Как сделать, чтобы компьютер работал тише? Как на долго сделать тихий компьютер

Новости 23.06.2019
Новости

Каждый пользователь ПК рано или поздно сталкивается с проблемой его шумной работы . И тут сразу возникает вопрос, а как же можно сделать компьютер тише? Есть целый ряд причин, которые так или иначе напрямую влияют на появление дополнительных шумов при работе компьютера .

Основные источники шума создают:

1) вентиляторы;

2) винчестеры;

3) CD- и DVD-приводы.

Основные причины возникновения дополнительных шумов:

1) пыль, грязь;

2) тонкие корпусные стенки;

3) перегрев;

4) износ элементов или некачественный монтаж;

5) использование сразу нескольких маленьких вентиляторов вместо одного большого

Вызывать дополнительный шум может как одна из этих причин, так и их совокупность.

Устранение причин

Довольно редко причины шума в системном блоке устраняются без вскрытия системного блока и чистки его компонентов. Иногда может помочь решить шумовую проблему использование специализированных программ и утилит.

Чистка ПК от пыли и грязи

Это самый первый шаг, который необходимо сделать при обнаружении дополнительных шумов. Чаще всего пыль попадает внутрь вентиляторов, из-за чего происходит их , с которым они начинают бороться под дополнительной нагрузкой. На выходе и имеем те злополучные шумовые эффекты. Чистка от пыли осуществляется с помощью пылесоса, мощность которого лучше всего выставить на максимальную отметку. Главное, что стоит помнить при пылесосной уборке, - нельзя касаться трубкой компьютерных элементов внутри системника.

Лучше пылесоса очистить ваш системный блок от пыли и грязи могут только специальные баллоны со сжатым воздухом .

Корректировка скорости вращения вентиляторных лопастей

Из софта хорошо зарекомендовала себя программа Speedfan, которая позволяет снизить скорость вращения лопастей вентилятора, тем самым понизив шумовой уровень. В окне программы содержится информация, отображающая реальную температуру компьютерных элементов.

Также в программе имеется окно, информирующее пользователя о рабочих скоростях вентилятора, которые корректируются в этом же окне.

После запуска SpeedFan сразу же обращаем внимание на температурные показатели. После чего запускаем ресурсоёмкое приложение (лучше всего игру или фильм в HD-качестве), юзаем его 15-ть минут и снова наблюдаем за показателями температуры.

Смысл эксперимента: дать максимально возможную нагрузку на ваш ПК. Отметьте уровень температуры при максимальной нагрузке и постепенно меняйте скорость вращения вентиляторных лопастей. Необходимо выйти на такую скорость вращения, которая позволит одновременно избежать температурной перегрузки и позволит уменьшить шум . Принцип такой: немного уменьшили скорость вращения, поиграли 15-ть минут, проверили температурный режим, который, если не изменился, можно немного снизить, и т. д.

Замена термопасты

Термопаста используется при сборке ПК для смазывания соединения куллера и процессора с целью получения более надежного крепления. Однако со временем ее свойства тают на глазах, происходит перегрев и возникает дополнительные шумовые явления. Если проблема только в термопасте, то ее замена вернет былой комфортный уровень шума.

Замена корпусного вентилятора

В системных блоках современных ПК расположено не менее 2-х вентиляторов. Иногда производитель по личным соображениям устанавливает несколько маленьких вентиляторов на месте одного большого. Естественно, это приводит к дополнительному шумообразованию. Если желаете сделать компьютер тише , то здесь придется самостоятельно подыскать большой вентилятор с комфортным уровнем шума (число оборотов в минуту не должно превышать 1200) и установить его на месте нескольких малых. Хорошо себя зарекомендовали вентиляторы 120 мм.

Замена корпуса

Тонкие стены корпуса – еще одна причина, которая вызывает дополнительный шум даже при наличии больших вентиляторов. Тонкие стены с легкостью проводят вентиляторный шум и звук работы жесткого диска. Замена тонких стенок на толстые не избавит вас от шума, если сами стенки будут плохо прикручены болтами к корпусу.

Установка радиатора

Установка радиатора вместо вентилятора обеспечит пассивное охлаждение элементов ПК, которое позволит снизить уровень шума. Однако пассивное охлаждение невыход для мощных ПК. Для них предусмотрено более современное, водяное охлаждение.

Работа с винчестером

Дополнительные шумы могу возникать и при работе жесткого диска. Монтаж прокладок из резины между винчестером и корпусом позволяет снизить вибрацию. Если при работе винчестера появился нехарактерный ранее треск, то это явный сигнал пользователю, говорящий о проблемах жесткого диска. Самый лучший вариант – это замена винчестера на SSD-накопитель, который работает совсем без шума.

Место для ПК

Не располагайте ПК рядом с источниками тепла, а также в закрытом и плохо вентилируемом пространстве (тумбочки, шкафы). Стоять системник должен на твердой и ровной поверхности. Для снижения уровня вибрации под корпус можно подложить резиновые прокладки.

