Кодирование сигналов. Виды и способы кодирование данных

Скачать Viber 26.05.2019
Скачать Viber

Нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

В некоторых случаях физическое кодирование решает проблемы:

Логическое кодирование

Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

В совокупности физическое кодирование и логическое кодирование образуют систему кодирования низкого уровня.

Форматы кодов [ ]

Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

Системы с двухуровневым кодированием

NRZ (Non Return to Zero)

NRZ (Non Return to Zero, с англ.  -  «без возвращения к нулю») - двухуровневый код. Логическому нулю соответствует нижний уровень, логической единице - верхний уровень. Информационные переходы происходят на границе значащих интервалов (значащий момент) .

Варианты представления кода NRZ

Различают несколько вариантов представления кода:

  • Униполярный код - логическая единица представлена верхним потенциалом, логический нуль представлен нулевым потенциалом;
  • Биполярный код - логическая единица представлена положительным потенциалом, логический нуль представлен отрицательным потенциалом.

Достоинства NRZ кода

  • Простая реализация;
  • Высокая скорость передачи данных;
  • Для синхронизации передачи байта используется старт-стоповый бит.

Недостатки NRZ кода

NRZI (Non Return to Zero Invertive) - потенциальный код с инверсией при единице, код формируется путем инверсного состояния при поступлении на вход кодирующего устройства логической единицы, при поступлении логического нуля состояние потенциала не меняется. Этот метод является модифицированным методом Non Return to Zero (NRZ) .

Поскольку код не защищен от долгих последовательностей логических нулей или единиц, то это может привести к проблемам синхронизации. Поэтому перед передачей, заданную последовательность битов рекомендуется предварительно закодировать кодом предусматривающим скремблирование (скремблер предназначен для придания свойств случайности передаваемой последовательности данных с целью облегчения выделения тактовой частоты приемником). Используется в Fast Ethernet 100Base-FX и 100Base-T4.

Достоинства NRZI кода

  • Простота реализации;
  • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов);
  • Спектр сигнала расположен в низкочастотной области относительно частоты следования значащих интервалов.

Недостатки NRZI кода

  • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита;
  • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

Манчестерское кодирование

Манчестерское кодирование

При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала в середине каждого такта. Различают два варианта манчестерского кодирования:

В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает самосинхронизирующими свойствами. Обязательное наличие перехода в центре бита позволяет легко выделить синхросигнал. Допустимое расхождение частот передачи - до 25 % (это означает, что код Манчестер-2 - самый устойчивый к рассинхронизации, он самосинхронизуется в каждом бите передаваемой информации).

Плотность кода 1 бит/герц. В спектре сигнала, закодированного Манчестером-2, присутствует 2 частоты - частота передачи и половинная частота передачи (она образуется когда рядом стоят 0 и 1 или 1 и 0. При передаче гипотетической последовательности одних 0 или 1 в спектре будет присутствовать только частота передачи).

Достоинства манчестерского кодирования

  • Нет постоянной составляющей (смена сигнала происходит на каждом такте передачи данных)
  • Полоса частот в сравнении с NRZ кодированием - основная гармоника в при передаче последовательности единиц или нулей имеет частоту N Гц, а при постоянной последовательности (при передаче чередования единиц и нулей) - N/2 Гц.
  • Является самосинхронизирующимся , то есть не требует специальной кодировки синхроимпульса, который бы занимал полосу данных и поэтому является самым плотным кодом на единицу частоты.
  • Возможность обеспечить гальваническую развязку с помощью трансформатора, так как у него отсутствует постоянная составляющая
  • Вторым важным преимуществом является отсутствие необходимости в синхронизующих битах (как в NRZ-коде) и, вследствие этого, данные могут передаваться подряд сколь угодно долго, из-за чего плотность данных в общем потоке кода приближается к 100 % (например для кода NRZ 1-8-0 она равна 80 %).

