Как происходит магнитная запись и воспроизведение звука? Запись и воспроизведение звука и изображения

Для Андроид 26.05.2019
Для Андроид

К статье ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ Запись и воспроизведение звука - это область, в которой наука сочетается с искусством (звукорежиссера). Здесь есть две важные стороны: верность воспроизведения (как отсутствие нежелательных искажений) и пространственно-временная организация звучаний, поскольку задача воспроизведения звука электромеханическими средствами состоит не только в том, чтобы воссоздать звук, максимально приближенный к воспринимаемому в студии или концертном зале, но и в том, чтобы преобразовать его с учетом той акустической обстановки, в которой он будет прослушиваться. В графическом представлении простейшую форму имеют звуковых колебания чистых тонов типа создаваемых камертоном. Им соответствуют синусоидальные кривые. Но большинство реальных звучаний имеет неправильную форму, которая однозначно характеризует звучание, так же, как отпечатки пальцев - человека. Всякое звучание может быть разложено на чистые тона разных частот (рис.1). Эти тона состоят из основного тона и обертонов (гармоник). Основным тоном (с низшей частотой) определяется высота ноты. По обертонам мы различаем музыкальные инструменты, даже когда на них берется одна и та же нота. Обертоны особенно важны тем, что они создают тембр инструмента и определяют характер его звучания. Диапазон основных тонов большинства источников звука довольно узок, благодаря чему можно легко понимать речь и улавливать мотив, даже если у воспроизводящей аппаратуры ограниченная частотная полоса. Полнота же звучания обеспечивается лишь при наличии всех обертонов, а для их воспроизведения необходимо, чтобы не искажались соотношения между уровнями основного тона и обертонов, т.е. частотная характеристика воспроизводящей системы должна быть линейной во всем диапазоне слышимых частот. Именно такую характеристику (наряду с отсутствием искажений) и имеют в виду, когда говорят о высокой точности звуковоспроизведения (системы hi-fi). Громкость. Восприятие громкости звука зависит не только от его интенсивности, но и от многих других факторов, в число которых входят и субъективные, не поддающиеся количественной оценке. Важное значение имеет обстановка, окружающая слушателя, уровень внешнего шума, высота и гармоническая структура звучания, громкость предыдущего звучания, эффект "маскирования" (под впечатлением предыдущего звучания ухо становится менее чувствительным к другим звучаниям близкой частоты) и даже эстетическое отношение слушателя к музыкальному материалу. Нежелательные звуки (шумы) могут казаться более громкими, чем желательные той же интенсивности. Даже восприятие высоты звучания может зависеть от интенсивности звука. Восприятие различий в высоте музыкальных тонов определяется не абсолютной величиной частотных интервалов, а их отношением. Например, отношение двух частот, различающихся на октаву, в любой части звукоряда равно 2:1. Точно так же наша оценка изменений громкости определяется отношением (а не разностью) интенсивностей, так что изменения громкости воспринимаются как одинаковые, если одинаковы изменения логарифма интенсивности звука. Поэтому уровень громкости звука измеряется по логарифмической шкале (на практике - в децибелах). Уши человека способны воспринимать звук в колоссальном диапазоне мощности от порога слышимости (0 дБ) до порога болевого ощущения (120 дБ), соответствующего отношению интенсивностей 1012. Современное оборудование способно воспроизводить изменения громкости в пределах порядка 90 дБ. Но воспроизводить весь диапазон слышимости практически и не требуется. Большинство слушает музыку примерно на уровне негромкой речи, и вряд ли кому-нибудь было бы по себе в домашних условиях при нормальной громкости оркестра или рок-группы. Поэтому необходимо регулировать диапазон громкости, особенно при воспроизведении классической музыки. Это можно делать, постепенно понижая громкость перед крещендо (по партитуре) при сохранении нужного динамического диапазона. Для других музыкальных материалов, таких, как рок- и поп-музыка, широко применяются компрессоры, автоматически сужающие динамический диапазон усиливаемых сигналов. Но в дискотеках уровень звука нередко превышает 120 дБ, что может вызвать повреждение слуха и привести к полной глухоте. В этом отношении группа повышенного риска - поп-музыканты и звукооператоры. Особенно опасны наушники, так как они концентрируют звук. Большинство слушателей широковещательных программ предпочитают, чтобы все программы озвучивались примерно на одном и том же уровне громкости и им самим не нужно было регулировать громкость. Но громкость - субъективное восприятие. Некоторым громкая музыка способна досаждать больше, чем речь, хотя неразборчивая речь иногда сильнее раздражает, чем музыка той же громкости. Балансировка звука. В основе хорошего звуковоспроизведения лежит сбалансированность разных источников звука. Проще говоря, в случае одного источника звука суть хорошего звуковоспроизведения в том, чтобы сбалансировать прямой звук, приходящий к микрофону, с влиянием окружающей акустики и обеспечить правильный баланс между прозрачностью звучания и его полнотой, допускающий нужную степень подчеркивания в тех местах, где это требуется. Микрофонная техника. Первая задача звукорежиссера состоит в том, чтобы выбрать подходящее студийное помещение. Если приходится использовать неприспособленное помещение, то оно должно быть, как минимум, в 1,5 раза больше места, отводимого исполнителям. Следующий шаг - выработка общей схемы расположения микрофонов. При воспроизведении музыкальных программ это необходимо сделать, консультируясь с дирижером и исполнителями. Микрофонов должно быть как можно меньше, поскольку наложение их звуковых полей способно снизить прозрачность звука. Правда, во многих случаях нужный эффект достигается только при использовании большого числа микрофонов. Комбинации музыкальных инструментов редко бывают настолько сбалансированы, чтобы это отвечало требованиям прослушивания в домашних условиях. Акустика жилого помещения может оказаться далекой от идеала. Поэтому необходимо ознакомить руководителя оркестра с требованиями балансировки при воспроизведении с помощью микрофонов. Организация воспроизводимых звучаний определяется типом микрофона, его приближенностью к источнику и обработкой его выходного сигнала. Вопрос о близости расположения микрофона к источнику звука нужно решать, учитывая соотношение между прямым и побочными звуками (включая реверберацию) других, более мощных инструментов и качество звука. Большинство инструментов дают разные звучания на разных расстояниях и в разных направлениях. Чтобы получить резкую "атаку", которая требуется от поп-музыки, и обеспечить хорошее различение инструментов, приходится прибегать к многомикрофонной схеме. При этом предъявляются высокие требования к звукорежиссеру; он должен иметь музыкальную подготовку или хотя бы уметь читать партитуру. Бинауральный слух . Человек легко определяет направление на звука, поскольку звук обычно достигает одного уха раньше, чем другого. Мозг улавливает эту малую разницу во времени и небольшое различие в интенсивности звучания и по ним определяет направление на источник звука. Мы можем также определять, что звук пришел спереди, сзади, сверху или снизу. Это объясняется тем, что наши уши по-разному передают частотный состав звуков, приходящих в разных направлениях (а также тем, что слушатель редко держит голову абсолютно неподвижно и в вертикальном положении). Этим объясняется и то, что люди с глухотой на одно ухо сохраняют все-таки некоторую способность судить о направлении на источник звука. Бинауральный слух выработался у человека в качестве защитного механизма, но эта способность разделять звуки - важное условие понимания музыки. Если эту способность использовать при звукозаписи, то увеличивается впечатление верности и чистоты при воспроизведении. Стереофонический