Особенности сборки тихого ПК

1) большой корпус с толстыми стенками и с хорошей циркуляцией воздуха;

2) вентиляторы большого размера со скоростью вращения лопастей не выше 1200 об/мин.;

3) проверка отдельных компонентов на уровень шума.

Вывод

Абсолютно бесшумной работу компьютера сделать невозможно, но вот свести к минимуму уровень шума можно. Вышеприведенные советы помогут пользователю сделать компьютер тише и по-максимуму использовать все имеющиеся на сегодняшний день ресурсы своего ПК и дополнительного оборудования.

В этой статье описывается как самостоятельно сделать водяное охлаждение для компьютера не используя заводских компонентов. Если есть проблема с шумом или есть желание разогнать процессор, то можно последовать моему решению и сделать аналогичную систему.

Сразу предупреждаю - целью была тишина, а не красивое, с эстетической точки зрения, решение.
Фотографии будут не по тексту.

Решение установить СВО на компьютер возникло в результате множества попыток сделать его работу немного тише. В процессе экспериментов с уменьшением шума я много чего испробовал: понижение оборотов вентиляторов, чистка кулеров, оклейка корпуса шумопоглощающими материалами - каждый раз был эффект, но слишком незначительный.

В результате этих экспериментов определились основные источники шума - кулеры в блоке питания и на процессоре.

Поменять процессорный кулер на малошумящий или почти бесшумный - не проблема, но с блоком питания сложнее: все блоки питания шумят по мере нагрева, даже очень дорогие. А проверять на практике дорогостоящий блок питания не было желания. Даже если заменить все кулеры пассивными радиаторами размером с коробку молока – то все равно эту систему придется обдувать воздухом (тепло никуда не уйдет из закрытого корпуса).

Один из способов уменьшения шума - замена процессора. На момент начала изготовления СВО у меня стоял Pentium 4 с тепловыделением 130 ватт, поменяв его на Core2Duo с тепловыделением 65-75 ватт, что значительно уменьшило нагрев и как следствие - обороты кулера и его шум. Но решение по созданию СВО уже было принято и нужно было начинать.

Был вариант взять готовые компонетны, но при их анализе выявлено несколько слабых мест:

  • Часто встречается комбинация меди и алюминия при изготовлении водоблоков - а это приведет к коррозии;
  • Чрезмерная дороговизна блоков питания с водяным охлаждением (на тот момент цена была более 500 $), данная цена ставит под сомнение сам проект;
  • Комплекты с одним водоблоком для процессора (готовая система) достаточно шумные.

Как итог - делаю все сам!

Вот перечень того, что я использовал:

  • Листовая медь (0,8 мм, 1 мм, 2 мм, листы размером 200*200 мм, ушло по 2 листа каждой толщины) - 2000 рублей (высокая цена из-за того, что покупал медь в магазине для моделистов);
  • Медная трубка 10 мм внешний диаметр (отожжённая водопроводная труба со строй рынка) - 500 рублей;
  • Радиатор от волговской печки (в его характеристиках указанно, что может рассеивать до 16 кВт тепла - а этого хватит чтобы всю комнату обогреть, а не только комп охладить) - 1000 рублей с доставкой;
  • Помпа Laing D5-Pumpe 12V D5-Vario - на тишине не экономим! (самая дорогая отдельная деталь - примерно 4000 рублей на момент покупки);
  • Шланги внутренним диаметром 9,7 мм - 6 метров и пружинки от перегиба, все на 1000 рублей (покупал в магазине для моддеров и СВО систем);
  • Манометр от старого тонометра - для системы контроля от протечек – 100 рублей, купил на молотке;
  • Автомобильный термометр с внешним датчиком - 400 рублей;
  • Контейнер для продуктов с герметичной крышкой -100 рублей;
  • Хладагент – фильтрованная вода – бесплатно;
  • Вентилятор для радиатора - SCYTHE S-Flex SFF21D (максимальный уровень шума 8,7 дБ) – 500 рублей.

Инструмент:

  • Обычная ножовка по металлу;
  • Газовый паяльник (в виде баллончика с насадкой как у турбо-зажигалок, купил в китайском инет магазине за 10 баксов);
  • Электрический паяльник на 60 ватт;
  • Припой, флюс, струбцины и тисочки, надфили, кусачки, плоскогубцы и по мелочи всякое.

Примерная сумма материалов и инструмента - 10000 руб на момент покупки.

В процессе было изготовлено следующее:

  • водоблок на процессор (площадь 40*40 мм);
  • водоблок на чип (35*35 мм) - 2 штуки;
  • водоблок на видео (35*35 мм);
  • аналог корзины для HDD (на 3 диска);
  • водоблок для блока питания (100*60 мм);
  • расширительный бачок изготовлен из контейнера для продуктов с герметичной крышкой.