Код Миллера

Код Миллера (иногда называют трехчастотным) - является двуполярным двухуровневым кодом, в котором каждый информационный бит кодируется комбинацией из двух битов {00, 01,10,11}, а переходы из одного состояния в другое описываются графом . При непрерывном поступлении логических нулей или единиц на кодирующее устройство переключение полярности происходит с интервалом T, а переход от передачи единиц к передаче нулей с интервалом 1,5T. При поступлении на кодирующее устройство последовательности 101 возникает интервал 2Т, по этой причине данный метод кодирования называют трехчастотным .

Преимущества

  • Нет избыточности в коде (нет специальных комбинаций для синхронизации);
  • Способность к самосинхронизации (в самом коде заложен принцип по которому гарантированно можно синхронизироваться);
  • Полоса пропускания кода Миллера вдвое меньше полосы пропускания в сравнении с манчестерским кодированием.

Недостатки

  • Присутствие постоянной составляющей, при этом достаточно велик и низкочастотный компонент, что преодолено в модифицированном коде Миллера в квадрате.

Системы с трёхуровневым кодированием

RZ (return to zero)

AMI -код использует следующие представления битов:

  • биты 0 представляются нулевым напряжением (0 В)
  • биты 1 представляются поочерёдно значениями -U или +U (В)

HDB3 (биполярный код с высокой плотностью третьего порядка)

Код HDB3 (биполярный код с высокой плотностью третьего порядка ) исправляет любые 4 подряд идущих нуля в исходной последовательности. Правило формирования кода следующее: каждые 4 нуля заменяются 4 символами в которых имеется хотя бы один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Для замены используются два способа:

  1. Если перед заменой исходный код содержал нечётное число единиц то используется последовательность 000V
  2. Если перед заменой исходный код содержал чётное число единиц то используется последовательность 100V

V-сигнал единицы запрещённого для данного сигнала полярности

Тоже что и AMI , только кодирование последовательностей из четырех нулей заменяется на код -V/0, 0, 0, -V или +V/0, 0, 0, +V - в зависимости от предыдущей фазы сигнала и количества единиц в сигнале, предшествующем данной последовательности нулей.

MLT-3

Кодирование MLT-3

MLT-3 (Multi Level Transmission - 3) (англ. многоуровневая передача) - метод кодирования, использующий три уровня сигнала. Метод основывается на циклическом переключении уровней -U, 0, +U. Единице соответствует переход с одного уровня сигнала на следующий. Так же как и в методе NRZI при передаче логического нуля сигнал не меняется. Метод разработан Cisco Systems для использования в сетях FDDI на основе медных проводов, известных как CDDI. Также используется в Fast Ethernet 100BASE-TX . Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче нуля сигнал не меняется.

Преимущества MLT-3 кода

  • В случае наиболее частого переключения уровней (длинная последовательность единиц) для завершения цикла необходимо четыре перехода. Это позволяет вчетверо снизить частоту несущей относительно тактовой частоты, что делает MLT-3 удобным методом при использовании медных проводов в качестве среды передачи.
  • Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

Гибридный троичный код (англ.) русск.

Входной бит Предыдущее состояние
на выходе
Выходной бит
0 +
0
0
1 +
0 +

4B3T

4B3T (4 Binary 3 Ternary, когда 4 двоичных символа передаются с помощью 3 троичных символов) - cигнал на выходе кодирующего устройства, согласно коду 4B3T, является трехуровневым, то есть на выходе кодирующего устройства формируется сигнал с тремя потенциальными уровнями. Код формируется, например, согласно таблице кодирования MMS43 . Таблица кодирования:

MMS 43 coding table
Input Accumulated DC offset
1 2 3 4
0000 + 0 + (+2) 0−0 (−1)
0001 0 − + (+0)
0010 + − 0 (+0)
0011 0 0 + (+1) − − 0 (−2)
0100 − + 0 (+0)
0101 0 + + (+2) − 0 0 (−1)
0110 − + + (+1) − − + (−1)
0111 − 0 + (+0)
1000 + 0 0 (+1) 0 − − (−2)
1001 + − + (+1) − − − (−3)
1010 + + − (+1) + − − (−1)
1011 + 0 − (+0)
1100 + + + (+3) − + − (−1)
1101 0 + 0 (+1) − 0 − (−2)
1110 0 + − (+0)
1111 + + 0 (+2) 0 0 − (−1)