звук. Двухканальная стереофоническая система, рассчитанная на прослушивание через звуковые колонки, создает для бинаурального слуха раздельные звуковые потоки, которые несут информацию о направлении распространения первичного звука. В своей простейшей форме стереосистема состоит из двух микрофонов, расположенных рядом друг с другом и направленных под углом 45? к источнику звука. Сигналы микрофонов подаются на две звуковые колонки, разнесенные примерно на 2 м и одинаково удаленные от слушателя. Такая система создает "звуковую сцену" между колонками, на которой локализуются источники звука, расположенные перед микрофонами. Возможность локализации перед микрофонами источников звука, их разделения и отделения от реверберации намного повышает естественность и чистоту воспроизведения. Такой подход дает удовлетворительные результаты только тогда, когда источник звука внутренне хорошо сбалансирован и благоприятны акустические условия. На практике обычно приходится использовать более двух микрофонов и микшировать (объединять) их сигналы для улучшения музыкального баланса, увеличения акустического разделения и придания звучанию необходимой степени атаки. Типичный комплект аппаратуры для классического оркестра состоит из стереопары микрофонов (для создания общей звуковой картины оркестра) и нескольких местных микрофонов, установленных ближе к отдельным группам инструментов. Выходные сигналы местных микрофонов тщательно микшируются с сигналом стереопары так, чтобы обеспечивалось необходимое акцентирование каждой группы инструментов без нарушения общего баланса. Кроме того , их выходные сигналы панорамируются в кажущееся положение, которое при использовании основной пары микрофонов соответствовало бы их реальному расположению на сцене. (Панорамирование - это изменение углового направления на источник звука. Оно сочетается с регулировкой уровня посредством потенциометра.) Многомикрофонные схемы еще шире применяются в случае легкой, а тем более поп-музыки, где обычно обходятся без общих микрофонных систем. И действительно, нет смысла гоняться за нюансами, если результат может быть достигнут при использовании переносного оборудования со звуковыми колонками, разнесенными всего лишь на шаг. Кроме того, запись поп-музыки производится, как правило, не в натуральной форме. Каждая группа инструментов, а то и каждый музыкант обслуживается отдельным микрофоном. Все инструменты рок-ансамбля - электронные. Звук разных инструментов, в том числе и клавишных синтезаторов, можно записывать либо с помощью микрофонов, установленных перед соответствующими колонками, либо путем прямой подачи сигналов первичных микрофонов на студийный пульт микширования. Эти сигналы могут быть либо сразу микшированы, либо предварительно записаны на отдельных дорожках многодорожечного магнитофона. Добавляется искусственная реверберация, осуществляется частотная коррекция и т.д. В результате оказывается мало сходства со звуком, воспринимаемым в студии, даже если все записывалось одновременно. Выходной сигнал панорамируется и регулируется (потенциометром) для создания определенного впечатления о положении источника звука, которое может совершенно не соответствовать фактическому положению музыкантов в студии. Но, что интересно, даже если стереофонический звук не соответствует реальной ситуации, он дает эффект, намного превосходящий эффект монофонического звука. Квадрафония. Улучшенное приближение к реальности можно получить методом квадрафонии, при котором четыре канала подключаются к четырем колонкам, попарно размещенным впереди слушателей и позади них. В простейшем варианте квадрафоническую систему можно рассматривать как две стереофонические, включенные навстречу друг другу. Сложные системы с матрицированием могут воспроизводить четыре канала с одной дорожки фонограммы при сохранении совместимости с воспроизведением стереозаписи. Звуковое окружение. В телевидении важное значение имеет так называемая система звукового окружения. Стереофонический звуковой сигнал с левым (А) и правым (В) каналами матрицируется путем их суммирования (в фазе), что дает сигнал М (моносигнал), и вычитания (сложения в противофазе), что дает сигнал S (стереосигнал). Сигнал А + В соответствует средней точке источника звука и совместим с монофоническими системами воспроизведения, а сигнал А - В несет информацию направленности. Система звукового окружения формирует также разностную компоненту М - S, которая содержит "внесценический" звук, а также реверберацию, и передается на колонки, размещенные сзади слушателя. Система звукового окружения проще квадрафонической системы, но позволяет получить эффект погруженности в звуковую среду с помощью обычного стереосигнала. Стереозвук для телевидения. Стереофоническая запись звука применяется в видеокассетах и в телевещании (особенно спутниковом) для телевизоров, снабженных специальным декодером. Может показаться, что стереозвук не очень подходит для телевидения, поскольку, как отмечалось выше, для эффективной стереофонии требуются две колонки, расположенные на расстоянии примерно 2 м друг от друга. Кроме того, из-за малых размеров экрана взгляд телезрителя направлен в основном в его центр, так что требуется иллюстрация расстояния по глубине, а не по ширине. Тем не менее, когда мы смотрим телевизор, мы знаем, что видим лишь малый сегмент источника звука. Точно так же, как в реальной жизни, когда, глядя в определенном направлении, мы не можем выключить звуки нашего окружения, нет ничего неестественного в том, что звуковая картина выходит за пределы телевизионного экрана. Коррекция звука. Как это ни парадоксально, но в аппаратуре с высокой верностью воспроизведения обычно предусматриваются устройства для искажения звука. Они называются эквалайзерами и предназначены для выравнивания (путем устранения дефектов) амплитудно-частотной характеристики сигнала. Коррекцию частотной характеристики проводят также для внесения в нее искажений, обеспечивающих нужную пространственно-временную организацию звучаний. Примером может служить т.н. "фильтр присутствия", который изменяет кажущееся расстояние до источника звука. Наш слух связывает ощущение близости (присутствия) с преобладанием частот в полосе от 3 до 5 кГц, соответствующей шипящим звукам (сибилянтам). В музыке подъем характеристики в полосе от 3 до 5 кГц может создать эффект атаки, хотя и ценой огрубления звука. Другой тип частотного корректора, позволяющего создать эффект присутствия, - это параметрический эквалайзер. Такое устройство позволяет ввести на частотной характеристике подъем или провал, регулируемый в пределах 14 дБ. При этом частоту и ширину полосы можно изменять в пределах всего спектра звуковых частот. Такой вид регулирования частотной характеристики может выполняться весьма точно и использоваться, например, для коррекции акустического резонанса в студии или в зале либо для подавления грохота или шипения. Еще более сложный вид коррекции частотной характеристики осуществляется графическим эквалайзером. При таком способе весь звуковой спектр делится на узкие полосы с центральными частотами, разделенными с интервалами в октаву или треть октавы. Для каждой полосы имеется свой регулировочный движок, дающий увеличение или уменьшение примерно до 14 дБ. Название "графический" связано с тем, что при выполнении коррекции положение регулировочных движков на пульте приблизительно соответствует форме частотной характеристики. Графические эквалайзеры особенно подходят для компенсации акустического окрашивания резонансами в студии или зале для прослушивания. Колонки, дающие плоскую амплитудно-частотную характеристику в безэховой камере, в других условиях могут звучать совсем по-иному. Графические эквалайзеры позволяют улучшить озвучивание в таких случаях. Уровень звука. Звуковой материал почти любого вида - записываемый, усиливаемый или передаваемый по радио или телевидению - нуждается в регулировке громкости. Это нужно для того, чтобы 1) не выйти за пределы динамического диапазона системы;