Водоблоки делались по следующей схеме:

  • основание - это медь толщиной 2 мм залуживалось с внутренней стороны;
  • ребра - от 20 до 40 ребер (в зависимости от водоблока) размером 33*10 мм для маленьких водоблоков, 38*10 - для процессорного и 80*10 для блока питания, толщина меди 0,8 мм;
  • стенки - медь 1 мм (по размерам основания водоблока и высотой 10 мм);
  • верхняя крышка - медь 1 мм и размером с основание водоблока;
  • Патрубки – водопроводные трубки длинной 30-40 мм.

Ребра для водоблоков залуживались по кромке, поле этого лишний припой (наплывы и прочее) зачищался надфилями. Подготовленные ребра собирались в блок, между ребрами прокладывалась прослойка из бумаги (маленькие листочки, штук по 5-10). При таком подходе можно собрать радиатор с микро каналами в домашне-кухонных условиях. Далее, полученный блок из ребер и бумаги скреплялся, а точнее пропаивался по торцу, тоненькой проволочкой. Данная проволочка обеспечивала целостность блока и его подвижность (к сожалению нет фотографий). После подготовки блока ребер, бралось залуженное основание и опускалось на конфорку плиты и нагревалось до температуры плавления припоя. На основание с расплавленным припоем опускался полученный блок ребер (смазанный с нижней стороны флюсом). Флюс течении пары секунд выкипал и затягивал на свое место припой с основания водоблока. В результате получался нормально пропаянный водоблок с огромной площадью ребер (40*10 мм * 20-40 штук). После того, как вся конструкция остывала, с нее снималась монтажная проволочка, убирались прослойки из бумаги между ребрами и вычищались ненужные наплывы припоя. Как только основание с ребрами было готово, к нему напаивались боковые ребра и верхняя крышка с уже припаянными патрубками.

на фото процессорный водоблок. (1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке)

В верхней крышке проделывалось 4 отверстия для входных и выходных патрубков.
Получается что вся система имеет последовательное соединение водоблоков парными трубками (это видно на картинках). Трубки между водоблоками парные из-за того, что внутреннее сечение трубок помпы больше, чем сечение трубок между водоблоками, и чтобы не создавать дополнительное гидросопротивление было решено применить такую схему. В моем случае внутреннее сечение трубок помпы примерно равно двум внутренним сечениям используемых трубок. Последовательное соединение проще потому, что вода гарантированно обойдет весь контур охлаждения. Если же сделать параллельное соединение водоблоков, то есть шанс, что по трубке с бОльшиим сопротивлением вода не пойдет. Тогда эта часть контура будет более горячая.

на фото: частичное фото материнки(1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке, 4 - водоблок для винтов)

Парное соединение так же удобно в той ситуации, когда есть риск перегиба шлангов (а такое было в процессе тестирования системы) - как результат - сильно повышается надежность всей системы при незначительно увеличенных затратах.

Водоблок для блока питания сделан по такой же схеме, только увеличены размеры и изначально добавлены поля на основании для установки транзисторов. Я думал, что выпаяю транзисторы и прикручу их к водоблоку, а ножки припаяю толстыми проводами. Но при разборке блока питания был приятно удивлен тем, что 2 радиатора от транзисторов имеют ровное основание к которому можно хорошо прикрепить водоблок. Что я и сделал с помощью саморезов и термоклея.

на фото: крепление водоблока для блока питания.

Система защиты от протечек построена по принципу понижения давления в системе и мониторинга через манометр. Первое время давление держалось по неделе и больше, но потом стало быстро выравниваться с атмосферным. Но это не важно: срок тестирования был длинным (несколько месяцев) в результате которого выяснилось, что система течей не дает.

на фото система мониторинга (температурные датчики, манометр и крыльчатка. 1- температура в комнате, 2 - в системе охлаждения).

Датчик потока жидкости – это самодельная крыльчатка, изготовленная из пластика, вырезанного по нужной форме и приклеенного суперклеем на иглу от шприца. Далее, игла с крыльчаткой одевалась поверх швейной иглы (образуя свободно вращающуюся ось) и помещается вдоль прозрачной трубки. Все готово – вода раскручивает крыльчатку, а мы смотрим.

на фото: температурные датчики вклеенные в патрубок и крыльчатка, показывающая поток жидкости

Ну вот, все спаяли, соединили, проверили – работает! Осталось смонтировать и в путь.
С крепежом сильно не мучился - а просто приклеил на термоклей. По характеристикам клея - он размягчается при нагреве до 70 или более градусов (речь идет про повторное размягчение клея, после его первичного высыхания), а это критическая температура для чипов и блокировки материнки выключат питание раньше достижения данной температуры - поэтому нет серьезного риска того, что водоблок отвалится из-за размягчения клея.