Таблица декодирования:

Ternary Binary Ternary Binary Ternary Binary
0 0 0 н/д − 0 0 0101 + − − 1010
+ 0 + 0000 − + + 0110 + 0 − 1011
0 − 0 0000 − − + 0110 + + + 1100
0 − + 0001 − 0 + 0111 − + − 1100
+ − 0 0010 + 0 0 1000 0 + 0 1101
0 0 + 0011 0 − − 1000 − 0 − 1101
− − 0 0011 + − + 1001 0 + − 1110
− + 0 0100 − − − 1001 + + 0 1111
0 + + 0101 + + − 1010 0 0 − 1111

Системы с четырёхуровневым кодированием

2B1Q (Потенциальный код 2B1Q)

Достоинство метода 2B1Q

  • Сигнальная скорость у этого метода в два раза ниже, чем у кодов NRZ и AMI, а спектр сигнала в два раза уже. Следовательно с помощью 2B1Q-кода можно по одной и той же линии передавать данные в два раза быстрее.

Недостатки метода 2B1Q

  • Реализация этого метода требует более мощного передатчика и более сложного приемника, который должен различать четыре уровня.

Преобразование сигналов

Погрешности и шумы квантования.

Квантование по уровню, равномерное и неравномерное квантование.

Преобразование сигналов.

Канал есть совокупность технических средств между источником сообщений и потребителем. Технические устройства, входящие в состав канала, предназначены для того, чтобы сообщения дошли до потребителя наилучшим образом – для этого сигналы преобразуют. Такими полезными преобразованиями сигнала являются модуляция, рассмотренная ранее и преобразование непрерывных сигналов в дискретные. Соответственно, каналы классифицируют по состояниям – непрерывные и дискретные .

Сигналы, несущие информацию о состоянии какого-либо объекта или процесса, по своей природе непрерывны, как непрерывны сами процессы. Поэтому такие сигналы называют аналоговыми, т.к. они являются аналогом отображаемого ими процесса или состояний объекта. Число значений, которое может принимать аналоговый сигнал, бесконечно. Соответственно, каналы, по которым передаются эти сигналы, также являются аналоговыми.

В АТС задача часто сводится к тому, чтобы различить конечное число состояний объекта, например, занята рельсовая цепь или свободна. Для передачи этого числа состояний достаточно сравнить принимаемый сигнал с некоторым опорным сигналом. Если он больше опорного, объект находится в одном состоянии, меньше – в другом. Чем больше число состояний объекта, тем больше должно быть опорных уровней.

С другой стороны, информацию о состоянии объекта потребителю достаточно получать не непрерывно во времени, а периодически, и, если период опроса увязать со скоростью изменения состояний объекта, то потребитель не будет иметь потерь информации.

В результате преобразований непрерывного сигнала, называемых квантованием и дискретизацией получают отсчеты сигнала, рассматриваемые как числа в той или иной системе счисления. Эти отсчеты являются дискретными сигналами . Эти числа преобразуют в кодовые комбинации электрических сигналов, которые и передают по линии связи как непрерывные. При использовании в качестве носителя постоянного состояния получают последовательность видеоимпульсов. При необходимости этой последовательностью модулируют гармоническое колебание и получают последовательность радиоимпульсов.

Под кодированием понимают преобразование дискретных сигналов в последовательность или комбинацию некоторых символов. Символ кода – это элементарный сигнал , отличающийся от другого символа кодовым признаком . Число значений кодовых признаков называется основанием кода – m . Число символов в кодовой комбинации п определяет длину кода. Если длина кода для всех комбинаций постоянна, код называется равномерным. Чаще всего используются равномерные двоичные (m =2) коды. Максимальное число кодовых комбинаций при равномерном кодировании: N = m n .