С помощью электроники можно преобразовать звуковые или световые волны в электрические колебания. Это позволяет записать их. Благодаря обратным преобразованиям можно воспроизвести заложенные таким образом на хранение звуки и изображение. Ниже описываются различные способы записи и воспроизведения.

До сих пор мы изучали лишь способы передачи звуков и изображения в трехмерном пространстве. Благодаря радио и телевидению мы можем слышать и видеть происходящее далеко от нас, в том числе и других городах и странах, на других континентах и даже на небесных телах.

Но звуки и изображения могут также передаваться и в четвертом измерении - во времени. Любопытно отметить, что еще задолго до появления электроники человечество решило проблему передачи изображений во времени, когда удалось сделать первые фотографии.

Три вида преобразования

В наши дни существует несколько способов записи и воспроизведения звуков. Каждый из них основан на преобразовании электрических колебаний в колебания иного рода, которые могут легко сохраняться и вновь преобразовываться в электрические.

Какие основные виды преобразований используют? Механическое, оптическое и магнитное. Ты прекрасно осведомлен, Незнайкин, как легко электрические колебания преобразуют в механические. На этом принципе основаны громкоговорители.

Теперь мы займемся рассмотрением трех видов записи и воспроизведения звука.

Предки современных электропроигрывателей

Надо сказать, что механический способ передачи звуков во времени родился целое столетие назад, т. е. задолго до появления электроники. Фонограф был изобретен в 1878 г. Эдисоном. В этом предшественнике современных электропроигрывателей запись производилась на цилиндр, покрытый тонким слоем олова. При этом цилиндр вращался и медленно перемещался вдоль своей оси.

Записываемые звуки улавливались широким рупором из листового металла, в вершине которого располагалась мембрана; в центре мембраны был укреплен резец, опиравшийся на цилиндр. Звуковые волны заставляли резец колебаться, и он вырезал на оловянном покрытии цилиндра канавку переменной глубины. Комбинированное движение (вращение и перемещение вдоль оси) придавало канавке форму цилиндрической спирали.

Для воспроизведения записанного таким образом звука было достаточно вернуть резец в начало канавки и вновь начать вращать цилиндр. Изменение рельефа канавки вызывало механические колебания, порождавшие звуковые волны. Нужно ли мне говорить, что это не было высококачественное воспроизведение звука?..

Качество звучания фонографов улучшилось, когда цилиндры заменили пластинками и особенно когда изобретателям пришла светлая идея производить запись не глубинную, а поперечную, оставляя глубину канавки постоянной.

Запись звука на грампластинку

Однако только с появлением электроники грампластинка стала прекрасным средством записи и воспроизведения. Ты догадываешься, что при записи используют микрофон, токи которого до подачи на механический резец усиливают. Записывающее устройство (рекордер) сделано по тому же принципу, что и громкоговоритель: оно состоит из постоянного магнита, между его полюсами помещен электромагнит, сердечник которого способен колебаться вокруг своей оси (рис. 216). Когда по электромагниту протекает усиленный микрофонный ток, он приводит в колебательные движения сердечник электромагнита с укрепленным внизу стальным резцом, острие которого вырезает канавку на пластинке, вращающейся под этим механическим записывающим устройством (рис. 217).

Рекордер установлен на винте, который его медленно перемещает к центру диска. Этот диск представляет собой стальную пластинку, покрытую слоем воска. Диск вращается с частотой 33 1/3 об/мин, а длительность звучания составляет около получаса. Это означает, что канавка насчитывает примерно тысячу витков, причем внутренние имеют диаметр около 12 см. Расстояние между двумя соседними витками канавки меньше 0,1 мм. При поперечной записи звука количество изгибов канавки на единицу ее длины определяет частоту звуков, а от амплитуды этих изгибов зависит интенсивность звуков.

Ты прекрасно понимаешь, что чем меньше диаметр витка канавки, тем плотнее располагаются изгибы канавки при записи звука одной и той же частоты. Тем не менее на современных грампластинках даже на витках, расположенных ближе к центру, удается записать частоты, достигающие 15000 Гц.

Рис. 216. Катушка помещена в магнитное поле постоянного магнита. Она укреплена на стержне, который может колебаться вокруг оси 1. Верхняя часть стержня удерживается эластичной подвеской в точке 2.

Если через катушку пропускать электрические сигналы, характеризующие звук, то колебания катушки можно использовать для записи звука на диске с помощью острия иглы, укрепленной на нижнем конце стержня. И наоборот: если стержень приводится в колебания в результате движения иглы по канавке грампластинки, то в катушке наводятся соответствующие электрические сигналы.

Рис. 217. Увлекаемый бесконечным винтом 1 рекордер 2 перемещается вдоль радиуса диска с восковым покрытием, на котором и записывается звук.