При наклейке водоблоков на чипы встала проблема в том, что площадь поверхности чипа слишком маленькая, чтобы удержать водоблок. Для фиксации водоблоков я придумал другое: взял термоклей (клеевой пистолет) и залил водоблоки по периметру (это отлично видно на фотографиях). Можно сказать – что после этого не отмыть материнку и прочее – пофиг, материнка стоила 1500 рублей, и ее стоимость на стоимости проекта почти ни как не отражается.

на фото: крепление водоблоков с помощью термоклея (1 - водоблок видеокарты, 2 - водоблок второго чипа материнки).

Так же, нужно обратить внимание на перегиб шлангов – пришлось все изгибы упаковывать в спиральки – защиту от перегибов.

После сборки и запуска я был в шоке – комп не слышно вообще! Точнее слышно как работают винты – что напрягало первое время. Шума от помпы или вентиляторов не слышно. Можно конечно сильно прислушиваться, наклонившись ухом к компу. Ощущение было совсем не привычным: уровень шума от компа меньше шума от рабочего винта.

на фото вся система: 1 - блок питания, 2 - процессор, 3 - чип, 4 - корзина с винтами, 5 - расширительный бачок, 6 - помпа, 7 - радиатор с кулером.

Уже после обкатки системы я разогнал процессор на 20%, что почти не сказалось на температуре системы.

Софтверный мониторинг показывает, что температура высокая, примерно 50-55 градусов на процессоре. Это не низко, но не критично. Поэтому я не заморачиваюсь.
Температура воды в системе редко превышает 43-45 градусов, это при полной загрузке компа на 2-3 часа и температуре в комнате 28 градусов.

В общем, на все это ушло примерно полгода – работал не торопясь, по выходным, на кухне и результатом доволен абсолютно. Система работает уже два года и радует меня и удивляет друзей.

Ну и последнее – если хотите тишины – не покупайте аквариумные помпы, шумные вентиляторы и датчики потока жидкости с подключением к компу – это все сделает систему достаточно шумной – не экономьте на тишине!

В этой статье описывается как самостоятельно сделать водяное охлаждение для компьютера не используя заводских компонентов. Если есть проблема с шумом или есть желание разогнать процессор, то можно последовать моему решению и сделать аналогичную систему.

Сразу предупреждаю - целью была тишина, а не красивое, с эстетической точки зрения, решение.
Фотографии будут не по тексту.

Решение установить СВО на компьютер возникло в результате множества попыток сделать его работу немного тише. В процессе экспериментов с уменьшением шума я много чего испробовал: понижение оборотов вентиляторов, чистка кулеров, оклейка корпуса шумопоглощающими материалами - каждый раз был эффект, но слишком незначительный.

В результате этих экспериментов определились основные источники шума - кулеры в блоке питания и на процессоре.

Поменять процессорный кулер на малошумящий или почти бесшумный - не проблема, но с блоком питания сложнее: все блоки питания шумят по мере нагрева, даже очень дорогие. А проверять на практике дорогостоящий блок питания не было желания. Даже если заменить все кулеры пассивными радиаторами размером с коробку молока – то все равно эту систему придется обдувать воздухом (тепло никуда не уйдет из закрытого корпуса).

Один из способов уменьшения шума - замена процессора. На момент начала изготовления СВО у меня стоял Pentium 4 с тепловыделением 130 ватт, поменяв его на Core2Duo с тепловыделением 65-75 ватт, что значительно уменьшило нагрев и как следствие - обороты кулера и его шум. Но решение по созданию СВО уже было принято и нужно было начинать.

Был вариант взять готовые компонетны, но при их анализе выявлено несколько слабых мест:
Часто встречается комбинация меди и алюминия при изготовлении водоблоков - а это приведет к коррозии;
Чрезмерная дороговизна блоков питания с водяным охлаждением (на тот момент цена была более 500 $), данная цена ставит под сомнение сам проект;
Комплекты с одним водоблоком для процессора (готовая система) достаточно шумные.
Как итог - делаю все сам!

Вот перечень того, что я использовал:
Листовая медь (0,8 мм, 1 мм, 2 мм, листы размером 200*200 мм, ушло по 2 листа каждой толщины) - 2000 рублей (высокая цена из-за того, что покупал медь в магазине для моделистов);
Медная трубка 10 мм внешний диаметр (отожжённая водопроводная труба со строй рынка) - 500 рублей;
Радиатор от волговской печки (в его характеристиках указанно, что может рассеивать до 16 кВт тепла - а этого хватит чтобы всю комнату обогреть, а не только комп охладить) - 1000 рублей с доставкой;
Помпа Laing D5-Pumpe 12V D5-Vario - на тишине не экономим! (самая дорогая отдельная деталь - примерно 4000 рублей на момент покупки);
Шланги внутренним диаметром 9,7 мм - 6 метров и пружинки от перегиба, все на 1000 рублей (покупал в магазине для моддеров и СВО систем);
Манометр от старого тонометра - для системы контроля от протечек – 100 рублей, купил на молотке;
Автомобильный термометр с внешним датчиком - 400 рублей;
Контейнер для продуктов с герметичной крышкой -100 рублей;
Хладагент – фильтрованная вода – бесплатно;
Вентилятор для радиатора - SCYTHE S-Flex SFF21D (максимальный уровень шума 8,7 дБ) – 500 рублей.