Представление непрерывных сигналов отсчетами, а отсчетов – совокупностью символов называется цифровыми видами модуляции . Из них наиболее распространенными являются импульсно-кодовая модуляция (ИКМ) и дельта-модуляция (ДМ).

Рассмотрим ИКМ. Пусть нам надо передать непрерывный сигнал с диапазоном изменения от нуля до 15 вольт. Считаем, что нам достаточно передать 16 уровней, т.е. N = 16. Отсюда, если m = 2, то n = 4. Кодируем: 0 В – 0000, 1 В – 0001, 2 В – 0010, 3 В – 0011 и т.д. Эти числа в виде импульсов и пауз поступают в линию связи, затем в приемнике декодируются и превращаются, если нужно, снова в непрерывный сигнал. Преобразование непрерывного сигнала в дискретный осуществляется в устройствах, называемых аналого-цифровыми преобразователями (АЦП), обратные преобразования – в устройствах цифро-аналогового преобразования (ЦАП).

Принципы кодирования

Аналого-цифровое преобразование завершается операцией кодирования, которая в данном случае заключается в преобразовании уровней отсчетов непрерывных сигналов в кодовые комбинации. При этом обычно используются равномерные двоичные коды, в которых число кодовых символов или разрядов кодовых комбинаций равно т, а каждый символ может принимать значение 0 или 1.
Применяются следующие равномерные двоичные коды: натуральный, симметричный и рефлексный. При натуральном двоичном кодировании структура кодовой группы определяется номером шага квантования N KB , записанным в двоичной системе исчисления с помощью полинома

где а i , - кодовый символ i -го разряда, принимающий значение 0 или 1, - вес 1-го разряда. Натуральный двоичный код применяется для кодирования униполярных импульсов. В качестве примера на рис. 15,а приведена кодовая таблица для натурального двоичного четырехразрядного кода.


Недостаток натурального двоичного кода состоит в том, что кодовые группы, соответствующие соседним шагам квантования, могут различаться во многих разрядах кода. Поэтому при изменении значения отсчета во время кодирования может произойти переход от одного шага квантования к другому, сильно отличающемуся от него. Такой переход наиболее вероятен в центральной части амплитудной характеристики. Например, если после начала кодирования на седьмом шаге мгновенное значение выросло до восьмого, то вместо кодовой группы 0111 будет передана группа 0000, что будет соответствовать передаче нулевого уровня.

Биполярным сигналам, например речевым, свойственна макси­мальная плотность вероятности малых мгновенных значений. Для таких сигналов разряды кодовых групп соседних уровней в центре амплитудной характеристики квантования должны отличаться в ми­нимальном числе разрядов. С этой целью применяют натуральный симметричный двоичный код (рис. 15,6). При кодировании сим­метричным кодом символ первого разряда определяется знаком отсчета, а символы остальных разрядов - абсолютным значением отсчета, выраженным в двоичной системе исчисления.

Для таких сигналов, как широкополосные телевизионные, разли­чие символов в большом числе разрядов кодовых групп любых со­седних шагов квантования нежелательно, так как для этих сигналов ошибки кодирования одинаково опасны для всех мгновенных зна­чений. Для кодирования таких сигналов используется рефлексный двоичный код (код Грея), в котором кодовые группы любых сосед­них уровней квантования отличаются лишь в одном разряде. Таб­лица рефлексного четырехразрядного кода приведена на рис. 16.