Производство грампластинок

Таким образом осуществляется запись звука. Но ты, вероятно, спрашиваешь себя, каким способом запись с этого оригинального диска переносят на миллионы грампластинок, поступающих в продажу. Для этого с оригинального диска прежде всего снимают медную копию: диск с записью покрывают тонким слоем графитового порошка (он проводит электрический ток) и опускают в ванну с раствором сульфата меди, в которой против диска устанавливают медную пластину.

Между диском, подключенным к отрицательному полюсу, и медной пластиной, соединенной с положительным полюсом, пропускают постоянный ток. Происходящий процесс называется гальванопластикой: атомы меди покидают пластину и после довольно сложных электрохимических реакций осаждаются на диске. Таким образом получают обратную, можно сказать «негативную», копию диска. Метод гальванопластики позволяет получить с этой копии другую, на этот раз позитивную, т. е. полностью подобную оригинальному диску. С позитивной копии снимают несколько негативных, которые используют в качестве матриц для производства грампластинок, предназначенных для продажи.

Процесс производства пластинок заключается в том, что пластинки из поливинилхлорида прессуют дисками - матрицами, нагретыми до достаточно высокой температуры, чтобы размягчить поливинилхлоридные диски, которые в результате такого воздействия приобретают рельеф записанной пластинки.

Звукосниматели

Теперь ты знаешь, как изготавливают грампластинки. И несомненно догадываешься, как они считываются на электропроигрывателе. Обратимость физических явлений тебе хорошо знакома.

Следовательно, звукосниматель может быть выполнен по тому же принципу, что и рекордер для записи. Звукосниматель снабжают очень тонкой иглой, сделанной из алмаза или сапфира. Она укрепляется на конце тоненького стерженька, установленного на электромагните. Последний расположен между полюсами постоянного магнита. Неровности канавки приводят иглу в колебательные движения, которые передаются электромагниту: его перемещения в поле постоянного магнита наводят в его обмотке токи, которые после усиления подаются на громкоговоритель, воспроизводящий записанные звуки.

Звукосниматель укреплен на конце тонарма, свободно вращающегося вокруг оси. Прохождение иглы по спиральной канавке вращающейся грампластинки вызывает перемещение тонарма.

Звукосниматель должен очень легко опираться на грампластинку, чтобы не вызывать ее износа. Для того чтобы оказываемое звукоснимателем давление было в пределах , тонарм поддерживается пружиной или уравновешивается противовесом, установленным на конце, противоположном тому, где находится звукосниматель.

Запомни, Незнайкин, что вместо электромагнитного звукоснимателя очень часто используют пьезоэлектрические (рис. 218). В таком звукоснимателе колебания иглы через связывающую эластичную подвеску передаются пьезоэлектрическому кристаллу. А кристалл выдает напряжения, которые точно соответствуют получаемым им механическим колебаниям.

Звуковые кинофильмы

Я сказал тебе, что звук можно также записать и воспроизвести оптическими средствами. Последние практически используют только в кинофильмах, благодаря чему с 1930 г. кинематограф перестал быть немым.

Звуковой фильм имеет у края пленки узкую дорожку, содержащую теневые зоны, частота и интенсивность которых соответствуют частоте и амплитуде записанных звуков. Существует два типа звуковых дорожек. В одном случае ширина дорожки постоянная, а переменной является ее прозрачность. В другом случае дорожка имеет однородную прозрачность на всем своем протяжении, но ширина дорожки изменяется (рис. 219).

Рис. 218. Пьезоэлектрический звукосниматель, в котором кристалл 1 воспринимает колебания, передаваемые ему иглой 2 через эластичный держатель 3.

Рис. 219. Звуковые дорожки на киноленте: а - дорожка переменной прозрачности; б - дорожка переменной ширины.

Для записи звука на этих дорожках луч света направляют через диафрагму, отверстие которой изменяется под воздействием электрических напряжений, или подают эти напряжения на источник света, интенсивность свечения которого, таким образом, изменяется.

Воспроизведение звука, записанного на звуковой дорожке кинофильма, осуществляется с помощью фотоэлемента, воспринимающего свет, проходящий через звуковую дорожку. Изменения яркости света вызывают в цепи фотоэлемента соответствующие изменения напряжения или тока, которые усиливают и затем подают на громкоговоритель.

Магнитофоны

А теперь займемся третьим способом передачи звука во времени. Именно этим способом пользуюсь я в настоящую минуту и воспользуешься ты, Незнайкин, когда будешь слушать запись моего рассказа. Да, мой дорогой друг, речь идет о магнитофоне, который позволяет мне слушать твои беседы с моим племянником и дает мне возможность объяснять интересующие тебя вопросы.

Существует множество типов магнитофонов, но все они основаны на одних и тех же принципах. Запись ведется на магнитном материале. Вначале для этой цели использовали тонкую стальную проволоку. В наши дни пользуются пластмассовыми лентами, покрытыми тонким слоем очень мелкого порошка окиси железа.

Запись, как и воспроизведение, осуществляется с помощью электромагнита, кольцевой сердечник которого имеет очень узкий зазор, величиной в несколько микрометров. Магнитная лента равномерно протягивается, прижимаясь к зазору сердечника электромагнита (рис. 220). Усиленные микрофонные токи проходят по катушке электромагнита и создают переменные магнитные поля, соответствующим образом намагничивающие проходящую перед зазором сердечника ленту.

При воспроизведении ленту пропускают перед подобным электромагнитом. Ее магнитные поля наводят в обмотке электромагнита переменные токи, которые после усиления приводят в действие диффузор громкоговорителя. В зависимости от назначения электромагнит, применяемый при записи или воспроизведении, называется воспроизводящей или записывающей магнитной головкой.

Некогда скорость протяжки ленты составляла . Затем, по мере того как удавалось уменьшить зазор сердечника и улучшить качество ленты, скорость протяжки стало возможно уменьшить вдвое. Так перешли к 381, а впоследствии к 190,5; 95,3; 47,6 и . Даже на скорости прекрасно воспроизводятся самые высокие звуковые частоты.

Рис. 220. Запись звука с помощью магнитофона.

Магнитная дорожка довольно узкая, и одна лента может содержать две или даже четыре дорожки, идущие параллельно. Ширина ленты равна 6,25 мм.

Магнитофон может иметь три магнитные головки: одна служит для записи, другая - для воспроизведения, а третья - для стирания. Последняя операция производится с помощью напряжения с частотой . Это же самое напряжение подмешивается к записываемым сигналам, чтобы «подмагнитить» зерна окиси железа в ленте и сделать запись более эффективной.