Инструмент:
Обычная ножовка по металлу;
Газовый паяльник (в виде баллончика с насадкой как у турбо-зажигалок, купил в китайском инет магазине за 10 баксов);
Электрический паяльник на 60 ватт;
Припой, флюс, струбцины и тисочки, надфили, кусачки, плоскогубцы и по мелочи всякое.
Примерная сумма материалов и инструмента - 10000 руб на момент покупки.

В процессе было изготовлено следующее:
водоблок на процессор (площадь 40*40 мм);
водоблок на чип (35*35 мм) - 2 штуки;
водоблок на видео (35*35 мм);
аналог корзины для HDD (на 3 диска);
водоблок для блока питания (100*60 мм);
расширительный бачок изготовлен из контейнера для продуктов с герметичной крышкой.

Водоблоки делались по следующей схеме:
основание - это медь толщиной 2 мм залуживалось с внутренней стороны;
ребра - от 20 до 40 ребер (в зависимости от водоблока) размером 33*10 мм для маленьких водоблоков, 38*10 - для процессорного и 80*10 для блока питания, толщина меди 0,8 мм;
стенки - медь 1 мм (по размерам основания водоблока и высотой 10 мм);
верхняя крышка - медь 1 мм и размером с основание водоблока;
Патрубки – водопроводные трубки длинной 30-40 мм.

Ребра для водоблоков залуживались по кромке, поле этого лишний припой (наплывы и прочее) зачищался надфилями. Подготовленные ребра собирались в блок, между ребрами прокладывалась прослойка из бумаги (маленькие листочки, штук по 5-10). При таком подходе можно собрать радиатор с микро каналами в домашне-кухонных условиях. Далее, полученный блок из ребер и бумаги скреплялся, а точнее пропаивался по торцу, тоненькой проволочкой. Данная проволочка обеспечивала целостность блока и его подвижность (к сожалению нет фотографий). После подготовки блока ребер, бралось залуженное основание и опускалось на конфорку плиты и нагревалось до температуры плавления припоя. На основание с расплавленным припоем опускался полученный блок ребер (смазанный с нижней стороны флюсом). Флюс течении пары секунд выкипал и затягивал на свое место припой с основания водоблока. В результате получался нормально пропаянный водоблок с огромной площадью ребер (40*10 мм * 20-40 штук). После того, как вся конструкция остывала, с нее снималась монтажная проволочка, убирались прослойки из бумаги между ребрами и вычищались ненужные наплывы припоя. Как только основание с ребрами было готово, к нему напаивались боковые ребра и верхняя крышка с уже припаянными патрубками.

На фото процессорный водоблок. (1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке)

В верхней крышке проделывалось 4 отверстия для входных и выходных патрубков.
Получается что вся система имеет последовательное соединение водоблоков парными трубками (это видно на картинках). Трубки между водоблоками парные из-за того, что внутреннее сечение трубок помпы больше, чем сечение трубок между водоблоками, и чтобы не создавать дополнительное гидросопротивление было решено применить такую схему. В моем случае внутреннее сечение трубок помпы примерно равно двум внутренним сечениям используемых трубок. Последовательное соединение проще потому, что вода гарантированно обойдет весь контур охлаждения. Если же сделать параллельное соединение водоблоков, то есть шанс, что по трубке с бОльшиим сопротивлением вода не пойдет. Тогда эта часть контура будет более горячая.

На фото: частичное фото материнки(1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке, 4 - водоблок для винтов)

Парное соединение так же удобно в той ситуации, когда есть риск перегиба шлангов (а такое было в процессе тестирования системы) - как результат - сильно повышается надежность всей системы при незначительно увеличенных затратах.

Водоблок для блока питания сделан по такой же схеме, только увеличены размеры и изначально добавлены поля на основании для установки транзисторов. Я думал, что выпаяю транзисторы и прикручу их к водоблоку, а ножки припаяю толстыми проводами. Но при разборке блока питания был приятно удивлен тем, что 2 радиатора от транзисторов имеют ровное основание к которому можно хорошо прикрепить водоблок. Что я и сделал с помощью саморезов и термоклея.

На фото: крепление водоблока для блока питания.

Система защиты от протечек построена по принципу понижения давления в системе и мониторинга через манометр. Первое время давление держалось по неделе и больше, но потом стало быстро выравниваться с атмосферным. Но это не важно: срок тестирования был длинным (несколько месяцев) в результате которого выяснилось, что система течей не дает.