На приемном конце принятые кодовые группы декодируются, в результате чего восстанавливаются мгновенные значения переда­ваемого сигнала Затем последовательность импульсов АИМ-2 демодулируется с помощью фильтра нижних частот. Кодеры и декодеры, предназна­ченные для аналого-цифрового и цифро-аналогового преобразова­ния, в совокупности называют кодеками. При реализации кодеков оказывается важным вид начального участка амплитудной характеристики квантования. На рис. 17 приведены три варианта таких участков. Варианты эти различаются взаимным расположением уровня и шага квантования. Уровень квантования - это уровень, превышение которого (по абсолютной величине) приводит к переходу на следующий шаг квантования. Первый вариант (рис. 17,а) соответствует расположению уровня квантования на нижней границе шага, т.е. пока мгновенное значе­ние имеет величину, расположенную в диапазоне данного шага, она кодируется значением данного (по абсолютной величине) шага квантования. Например (см. рис. 15,6), всем мгновенным значе­ниям сигнала в диапазоне от 0 до +1 будет соответствовать кодо­вое слово «1000», мгновенным значениям от +1 до +2 - кодовое слово «1001» и так далее. Второй вариант начального участка амплитудной характеристики (рис. 17,6) характеризуется расположением уровня квантования посередине шага квантования, т.е. мгновенные значения сигнала не
достигающие середины шага кодируются значением данного шага, а превысившие середину шага - последующим (по абсолютной ве­личине). Например, для того же рис. 15,6 всем мгновенным зна­чениям сигнала в диапазоне от 0 до +0,5 будет соответствовать кодовое слово «1000», а для диапазона от +0,5 до +1,5 - «1001». Наконец, в третьем варианте уровень квантования находится на верхней границе шага квантования.

Особенность первого варианта состоит в том, что сигнал или шумы с амплитудой, меньшей шага квантования Δ, не передаются, т.е. происходит ограничение сигнала по минимуму. Для третьего варианта (рис. 17,в) шум малого уровня в отсутствие сигнала при­водит к случайным переходам между состояниями -Δ/2 и +Δ/2 и пе­редается на выход системы, что приводит к так называемым шу­мам незанятого канала или шумам молчания. Однако если в пер­вом варианте ошибка квантования может достигать величины шага квантования (пределы изменения ошибки от 0 до ± Δ), то в третьем -только половины шага (пределы изменения ошибки от - Δ /2 до + Δ /2). Второй вариант амплитудной характеристики квантования сочетает преимущества первого и третьего вариантов.

На практике обычно реализуются кодеки с амплитудной харак­теристикой кодера, соответствующей первому варианту. С тем что­бы уменьшить абсолютное значение ошибки квантования при деко­дировании к результату всегда добавляется значение, равное по­ловине шага квантования. Это приводит к тому, что сквозная ам­плитудная характеристика тракта кодер - декодер будет соответствовать третьему варианту (рис. 17,в), но с подавлением шумов молчания как в первом варианте (рис. 17,а).

2. При узкополосной передаче используется двуполярный дискретный сигнал. При этом кодирование в сетевом адаптере передающей РС цифровых данных в цифровой сигнал выполняется напрямую.

Наиболее простым и часто используемым является кодирование методом без возврата к нулю (NRZ – Non Return to Zero) , в котором бит «1» представляется положительным напряжением (H – высокий уровень), а бит «0» – отрицательным напряжением (L – низкий уровень). Т. е. сигнал всегда выше или ниже нулевого напряжения, откуда и название метода. Иллюстрация изложенных методов кодирования сигналов приведена на рисунке 5.22.

Как при передаче аналоговых, так и цифровых сигналов, если следующие друг за другом биты ровны (оба «0» или оба «1»), то трудно сказать, когда кончается один и начинается другой. Для решения этой задачи приемник и передатчик надо синхронизировать, т. е. одинаково отсчитывать интервалы времени.

Это можно выполнить либо введя дополнительную линию для передачи синхроимпульсов (что не всегда возможно, да и накладно) , либо использовать специальные методы передачи данных: асинхронный или автоподстройки.

Рисунок 5.22 – Варианты кодирования сигналов.

Методы передачи данных по сетям

При низких скоростях передачи сигналов используется метод асинхронной передачи, при больших скоростях эффективнее использовать метод автоподстройки. Как передатчик, так и приемник снабжены генераторами тактовых импульсов, работающими на одной частоте. Однако невозможно, чтобы они работали абсолютно синхронно, поэтому их необходимо периодически подстраивать. Аналогично обыкновенным часам, которые необходимо периодически корректировать.