Во многих магнитофонах устанавливают только две головки, одна из которых благодаря соответствующим переключениям может служить как для записи, так и для воспроизведения, а другая - для стирания.

Видеомагнитофоны и видеопластинки

Перейдем теперь от звука к изображению. Как можно передавать изображение во времени?

В данном случае также можно воспользоваться механическими, оптическими или магнитными способами. Оптические способы ты хорошо знаешь - это фотография и кино. Здесь электронику совершенно не используют. Напротив, электронику очень широко используют при магнитной записи и воспроизведении изображений. Аппарат, выполняющий эти функции, называется видеомагнитофоном. Принцип его работы очень похож на принцип работы аппарата для записи и воспроизведения звука.

В видеомагнитофоне на магнитную ленту записывают видеосигнал. Следует различать два случая: непосредственную запись и запись телевизионных передач. В первом случае необходимо использовать передающую телевизионную камеру и усилитель выдаваемых ею сигналов. При записи же телевизионных передач на записывающую головку видеомагнитофона подают видеосигналы, полученные после детектирования. Само собой разумеется, что здесь приходится иметь дело с полосой частот, значительно более широкой, чем при записи звука. Как же зафиксировать изменения магнитного поля с частотой в несколько мегагерц на ленте, движущейся со скоростью несколько десятков сантиметров в секунду?

Для этого записывающие головки перемещают в направлении, перпендикулярном направлению движения ленты. В видеомагнитофоне устанавливают три или четыре записывающие головки, вращающиеся вокруг оси; дорожки записи располагаются на магнитной ленте в виде множества косых полос. Частоту вращения головок выбирают с таким расчетом, чтобы каждая косая полоса соответствовала одной строке телевизионного кадра. Можно сказать, что при четкости изображения 625 строк записывающая головка прочерчивает косую полосу на магнитной ленте ровно за .

Существуют также видеомагнитофоны, оснащенные только одной записывающей головкой, которая остается неподвижной, как и в обычном магнитофоне для записи звука. Дорожка записи имеет здесь форму непрерывной линии. Записать широкую полосу частот удается благодаря действительно микроскопической величине рабочего зазора головки.

При воспроизведении изображений считывание записи производится теми же головками, которые использовались для записи. Надлежащим образом усиленные видеосигналы подаются на кинескоп телевизора.

Как правило, для записи изображения и для его воспроизведения с помощью видеомагнитофона пользуются телевизором. Видеомагнитофон получает с телевизора принятые, усиленные и продетектиро ванные им видеосигналы. А при воспроизведении изображения видеомагнитофон подает сигналы на телевизор.

Мне часто случается отсутствовать в то время, когда по телевидению передается очень интересная для меня программа.

В этих случаях я произвожу запись автоматически, используя для этой цели часы, включающие, а затем выключающие телевизор с видеомагнитофоном в установленное мною время. Таким образом, передача записывается в мое отсутствие, и я могу ее воспроизвести на экране своего телевизора, когда у меня будет свободное время, чтобы спокойно ее просмотреть.

И наконец, можно ли записать видеосигналы механическим способом? На первый взгляд, это кажется невозможным. Тем не менее в 1970 г. чудо совершилось: исследователи сумели сделать видеопластинку. Затем они добились еще большего: год спустя они уже демонстрировали модели, воспроизводящие цветные изображения.

Эти диски вращаются с колоссальной частотой (1500 об/мин) и на каждом миллиметре по радиусу содержат 140 витков канавки. Длительность записи на такой видеопластинке составляет 5 мин. За это время игла считывающего устройства совершает по канавке с глубинной записью путь длиной 15 км.

Какими будут другие чудесные достижения техники видеозаписи? Будущее, несомненно, станет все богаче и богаче подобными новинками.

.
ВОСПРОИЗВЕДЕНИЕ ЗВУКА
Запись и воспроизведение звука - это область, в которой наука сочетается с искусством (звукорежиссера). Здесь есть две важные стороны: верность воспроизведения (как отсутствие нежелательных искажений) и пространственно-временная организация звучаний, поскольку задача воспроизведения звука электромеханическими средствами состоит не только в том, чтобы воссоздать звук, максимально приближенный к воспринимаемому в студии или концертном зале, но и в том, чтобы преобразовать его с учетом той акустической обстановки, в которой он будет прослушиваться. В графическом представлении простейшую форму имеют звуковых колебания чистых тонов типа создаваемых камертоном. Им соответствуют синусоидальные кривые. Но большинство реальных звучаний имеет неправильную форму, которая однозначно характеризует звучание, так же, как отпечатки пальцев - человека. Всякое звучание может быть разложено на чистые тона разных частот (рис. 1). Эти тона состоят из основного тона и обертонов (гармоник). Основным тоном (с низшей частотой) определяется высота ноты. По обертонам мы различаем музыкальные инструменты, даже когда на них берется одна и та же нота. Обертоны особенно важны тем, что они создают тембр инструмента и определяют характер его звучания.