На фото система мониторинга (температурные датчики, манометр и крыльчатка. 1- температура в комнате, 2 - в системе охлаждения).

Датчик потока жидкости – это самодельная крыльчатка, изготовленная из пластика, вырезанного по нужной форме и приклеенного суперклеем на иглу от шприца. Далее, игла с крыльчаткой одевалась поверх швейной иглы (образуя свободно вращающуюся ось) и помещается вдоль прозрачной трубки. Все готово – вода раскручивает крыльчатку, а мы смотрим.

На фото: температурные датчики вклеенные в патрубок и крыльчатка, показывающая поток жидкости

Ну вот, все спаяли, соединили, проверили – работает! Осталось смонтировать и в путь.
С крепежом сильно не мучился - а просто приклеил на термоклей. По характеристикам клея - он размягчается при нагреве до 70 или более градусов (речь идет про повторное размягчение клея, после его первичного высыхания), а это критическая температура для чипов и блокировки материнки выключат питание раньше достижения данной температуры - поэтому нет серьезного риска того, что водоблок отвалится из-за размягчения клея.

При наклейке водоблоков на чипы встала проблема в том, что площадь поверхности чипа слишком маленькая, чтобы удержать водоблок. Для фиксации водоблоков я придумал другое: взял термоклей (клеевой пистолет) и залил водоблоки по периметру (это отлично видно на фотографиях). Можно сказать – что после этого не отмыть материнку и прочее – пофиг, материнка стоила 1500 рублей, и ее стоимость на стоимости проекта почти ни как не отражается.

На фото: крепление водоблоков с помощью термоклея (1 - водоблок видеокарты, 2 - водоблок второго чипа материнки).

Так же, нужно обратить внимание на перегиб шлангов – пришлось все изгибы упаковывать в спиральки – защиту от перегибов.

После сборки и запуска я был в шоке – комп не слышно вообще! Точнее слышно как работают винты – что напрягало первое время. Шума от помпы или вентиляторов не слышно. Можно конечно сильно прислушиваться, наклонившись ухом к компу. Ощущение было совсем не привычным: уровень шума от компа меньше шума от рабочего винта.

На фото вся система: 1 - блок питания, 2 - процессор, 3 - чип, 4 - корзина с винтами, 5 - расширительный бачок, 6 - помпа, 7 - радиатор с кулером.

Уже после обкатки системы я разогнал процессор на 20%, что почти не сказалось на температуре системы.

Софтверный мониторинг показывает, что температура высокая, примерно 50-55 градусов на процессоре. Это не низко, но не критично. Поэтому я не заморачиваюсь.
Температура воды в системе редко превышает 43-45 градусов, это при полной загрузке компа на 2-3 часа и температуре в комнате 28 градусов.

В общем, на все это ушло примерно полгода – работал не торопясь, по выходным, на кухне и результатом доволен абсолютно. Система работает уже два года и радует меня и удивляет друзей.

Ну и последнее – если хотите тишины – не покупайте аквариумные помпы, шумные вентиляторы и датчики потока жидкости с подключением к компу – это все сделает систему достаточно шумной – не экономьте на тишине!

Если Вы являетесь обладателем компьютера, то эта проблема знакома Вам! Рано или поздно каждый компьютер начинает громко работать и создавать шум. Сегодня, мы постараемся рассказать, как решить эту проблему, чтобы Вы могли в тишине и спокойствии работать дальше за своим персональным компьютером.

Почему компьютер шумит?

Есть три источника шума в системном блоке - вентиляторы, жесткий диск и приводы. Пройдемся по каждому:

1. Из-за быстрого вращения - вентиляторы начинают создавать шум.
2 . Шум появляется из-за треска жестких дисков во время работы.
3. Любой привод, при работе с переносными носителями памяти (диск, дискета) начинает издавать шум.

Так же не стоит забывать о причинах, которые так же влияют на громкость работы компьютера:

Перегрев
. Пыль
. Плохой корпус
. Износ деталей
. Неправильное положение деталей или корпуса

Всё это - решается , давайте рассмотрим как!

Как сделать, чтобы компьютер работал тихо?

1. Первое и, наверное, самое главное - это чистка компьютера. Пыль забивается во все детали, а особенно в вентиляторы. Пыль способствует поднятию температуры компьютера, из-за чего вентиляторы начинают работать быстрее, и впоследствии шумят. Чтобы решить эту проблему, нужно чистить свой персональный компьютер с регулярностью в 1-2 месяца.

Для чистки, можно использовать пылесос для сбора пыли, а так же кисточку для труднодоступных мест.

2. Поддерживайте нормальную температуру компьютера, это поможет избавиться от лишнего шума. Для этого, можете скачать программу SpeedFan, через которую сможете следить за температурой компьютерных компонентов. Через неё можно регулировать скорость вентилятора, выставляя больше или меньше обороты.

