Все эти новшества позволяют оптимизировать энергопотребление и тепловыделение как в целом, так и в режимах ожидания, работы и пиковых нагрузок.

Процессор Intel Atom на сегодня является самым маленьким процессором Intel. Он даже меньше микросхем чипсета! При этом он самый быстродействующий процессор в мире, потребляющий менее 3 Вт электроэнергии. Один кристалл площадью менее 25 мм2 содержит более 47 миллионов транзисторов (значительно меньше настольных процессоров).


Тепловая мощность новых процессоров составляет 0,65-2,4 Вт, средняя потребляемая мощность не превышает 160-220 мВт , а в состоянии ожидания эти устройства потребляют всего 80-100 мВт.

Энергопотребление процессора Intel Atom в состоянии простоя определялось как потребляемая мощность в состоянии Intel Deep Power Down (состояние C6). Технология Intel Deep Power Down (C6) переводит процессор в состояние с минимальным энергопотреблением за счет отключения основного генератора тактовых импульсов системной шины, контура PLL=Phase-locked loop (ФАПС, система фазовой автоподстройки частоты), кэш-памяти первого и второго уровня.

С точки зрения схемотехники материнской платы PLL управляет динамическим снижением частоты системной шины и её автоподстройкой. Если оптимально настроить систему так, чтобы частота шины быстро динамически снижалась при отсутствии нагрузки, то этим можно сэкономить больше половины энергии подаваемой на генерацию импульсов на шине.

Кэш-память надо отключать по понятным причинам: там содержится основное количество транзисторов процессора: отключив их сэкономим вторую большую долю энергии источника.

Комплект компонентов на базе процессорной технологии Intel Centrino Atom, включающий системный контроллер-концентратор Intel System Controller Hub и процессор Intel Atom с частотой 800 МГц, 1,10, 1,33, 1,60 или 1,86 ГГц , стоит 45, 45, 65, 95 и 160 долларов США соответственно (при заказе от 1000 штук). Как мы видим, такие решения не дороги и позволяют создавать системы в пределах 200-400 у.е.

Семейство Intel SCH с самого начала разрабатывалось как высокопроизводительное энергосберегающее решение для однокристальных устройств с высокой степенью интеграции. Контроллер Intel SCH включает интегрированную графику с аппаратным ускорением декодирования видео, поддерживающее режимы HD 720p и 1080i. Поддерживаются все стандартные интерфейсы ввода/вывода для настольных компьютеров и карманных устройств, в том числе PCI Express, SDIO и USB.
Intel представила три версии SCH, поддерживающие модули памяти DDR2 400/533 МГц объемом 512 МБ/1 ГБ, видео как в стандартном разрешении, так и высокой четкости, технологии Intel High Definition Audio, DX9L и OpenGL.
На уровне драйверов есть поддержка различных ОС.

Мобильные интернет-устройства на базе Intel Atom собрались производить компании Aigo, Asus, BenQ, Clarion, Fujitsu, Gigabyte, Hanbit, KJS, Lenovo, LG-E, NEC, Panasonic, Samsung, Sharp, Sophia Systems, Tabletkoisk, Toshiba, USI, WiBrain и Yuk Yung.
Как видно, большая часть из этих компаний представляют сегмент мобильных устройств, коммуникаторов, наладонных компьютеров и единицы - сегмент субноутбуков.

Применение во встраиваемых системах

Встраиваемые решения - это отраслевые и промышленные решения (прежде всего контроллеры автоматики, медицинские и военные системы, измерительные приборы), характеризующиеся высокой надежностью и низким энергопотреблением. Такие системы имеют малые размеры, низкий профиль корпуса и пассивное охлаждение. Долгое время в этом сегменте соседствовали Intel Celeron M с чипсетом i945GME Express и менее "прожорливый" VIA C7. Настало время сместить этих апологетов постоянства - дошло изменение архитектура и до сегмента встраиваемых систем.
Этого следовало ожидать: все тенденции шли к уменьшению размеров кристалла и скрещивания производительности настольных чипов, оптимизации из серверного сегмента и мобильных кристаллов с низким и ультранизким энергопотреблением. И итогом совмещения стал Intel Atom.

Процессор Intel Atom и контроллер Intel SCH решено продвигать и в сегменте встраиваемых систем. В этом сегменте компания предлагает две модели процессоров: Atom Z530 с частотой 1,6 ГГц и Z510 с частотой 1,1 ГГц. Они расчитаны на 7-летний жизненный цикл. Естесвенно, Intel представил для разработчиков и все средства для внедерения новых CPU в embedded-системы.