Диапазон основных тонов большинства источников звука довольно узок, благодаря чему можно легко понимать речь и улавливать мотив, даже если у воспроизводящей аппаратуры ограниченная частотная полоса. Полнота же звучания обеспечивается лишь при наличии всех обертонов, а для их воспроизведения необходимо, чтобы не искажались соотношения между уровнями основного тона и обертонов, т.е. частотная характеристика воспроизводящей системы должна быть линейной во всем диапазоне слышимых частот. Именно такую характеристику (наряду с отсутствием искажений) и имеют в виду, когда говорят о высокой точности звуковоспроизведения (системы hi-fi).
Громкость. Восприятие громкости звука зависит не только от его интенсивности, но и от многих других факторов, в число которых входят и субъективные, не поддающиеся количественной оценке. Важное значение имеет обстановка, окружающая слушателя, уровень внешнего шума, высота и гармоническая структура звучания, громкость предыдущего звучания, эффект "маскирования" (под впечатлением предыдущего звучания ухо становится менее чувствительным к другим звучаниям близкой частоты) и даже эстетическое отношение слушателя к музыкальному материалу. Нежелательные звуки (шумы) могут казаться более громкими, чем желательные той же интенсивности. Даже восприятие высоты звучания может зависеть от интенсивности звука. Восприятие различий в высоте музыкальных тонов определяется не абсолютной величиной частотных интервалов, а их отношением. Например, отношение двух частот, различающихся на октаву, в любой части звукоряда равно 2:1. Точно так же наша оценка изменений громкости определяется отношением (а не разностью) интенсивностей, так что изменения громкости воспринимаются как одинаковые, если одинаковы изменения логарифма интенсивности звука. Поэтому уровень громкости звука измеряется по логарифмической шкале (на практике - в децибелах). Уши человека способны воспринимать звук в колоссальном диапазоне мощности от порога слышимости (0 дБ) до порога болевого ощущения (120 дБ), соответствующего отношению интенсивностей 1012. Современное оборудование способно воспроизводить изменения громкости в пределах порядка 90 дБ. Но воспроизводить весь диапазон слышимости практически и не требуется. Большинство слушает музыку примерно на уровне негромкой речи, и вряд ли кому-нибудь было бы по себе в домашних условиях при нормальной громкости оркестра или рок-группы. Поэтому необходимо регулировать диапазон громкости, особенно при воспроизведении классической музыки. Это можно делать, постепенно понижая громкость перед крещендо (по партитуре) при сохранении нужного динамического диапазона. Для других музыкальных материалов, таких, как рок- и поп-музыка, широко применяются компрессоры, автоматически сужающие динамический диапазон усиливаемых сигналов. Но в дискотеках уровень звука нередко превышает 120 дБ, что может вызвать повреждение слуха и привести к полной глухоте. В этом отношении группа повышенного риска - поп-музыканты и звукооператоры. Особенно опасны наушники, так как они концентрируют звук. Большинство слушателей широковещательных программ предпочитают, чтобы все программы озвучивались примерно на одном и том же уровне громкости и им самим не нужно было регулировать громкость. Но громкость - субъективное восприятие. Некоторым громкая музыка способна досаждать больше, чем речь, хотя неразборчивая речь иногда сильнее раздражает, чем музыка той же громкости.
Балансировка звука. В основе хорошего звуковоспроизведения лежит сбалансированность разных источников звука. Проще говоря, в случае одного источника звука суть хорошего звуковоспроизведения в том, чтобы сбалансировать прямой звук, приходящий к микрофону, с влиянием окружающей акустики и обеспечить правильный баланс между прозрачностью звучания и его полнотой, допускающий нужную степень подчеркивания в тех местах, где это требуется.
Микрофонная техника. Первая задача звукорежиссера состоит в том, чтобы выбрать подходящее студийное помещение. Если приходится использовать неприспособленное помещение, то оно должно быть, как минимум, в 1,5 раза больше места, отводимого исполнителям. Следующий шаг - выработка общей схемы расположения микрофонов. При воспроизведении музыкальных программ это необходимо сделать, консультируясь с дирижером и исполнителями. Микрофонов должно быть как можно меньше, поскольку наложение их звуковых полей способно снизить прозрачность звука. Правда, во многих случаях нужный эффект достигается только при использовании большого числа микрофонов. Комбинации музыкальных инструментов редко бывают настолько сбалансированы, чтобы это отвечало требованиям прослушивания в домашних условиях. Акустика жилого помещения может оказаться далекой от идеала. Поэтому необходимо ознакомить руководителя оркестра с требованиями балансировки при воспроизведении с помощью микрофонов. Организация воспроизводимых звучаний определяется типом микрофона, его приближенностью к источнику и обработкой его выходного сигнала. Вопрос о близости расположения микрофона к источнику звука нужно решать, учитывая соотношение между прямым и побочными звуками (включая реверберацию) других, более мощных инструментов и качество звука. Большинство инструментов дают разные звучания на разных расстояниях и в разных направлениях. Чтобы получить резкую "атаку", которая требуется от поп-музыки, и обеспечить хорошее различение инструментов, приходится прибегать к многомикрофонной схеме. При этом предъявляются высокие требования к звукорежиссеру; он должен иметь музыкальную подготовку или хотя бы уметь читать партитуру.
Бинауральный слух. Человек легко определяет направление на источник звука, поскольку звук обычно достигает одного уха раньше, чем другого. Мозг улавливает эту малую разницу во времени и небольшое различие в интенсивности звучания и по ним определяет направление на источник звука. Мы можем также определять, что звук пришел спереди, сзади, сверху или снизу. Это объясняется тем, что наши уши по-разному передают частотный состав звуков, приходящих в разных направлениях (а также тем, что слушатель редко держит голову абсолютно неподвижно и в вертикальном положении). Этим объясняется и то, что люди с глухотой на одно ухо сохраняют все-таки некоторую способность судить о направлении на источник звука. Бинауральный слух выработался у человека в качестве защитного механизма, но эта способность разделять звуки - важное условие понимания музыки. Если эту способность использовать при звукозаписи, то увеличивается впечатление верности и чистоты при воспроизведении.
Стереофонический звук. Двухканальная стереофоническая система, рассчитанная на прослушивание через звуковые колонки, создает для бинаурального слуха раздельные звуковые потоки, которые несут информацию о направлении распространения первичного звука. В своей простейшей форме стереосистема состоит из двух микрофонов, расположенных рядом друг с другом и направленных под углом 45° к источнику звука. Сигналы микрофонов подаются на две звуковые колонки, разнесенные примерно на 2 м и одинаково удаленные от слушателя. Такая система создает "звуковую сцену" между колонками, на которой локализуются источники звука, расположенные перед микрофонами. Возможность локализации перед микрофонами источников звука, их разделения и отделения от реверберации намного повышает естественность и чистоту воспроизведения. Такой подход дает удовлетворительные результаты только тогда, когда источник звука внутренне хорошо сбалансирован и благоприятны акустические условия. На практике обычно приходится использовать более двух микрофонов и микшировать (объединять) их сигналы для улучшения музыкального баланса, увеличения акустического разделения и придания звучанию необходимой степени атаки. Типичный комплект аппаратуры для классического оркестра состоит из стереопары микрофонов (для создания общей звуковой картины оркестра) и нескольких местных микрофонов, установленных ближе к отдельным группам инструментов. Выходные сигналы местных микрофонов тщательно микшируются с сигналом стереопары так, чтобы обеспечивалось необходимое акцентирование каждой группы инструментов без нарушения общего баланса. Кроме того, их выходные сигналы панорамируются в кажущееся положение, которое при использовании основной пары микрофонов соответствовало бы их реальному расположению на сцене. (Панорамирование - это изменение углового направления на источник звука. Оно сочетается с регулировкой уровня посредством потенциометра.) Многомикрофонные схемы еще шире применяются в случае легкой, а тем более поп-музыки, где обычно обходятся без общих микрофонных систем. И действительно, нет смысла гоняться за нюансами, если результат может быть достигнут при использовании переносного оборудования со звуковыми колонками, разнесенными всего лишь на шаг. Кроме того, запись поп-музыки производится, как правило, не в натуральной форме. Каждая группа инструментов, а то и каждый музыкант обслуживается отдельным микрофоном. Все инструменты рок-ансамбля - электронные. Звук разных инструментов, в том числе и клавишных синтезаторов, можно записывать либо с помощью микрофонов, установленных перед соответствующими колонками, либо путем прямой подачи сигналов первичных микрофонов на студийный пульт микширования. Эти сигналы могут быть либо сразу микшированы, либо предварительно записаны на отдельных дорожках многодорожечного магнитофона. Добавляется искусственная реверберация, осуществляется частотная коррекция и т.д. В результате оказывается мало сходства со звуком, воспринимаемым в студии, даже если все записывалось одновременно. Выходной сигнал панорамируется и регулируется (потенциометром) для создания определенного впечатления о положении источника звука, которое может совершенно не соответствовать фактическому положению музыкантов в студии. Но, что интересно, даже если стереофонический звук не соответствует реальной ситуации, он дает эффект, намного превосходящий эффект монофонического звука.