При асинхронной передаче генераторы синхронизируются в начале передачи каждого пакета (или байта) данных и предполагается, что за это время не будет рассогласования генераторов, которые бы вызвали ошибки в передаче. При этом считается, что все пакеты одной длины (например, байт). Синхронизация тактового генератора приемника достигается тем, что:

· перед каждым пакетом (байтом) посылается дополнительный «старт-бит», который всегда равен «0»;

· в конце пакета посылается еще один дополнительный «стоп-бит», который всегда равен «1».

Если данные не передаются, линия связи находится в состоянии «1» (состояние незанятости). Начало передачи вызывает переход от «1» к «0», что означает начало «старт-бита». Этот переход используется для синхронизации генератора приемника. Поясним этот процесс временной диаграммой (рисунок 5.23):

Рисунок 5.23 – Асинхронная передача

При передаче с автоподстройкой – используется метод Манчестерского кодирования, при котором:

· тактовый генератор приемника синхронизируется при передаче каждого бита;

· следовательно, можно посылать пакеты любой длины .

Синхронизация сигнала данных достигается обеспечением перехода от «H»-уровня к «L»-уровню или наоборот, в середине каждого бита данных (рисунок 5.24). Эти переходы служат для синхронизации тактового генератора приемника. Биты данных кодируются: «0» – при переходе «L» → «H» и «1» – при переходе «H» → «L»


Рисунок 5.24 – Передача с автоподстройкой

Если информация не передается, в линии данных нет никаких переходов и тактовые генераторы передатчика и приемника рассогласованы.

При этом виде кодирования переходы происходят не только в середине каждого бита данных, но и между битами, когда два последовательных бита имеют одно и то же значение.

После простоя линии необходима предварительная синхронизация генератора, которая достигается посылкой фиксированной последовательности битов (преамбула и биты готовности).

Например, можно использовать преамбулу из восьми битов: 11111110, где первые 7 битов используются для начальной синхронизации, а последний – для сообщения приемнику, что преамбула окончилась, т. е. далее пойдут биты данных.

Лекция 17

Тема 5.3 Принципы функционирования локальных вычислительных сетей

План лекции

– Основные компоненты ЛВС

– Типы ЛВС

– Одноранговые сети

– Сети на основе сервера

– Комбинированные сети

– Аппаратное обеспечение

– Понятие топологии сети и базовые топологии:

топология типа «шина»

топология типа «звезда»

топология типа «кольцо»

комбинированные топологии

– Сравнительные характеристики топологий

– Методы доступа к физической среде передачи

Основная часть лекции

Основные компоненты ЛВС

ЛВС на базе ПК получили в настоящее время широкое распространение из-за небольшой сложности и невысокой стоимости. Они используются при автоматизации промышленности, банковской деятельности, а также для создания распределенных, управляющих и информационно-справочных систем. ЛВС имеют модульную организацию.

серверы – это аппаратно-программные комплексы, которые исполняют функции управления распределением сетевых ресурсов общего доступа;

рабочие станции – это компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым сервером;

– физическая среда передачи данных (сетевой кабель) – это коаксиальные и оптоволоконные кабели, витые пары проводов, а также беспроводные каналы связи (инфракрасное излучение, лазеры, радиопередача).

Типы ЛВС

Выделяется два основных типа ЛВС: одноранговые (peer-to-peer) ЛВС и ЛВС на основе сервера (server based). Различия между ними имеют принципиальное значение, т. к. определяют разные возможности этих сетей.

Выбор типа ЛВС зависит от:

· размеров предприятия;

· необходимого уровня безопасности;

· объема сетевого трафика;

· финансовых затрат;

· уровня доступности сетевой административной поддержки.

При этом в задачи сетевого администрирования обычно входит:

· управление работой пользователей и защитой данных;

· обеспечение доступа к ресурсам;

· поддержка приложений и данных;

· установка и модернизация прикладного ПО.