3. Проблема с термопастой. Не стоит забывать о слабых местах компьютера, термопаста на процессор может потерять своё свойство, и начнется перегревание, а затем шум. Время от времени проверяйте её состояние.

4. Дешевые и плохие вентиляторы. Зачастую производители ставят недорогие и соответственно не очень качественные вентиляторы, которые сами по себе очень шумные. Если Вы заметили проблему с вентиляторами, можете заменить их на качественные.

Здравствуй любимый Радиокотик!!!

Поздравляю тебя с юбилеем по человечески!

Делюсь с тобой и со всеми читателями идеями по созданию совершенно бесшумного компьютера для дома.

Ведь коты не любят шума - за ним не слышно шороха мышей!

Ближе к делу:

Рассмотрим источники шума системного блока компьютера:

1. Импульсный блок питания выполнен в виде компактного блока. Из-за высокой мощности 250-500 Вт и конечного КПД (80-85 %) при работе выделяет много тепла, поэтому снабжён вентилятором. Только современные и дорогие модели имеют встроенный автоматический регулятор оборотов, не дающие вентилятору работать без необходимости.

2. Вентилятор, охлаждающий процессор. Даже на современных компьютерах вентилятор имеет постоянное питание, 12 Вольт, и не имеет автоматического регулятора оборотов.

3. Вентилятор охлаждения процессора некоторых моделей видеокарт.

4. Жёсткий диск при работе, так как имеет движущиеся элементы.

5. Вентилятор охлаждения корпуса в некоторых моделях.

Как же устранить все источники шума системного блока и при этом сохранить работоспособность его устройств?

С шумом от жесткого диска всё просто: при некотором удорожании конструкции, его можно заменить на твёрдотельный SSD (флэш-диск).

Основные же источники шума в системном блоке это вентиляторы, т. е. охлаждающие устройства. Возникает проблема – как можно заменить систему охлаждения компьютера?

Работая над этой проблемой, я познакомилась в Интернете с системами охлаждения, которые предлагают различные фирмы.

Совсем недавно фирма Zalman стала выпускать кулеры для процессоров больших размеров, большой производительности вентиляторов и регулятором числа оборотов. За счёт больших габаритов кулер является эффективным при низких оборотах вентилятора. Минусы: нет автоматического регулятора оборотов и мониторинга температуры процессора, возможна ошибка оператора при ручной регулировке числа оборотов (не предоставляется методика регулировки).

Корпус бесшумного компьютера Zalman - ящик 40 кг, алюминиевый, стенки которого покрыт рёбрами радиаторов.

Той же фирмой был предложен компьютер с двухконтурной системой водяного охлаждения. Она справляется с отводом тепла, но не решает проблему шума полностью. Проблематичным здесь является последующее бесшумное охлаждение нагревшейся воды, которое до конца не решено. Охладить воду можно вентилятором, что уже будет производить шум или использовать проточную воду и слушать шум движущейся по трубкам воды. Во втором случае отработанная вода сливается в канализацию, что делает неэкономичным использование воды.

Модернизация системы охлаждения моего компьютера

Модернизация блока питания ATX CODEGEN 300


Модернизацию системы охлаждения я начала с блока питания – рисунок 1. Я нашла в Интернете его схему с описанием работы и узнала следующее - блок питания состоит из двух частей – высоковольтной и низковольтной.

Высоковольтная часть состоит из

  • выпрямителя переменного напряжения;
  • сглаживающих электролитических конденсаторов;
  • схемы управления трансформатором дежурного режима на транзисторе МО339;
  • схемы управления силовым импульсным трансформатором на двух ключевых транзисторах Д13007.

Низковольтная часть состоит из

  • микросхемы контроллера ШИМ (широтно-импульсной модуляции) КА7500В;
  • из двух мощных сборок диодов Шоттки для выпрямления импульсов, идущих с силового трансформатора для получения напряжений +5 В, +12 В;
  • многообмоточного дросселя для сглаживания пульсаций электролитических конденсаторов – фильтров напряжений;
  • схемы стабилизатора напряжения +3,3 В;
  • схемы формирования управляющего сигнала Power God – все напряжения на выходе блока питания +12, +5, +3,3, -12,-5 В в норме;
  • схемы запуска PCON.

Элементы, которые требуют охлаждения и установки на радиаторы – это мощные три транзистора высоковольтной части, две диодные сборки и полевой транзистор низковольтной части. Поскольку на корпусе каждого из этих элементов имеется разное напряжение, в том числе и сетевое, они установлены на изолирующих теплопроводящих прокладках из слюды или других материалов.