Квадрафония. Улучшенное приближение к реальности можно получить методом квадрафонии, при котором четыре канала подключаются к четырем колонкам, попарно размещенным впереди слушателей и позади них. В простейшем варианте квадрафоническую систему можно рассматривать как две стереофонические, включенные навстречу друг другу. Сложные системы с матрицированием могут воспроизводить четыре канала с одной дорожки фонограммы при сохранении совместимости с воспроизведением стереозаписи.
Звуковое окружение. В телевидении важное значение имеет так называемая система звукового окружения. Стереофонический звуковой сигнал с левым (А) и правым (В) каналами матрицируется путем их суммирования (в фазе), что дает сигнал М (моносигнал), и вычитания (сложения в противофазе), что дает сигнал S (стереосигнал). Сигнал А + В соответствует средней точке источника звука и совместим с монофоническими системами воспроизведения, а сигнал А - В несет информацию направленности. Система звукового окружения формирует также разностную компоненту М - S, которая содержит "внесценический" звук, а также реверберацию, и передается на колонки, размещенные сзади слушателя. Система звукового окружения проще квадрафонической системы, но позволяет получить эффект погруженности в звуковую среду с помощью обычного стереосигнала.
Стереозвук для телевидения. Стереофоническая запись звука применяется в видеокассетах и в телевещании (особенно спутниковом) для телевизоров, снабженных специальным декодером. Может показаться, что стереозвук не очень подходит для телевидения, поскольку, как отмечалось выше, для эффективной стереофонии требуются две колонки, расположенные на расстоянии примерно 2 м друг от друга. Кроме того, из-за малых размеров экрана взгляд телезрителя направлен в основном в его центр, так что требуется иллюстрация расстояния по глубине, а не по ширине. Тем не менее, когда мы смотрим телевизор, мы знаем, что видим лишь малый сегмент источника звука. Точно так же, как в реальной жизни, когда, глядя в определенном направлении, мы не можем выключить звуки нашего окружения, нет ничего неестественного в том, что звуковая картина выходит за пределы телевизионного экрана.
Коррекция звука. Как это ни парадоксально, но в аппаратуре с высокой верностью воспроизведения обычно предусматриваются устройства для искажения звука. Они называются эквалайзерами и предназначены для выравнивания (путем устранения дефектов) амплитудно-частотной характеристики сигнала. Коррекцию частотной характеристики проводят также для внесения в нее искажений, обеспечивающих нужную пространственно-временную организацию звучаний. Примером может служить т.н. "фильтр присутствия", который изменяет кажущееся расстояние до источника звука. Наш слух связывает ощущение близости (присутствия) с преобладанием частот в полосе от 3 до 5 кГц, соответствующей шипящим звукам (сибилянтам). В музыке подъем характеристики в полосе от 3 до 5 кГц может создать эффект атаки, хотя и ценой огрубления звука. Другой тип частотного корректора, позволяющего создать эффект присутствия, - это параметрический эквалайзер. Такое устройство позволяет ввести на частотной характеристике подъем или провал, регулируемый в пределах 14 дБ. При этом частоту и ширину полосы можно изменять в пределах всего спектра звуковых частот. Такой вид регулирования частотной характеристики может выполняться весьма точно и использоваться, например, для коррекции акустического резонанса в студии или в зале либо для подавления грохота или шипения. Еще более сложный вид коррекции частотной характеристики осуществляется графическим эквалайзером. При таком способе весь звуковой спектр делится на узкие полосы с центральными частотами, разделенными с интервалами в октаву или треть октавы. Для каждой полосы имеется свой регулировочный движок, дающий увеличение или уменьшение примерно до 14 дБ. Название "графический" связано с тем, что при выполнении коррекции положение регулировочных движков на пульте приблизительно соответствует форме частотной характеристики. Графические эквалайзеры особенно подходят для компенсации акустического окрашивания резонансами в студии или зале для прослушивания. Колонки, дающие плоскую амплитудно-частотную характеристику в безэховой камере, в других условиях могут звучать совсем по-иному. Графические эквалайзеры позволяют улучшить озвучивание в таких случаях.
Уровень звука. Звуковой материал почти любого вида - записываемый, усиливаемый или передаваемый по радио или телевидению - нуждается в регулировке громкости. Это нужно для того, чтобы 1) не выйти за пределы динамического диапазона системы; 2) выделить и сбалансировать из эстетических соображений различные звучания данного источника звука; 3) установить диапазон громкости основного материала; 4) согласовать уровни громкости материала, записанного в разное время. Регулировку громкости лучше всего проводить, прослушивая материал через хорошую колонку и учитывая при этом показания измерителя уровня. Одних же показаний измерителя уровня при монтаже фонограмм недостаточно в силу субъективного характера восприятия звука. Такой измеритель нужен для калибровки слуха.
Микширование сигналов микрофонов. При монтаже фонограммы обычно производится микширование выходных сигналов микрофонов и других преобразователей звука, число которых при записи может достигать 40. Микширование производится двумя основными способами. При микшировании в режиме реального времени можно для упрощения сгруппировать микрофоны, относящиеся, например, к вокальной группе, и регулировать уровень их звучания групповым звукомикшером. В другом варианте сигналы отдельных микрофонов направляются на входы многоканального магнитофона для последующего сведения в один стереофонический сигнал. Второй способ позволяет точнее выбирать точки микширования, работая не в присутствии музыкантов, причем на многодорожечных магнитофонах можно воспроизводить одни дорожки при одновременной синхронной записи на других. Поэтому изменения можно вносить в нужные места фонограммы без переписывания всей программы. Все это можно делать без копирования оригинальной записи, так что она остается образцом для сравнения до окончательного микширования.
Автоматизированное микширование звука. Чтобы обеспечить высокую точность на заключительной операции перехода от многих дорожек записи к одной, некоторые звукорежиссерские пульты оснащают автоматическими микшерами. В таких системах в компьютер вводятся данные всех электронных регуляторов уровня при первой попытке микширования. Затем запись воспроизводится с автоматическим выполнением этих функций микширования. В ходе воспроизведения могут быть произведены нужные регулировки и скорректированы параметры программы компьютера. Такой процесс повторяется до достижения нужного результата. После этого выходной сигнал сводится в программную стереофонограмму.
Автоматическое управление. Автоматическое микширование не следует путать с автоматическим управлением, которое выполняется с использованием ограничителей и компрессоров, поддерживающих звуковой сигнал в требуемых пределах. Ограничитель - это устройство, которое пропускает программу без изменений, пока не достигается некоторый порог. Когда же сигнал на входе превышает данный порог, коэффициент усиления системы понижается и сигнал более не усиливается. Ограничители обычно используются в передатчиках для защиты электронных схем от перегрузки, а в ЧМ-передатчиках - для предотвращения чрезмерной девиации частоты с наложением на соседние каналы. Компрессоры, т.е. регуляторы, автоматически осуществляющие сужение динамического диапазона усиливаемых сигналов, действуют аналогично ограничителям, понижая коэффициент усиления системы, но делают это менее резко. Упрощенные компрессоры имеются во многих кассетных магнитофонах. Компрессоры же, используемые в профессиональной звукозаписи, снабжаются органами управления для оптимизации их действия. Но никакое автоматическое регулирование не в состоянии заменить тонкости и остроты восприятия, присущих человеку.
Динамическое шумоподавление. При аналоговой звукозаписи всегда возникают трудности с шумами, в основном в форме шипения. Для подавления системного шума записывать программу всегда следует при достаточно высоком уровне громкости. Для этого применяется метод компандирования, т.е. сужения динамического диапазона программы при записи и расширения его при воспроизведении. Это позволяет повышать средний уровень при записи, а при воспроизведении понижать уровень сравнительно тихих пассажей (и вместе с ними шума). При разработке эффективной системы компандирования возникают трудности двоякого рода. Одна из них - это трудность согласования компрессора и экспандера во всем диапазоне частот и громкости. Другая - предотвращение повышения и понижения уровня шума вместе с уровнем сигнала, так как это делает шум более заметным. В системах шумоподавления Долби весьма остроумно решаются эти проблемы несколькими разными способами. В них учитывается эффект "маскирования": чувствительность слуха на той или иной частоте существенно понижается во время и непосредственно после более громких звучаний на близких частотах (рис. 2).