Новая архитектура на 2 микросхемах (чипсет одночиповый) позволит более чем на 80% уменьшить размер устройств по сравнению с предыдущим решением, включавшим три микросхемы (Celeron M ULV и 945GME Express).

Процессоры Atom в сухом остатке

Итак, все кристаллы Intel Atom выполнено по 45-нм техпроцессу с использованием металлических затворов и диэлектриков Hi-k и условно могут быть разделены на CPU для нетбуков и неттопов и CPU для мобильных интернет-устройств.
Частично эти кристаллы унаследовали многое от архитектуры Centrino 2, но были оптимизированы и кое-где урезаны.

CPU для нетбуков и неттопов

Все эти кристаллы имеют 1 ядро, кроме модели 330 : она получила 2 ядра и 2 кэша L2 объемом 512К на каждое ядро (общий объем - 1МБ). Все остальные чипы имеют кэш L2 объемом 512 Кбайт.

Процессоры с буквой Z в маркировке имеют наименьшее энергопотребление - от 0,65 Вт (Z500) до 2,4 Вт (Z550). Модели Z500, Z510, Z515 работают с частотой шины 400 МГц (для уменьшения энергопотребления).
Z520, Z530, Z540, Z550 более энергоемкие, так как тактируются частотой шины 533 МГц.

Все эти модели появились в 1 квартале 2009 года.

Ранее появилась одна единственная модель N270 . Она рассчитана на тепловыделение (TDP) 2.5 W (температура до 90 градусов, против 85 у модели Z530 с такой же частотой). Она отличается только тем, что напряжение питания ядра у нее изменяется в пределах 0.9V-1.1625V, а у Z530 - от 0,8 V. Именно поэтому N270 и кушает 2,5 Вт, а не 2,4 Вт. Фактически, Z530 можно считать оптимизированной моделью N270.

Кристалл N270 имеет размеры 26 mm2 (22х22 мм), содержит 47 миллионов транзисторов и выполнен в новом корпусе PBGA437. Это означает, что его нет возможности установить в существующие системы Centrino 2.

Все производители нетбуков, которые представили свои решения в 2008 году, базировали их на N270.

Самые "жаркие" кристаллы Intel Atom - модели 230 и 330 . Фактически, это один и тот же процессоров. Отличие заключается в том, что 330 модель содержит 2 одинаковых ядра и, соответственно, кэш в 2 раза большей емкости.
Ну и как следствие - TDP у 330 выросло с 4 Вт до 8 Вт.
Кстати, только эти кристаллы из всех Atom 64-разрядные!

CPU для мобильных интернет-устройств

Фактически, это те же самое процессоры с теми же спецификациями, однако в несколько другом схемотехническом применении.
Вместо стандартного чипсета они предполагают использоваться в паре с кристаллами контроллера-концентратора системы Intel UL11L, US15L, US15W .

CPU для настольных ПК

В принципе, процессоры Atom можно с легкостью использовать для построения недорогих офисных ПК, чем и воспользовались многие ОЕМ-сборщики.

Подразумевается использование процессоров Atom N270, 230 и 330 с чипсетом i945GC Express.

В целом, можно резюмировать, что Intel Atom - самый мобильный и неэнергоемкий процессор для нетбуков и мобильных систем на данный момент.

За последний год во вселенной процессоров Intel Atom произошел ряд буквально галактических катаклизмов, как разрушительного, так и созидательного порядка. В их результате она была, можно сказать, полностью перестроена. В этом посте мы вспомним историю Intel Atom, поговорим о последних событиях, с ними связанными, а в заключении познакомимся с новыми моделями из этого семейства, похожими скорее на Intel Xeon.


Intel Atom были задуманы компанией Intel как бюджетное решение с минимальным энергопотреблением для различного рода мобильных устройств. Первый Atom появился в 2008 году, он был выполнен по технологии 45 нм, со временем техпроцесс сократился до 14 нм. Успех процессоров Atom сильно отличался в зависимости от области их применения. Так, некоторая их часть определенно появилась в нужное время и получила широкое распространение в новомодных тогда «нетбуках» («ноутбуках для работы в сети»). Работали такие нетбуки по сравнению с ноутбуками на процессорах Core небыстро, зато были дешевы, компактны, не имели кулера (и сопутствующих ему проблем), и хорошо продавались. Вспомним хотя бы суперпопулярный ASUS Eee PC 901 , и отметим, что нетбуки выпускали такие солидные производители как HP, Lenovo, Dell и Sony.