Плата блока питания помещена в отдельный металлический корпус с постоянно работающим вентилятором и отверстиями для охлаждения. Поскольку большую часть времени компьютер работает в режиме загрузки близкой к нулю (работа с текстовыми документами, поиск в Интернете и т. п.), т. е. 20 Вт энергопотребления системного блока, считаю работу вентилятора блока питания на максимальных оборотах нецелесообразной.

Предлагаю совершенно новый подход при проектировании компьютерных блоков питания. Изготовив действующий опытный образец, показать, что с точки зрения массового производства новая модель не несёт повышенных финансовых затрат. Плату блока питания предлагаю размещать на боковой стенке компьютера, монтаж элементов требующих охлаждения предлагаю выполнять с обратной стороны платы (двусторонний монтаж), одновременно прикрепляя их к боковой стенке, выполненной из алюминиевой пластины, служащей радиатором. Для удобства монтажа и пайки предлагаю предварительно эти элементы устанавливать на небольших плоских пластинах – радиаторах, впаивать группами, тестировать и при сборке крепить на стенку внутри корпуса. Таким образом, полностью освобождаемся от вентилятора в блоке питания.

Модернизация охлаждения процессора

Идея создания бесшумного компьютера возникла при тестировании работоспособности системной платы при подключении на столе. Компьютер спокойно работал без перегрева 15 минут с небольшим штатным процессорным радиатором и отключённым вентилятором. Далее процессор нагрелся, и компьютер пришлось выключить. Обратившись к литературе, я нашла методику расчёта поверхностной площади радиаторов для электронных компонентов:

Расчет площади радиатора
При расчете обычно исходят из температуры окружающей среды 20°С и допустимом перегреве на 30°С, т.е. нагреве тепловыделяющего элемента до 50°С.
Тепловое сопротивление радиатора
Q = 50/√S (°С/Вт) (1),
где S – площадь поверхности теплоотвода, выраженная в квадратных сантиметрах.
Отсюда площадь поверхности для искомого теплового сопротивления
S = (50/Q)2 (см 2) (2).
Если необходимо рассеять мощность 50 Вт, при перегреве 30°С, требуемое тепловое сопротивление Q = 30/50 = 0,6 °C/Вт. Тогда по формуле (2) определяем площадь: S = (50/0,6) 2 = 6944 см 2 .
Значит площади имеющегося радиатора в 5000 см 2 , специально приобретённого для этой разработки, практически должно хватить для охлаждения процессора, так как мощность 50 Вт – приблизительная и может быть завышена. В любом случае для аварийного охлаждения, если температура радиатора достигнет установленного предельного значения, под пластинами радиатора я установила большой, тихий (выбрала из нескольких) вентилятор, управляемый цифровым терморегулятором, датчик которого закреплён вблизи процессора. Частота вращения подбирается экспериментально и регулируется регулятором напряжения, который продавался вместе с кулером.

В верхней и нижней стенках корпуса пришлось просверлить много отверстий для отвода тепла радиатора процессора, северного моста, трансформаторов и дросселей блока питания, видеокарты TV-тюнера, жёсткого диска.

Для удобства пользования компьютером, дома, на презентациях и для борьбы с лишними проводами была сделана передняя панель системного блока, имеющая подсветки, индикаторы включения, цифровой индикатор температуры процессора, входного напряжения сети, выключатель и регулятор громкости звука, встроенного мощного стереоусилителя с двумя широкополосными динамическими головками. На задней панели уставлены четыре компактные управляемые розетки для подключения периферийных устройств. Компьютер оборудован беспроводной клавиатурой со встроенным трекболом для дистанционного управления по радиоканалу в комнате или аудитории.

Модернизация видеокарты

Первоначально процессор на видеокарте охлаждался небольшим радиатором с маленьким вентилятором на 12 В. После нескольких лет работы он начал издавать большой шум и скрип. Я заменяю старый радиатор новым, алюминиевым, без кулера, но с большей площадью рассеивания теплоты (в 10 раз большей по площади) – рисунок 10. Для хорошего теплоотвода он должен иметь гладкую ровную поверхность в месте соприкосновения с видеопроцессором и иметь габариты, позволяющие его разместить на видеокарте вплотную к видеопроцессору. В нашем случае пришлось два электролитических конденсатора в цепи питания выпаять и перенести на край платы с помощью удлинительных проводов без нарушения электрической схемы.

Заключение

В результате проделанной работы произведена модернизация системы охлаждения обычного системного блока. Были удалены все вращающиеся охлаждающие вентиляторы, за исключением аварийного. Процессор стал работать с пассивным охлаждением и с автоматической системой контроля температуры, которая включает аварийный низкооборотный вентилятор при высокой загрузке процессора 80 -100 %. Блок питания также работает без вентилятора, с пассивным охлаждением на боковой стенке. Таких блоков питания нет в продаже. С пассивным охлаждением работает и видеокарта. Системный блок компьютера стал работать без шума и служит безотказно уже 10 месяцев.



Рекомендуем почитать

Наверх