Одноранговые сети

В этих сетях все компьютеры равноправны: нет иерархии среди них; нет выделенного сервера. Как правило, каждый ПК функционирует и как рабочая станция (РС), и как сервер, т. е. нет ПК ответственного за

Рисунок 5.25 – Компоненты ЛВС

администрирование всей сети (рисунок 5.26). Все пользователи решают сами, какие данные и ресурсы (каталоги, принтеры, факс-модемы) на своем компьютере сделать общедоступными по сети

Рабочая группа – это небольшой коллектив, объединенный общей целью и интересами. Поэтому в одноранговых сетях чаще всего не более 10 компьютеров. Эти сети относительно просты. Т. к. каждый ПК является одновременно и РС, и сервером. Нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей.

Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных, а стало быть и более дорогих, ПК. Требование к производительности и к уровню защиты для сетевого ПО в них также значительно ниже.

Рисунок 5.26 – Одноранговая сеть

В такие операционные системы, как: MS Widows NT for Workstation; MS Widows 95/98, Widows 2000 встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть, дополнительного ПО не требуется, а для объединения компьютеров применяется простая кабельная система. Одноранговая сеть вполне подходит там, где:

· количество пользователей не превышает 10-15 человек;

· пользователи расположены компактно;

· вопросы защиты данных не критичны;

· в обозримом будущем не ожидается расширения фирмы, и, следовательно, увеличения сети.

Несмотря на то, что одноранговые сети вполне удовлетворяют потребности небольших фирм, возникают ситуации, когда их использование является неуместным. В этих сетях защита предполагает установку пароля на разделяемый ресурс (например, каталог). Централизованно управлять защитой в одноранговой сети сложно, т. к.:

– пользователь устанавливает ее самостоятельно;

– «общие» ресурсы могут находиться на всех ПК, а не только на центральном сервере.

Такая ситуация – угроза для всей сети; кроме того пользователи могут вообще не установить защиту.

Сети на основе сервера

При подключении более 10 пользователей одноранговая сеть может оказаться недостаточно производительной. Поэтому большинство сетей используют выделенные серверы (рисунок 5.27). Выделенными называются такие серверы, которые функционируют только как сервер (исключая функции РС или клиента). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов.

Рисунок 5.27 – Структура сети на основе сервера

С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Круг задач, которые выполняют серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в ЛВС стали специализированными. Так, например, в операционной системе Windows NT Server существуют различные типы серверов (рисунок 5.15):

Файл-серверы и принт-серверы . Они управляют доступом пользователей к файлам и принтерам. Другими словами, файл-сервер предназначен для хранения файлов и данных;

– серверы приложений (в том числе сервер баз данных, WEB –сервер) . На них выполняются прикладные части клиент серверных приложений (программ). Эти серверы принципиально отличаются от файл-серверов тем, что при работе с файл-сервером нужный файл или данные целиком копируются на запрашивающую РС, а при работе с сервером приложений на РС пересылаются только результаты запроса;

почтовые серверы – управляют передачей электронных сообщений между пользователями сети;

– факс-серверы – управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов;

– коммуникационные серверы – управляют потоком данных и почтовых сообщений между данной ЛВС и другими сетями или удаленными пользователями через модем и телефонную линию. Они же обеспечивают доступ к Интернет;

– сервер служб каталогов – предназначен для поиска, хранения и защиты информации в сети.

Windows NT Server объединяет PC в логические группы-домены, система защиты которых наделяет пользователей различными правами доступа к любому сетевому ресурсу.

Рисунок 5.28. – Типы серверов в ЛВС

При этом каждый из серверов может быть реализован как на отдельном компьютере, так и в небольших по объему ЛВС, быть совмещенным на одном компьютере с каким-либо другим сервером. Север и ОС работают как единое целое. Без ОС даже самый мощный сервер представляет собой груду железа. ОС позволяет реализовать потенциал аппаратных ресурсов сервера.



Рекомендуем почитать

Наверх