ASUS Eee PC 901

Гораздо менее успешно сложилась судьба Intel Atom как x86-конкурента ARM-процессоров для смартфонов и планшетов. Хотя и тут есть очень заметный результат - выход в 2015 году Microsoft Surface 3 с процессором Intel Atom x7-Z8700.

Надо отметить, что сделано Intel в этом ключевом направлении было очень много - мобильные Атомы последнего поколения, появившегося в 2013-2014 году, по производительности далеко ушли от своих первых прародителей, а по возможностям приблизились к Intel Core: в них было полностью обновлено графическое ядро - Intel HD Graphics, микроархитектура изменена на неупорядоченное (out of order) исполнение, добавлены векторные инструкции SSE4. Тем не менее, интерес к Атомам со стороны производителей был умеренным: несмотря на приличные показатели энергоэффективности (что констатировали весьма уважаемые ресурсы), эксплуатационные преимущества не были столь весомыми, чтобы затевать масштабную движуху по смене платформы. Не последнюю роль тут сыграл и финансовый вопрос: Intel Atom были все-таки дороже своих ARM-соперников.

К 2013 году было анонсировано около десятка моделей смартфонов на Atom , часть из которых так и не вышла в серию. В нашей стране продавался брендированный Мегафоном смартфон Orange San Diego под маркой Mint .


Мегафон Mint

Intel активно продвигала платформу Android x86 среди разработчиков: создавала средства разработки, публиковала обучающие материалы, проводила мероприятия. Более того, был создан уникальный бинарный транслятор, работавший на всех мобильных устройствах c Android на базе Atom, и на лету переводивший ARM код в x86 инструкции почти без потери производительности.

Однако, как уже было сказано выше, устройств на основе Atom было выпущено немного (по сравнению с количеством ARM-устройств на рынке), что приводило к порочному кругу - независимые разработчики не спешили выпускать новые эксклюзивные x86 приложения для данных малочисленных устройств, а производители устройств, в свою очередь, не спешили выпускать новые модели из за отсутствия уникальных приложений. Кроме того, не сработало теоретическое конкуретное преимущество Atom - возможность запуска десктопных приложений на мобильных устройствах одной архитектуры. Во-первых, портировать приложения все равно приходилось просто из за несовпадения настольных и мобильных ОС (Windows или MacOS -> Android) и форм-факторов, причем, обычно это оказывалось даже труднее, чем возможный переход от x86 к ARM; а во-вторых, за время безраздельного господства ARM на мобильном рынке, все компании, желавшие создать мобильные версии своих настольных продуктов, уже сделали это для ARM-устройств, так что появление x86 только добавило им хлопот - необходимость создавать и поддерживать версии приложения для разных CPU.
Как бы то ни было, при глобальной реорганизации 2016 года направление Atom для мобильных устройств было срублено под корень.

Однако труд создателей процессоров даром не пропал. В Intel появилось новое направление, которое постепенно стало одним из ключевых: «интернет вещей». Именно совокупность компонентов «интернета вещей» является оптимальным потребителем процессоров семейства Atom с их низким энергопотреблением и широким диапазоном характеристик. Так мы незаметно приблизились к нашему времени.

К настоящему моменту Intel выпустил огромное количество моделей Intel Atom, однако актуальных из них не так и много. Это прежде всего свежеанонсированная серия Е3900 (ее сравнительную таблицу вы видите выше). Серия призвана закрыть потребность в высокопроизводительных хабах «интернета вещей» (запросы поскромнее призваны удовлетворять платформы Intel Galileo, Edison и Curie).

Однако это еще не предел «прокачки» Атома. Тут мы подходим к новому анонсу. На смену «серверной» линейки Atom C2000 образца далекого 2013 года приходит серия С3000 , которая призвана поднять производительность Intel Atom на новую высоту. Флагманом серии станет 16-ядерная модель - столько ядер в Atom еще не было никогда. При этом все «фирменные» особенности - энергоэффективность и доступная для серверных моделей цена - остаются неизменными. Пока что доступна информация об одном из младших моделей серии - процессоре C3338 . Анонсы остальных ждем во втором полугодии 2017 года.



Рекомендуем почитать

Наверх