Рис. 2. ЗАВИСИМОСТЬ ЭНЕРГИИ ОТ ЧАСТОТЫ. Слева: а - энергия сигнала (по вертикальной оси) уменьшается с увеличением частоты (горизонтальная ось); б - шум магнитной ленты (шипение); в - сигнал, маскируемый шипением ленты, при обычном воспроизведении; г - сигнал, закодированный с подъемом в области высоких частот по методу "Долби В"; д - закодированный сигнал с наложенным шипением магнитной ленты; е - сигнал, декодированный с понижением в области высоких частот, благодаря которому восстанавливается нормальная форма и подавляются шумы. Справа - частотная характеристика кодирующего и декодирующего устройств системы Долби.


"Долби А". Метод "Долби А" - это промежуточная обработка, осуществляемая на входе и выходе звукозаписывающей аппаратуры, результатом которой является нормальная (плоская) характеристика на выходе. Метод "Долби А" применяется главным образом в профессиональной звукозаписи, в особенности на многодорожечные магнитофоны, в которых уровень шума повышается с увеличением числа используемых дорожек. Проблема согласования компрессора и экспандера решается созданием двух параллельных путей - одного через линейный усилитель, а другого через дифференциальную цепь, выходной сигнал которой добавляется к "прямому" сигналу при записи и вычитается при воспроизведении, в результате чего действие компрессора и экспандера оказывается взаимно дополняющим. Дифференциальная схема разбивает частотный спектр на четыре полосы и каждую полосу обрабатывает отдельно, так что подавление осуществляется только там, где это требуется, т.е. в полосе, в которой сигнал программы недостаточно громок, чтобы маскировать шум. Так, например, музыка обычно концентрируется в нижней и средней полосах частот, а шипение магнитной ленты - на высоких частотах и слишком удалено по частоте, чтобы эффект маскирования был существенным.
"Долби В". Метод "Долби В" применяется главным образом в бытовой аппаратуре, в частности в кассетных магнитофонах. В отличие от метода "Долби А", записи по методу В выполняются с характеристикой Долби, рассчитанной на воспроизведение на аппаратуре с дополнительной характеристикой. Как и при методе "Долби А", здесь имеются прямой путь для программы и боковая цепь. В боковую входит компрессор с предваряющим активным фильтром верхних частот на частоты от 500 Гц и выше. В режиме записи компрессор повышает уровень сигналов, лежащих ниже порогового значения, и они добавляются к сигналу боковой ветви. Активный фильтр создает в своей полосе пропускания усиление, нарастающее до 10 дБ на частоте 10 кГц. Таким образом, высокочастотные сигналы низкого уровня записываются с превышением первоначального уровня, достигающим 10 дБ. Подавитель выбросов предотвращает воздействие переходных процессов на постоянную времени компрессора. Декодер системы "Долби В" аналогичен кодеру, используемому при записи, но в нем выходной сигнал боковой ветви компрессора суммируется с сигналом основной цепи в противофазе, т.е. вычитается из него. При воспроизведении уровень высокочастотных сигналов низкого уровня, а также уровень шипения магнитной ленты и системный шум, добавляющиеся при записи, понижаются, что приводит к повышению отношения сигнал/шум на величину до 10 дБ. Важное различие между методом Долби и простой системой введения предыскажений (повышения высокочастотной характеристики) при записи и коррекции предыскажений при воспроизведении состоит в том, что характеристика "Долби В" влияет только на звуковые сигналы низкого уровня. Материал, закодированный по методу "Долби В", можно воспроизводить на аппаратуре, не имеющей системы шумоподавления Долби, если понизить высокочастотную характеристику для компенсации характеристики Долби, но это приводит к потере высоких частот в более громких пассажах.
"Долби С". Метод "Долби С" представляет собой дальнейшее усовершенствование метода "Долби В", позволяющее понизить шум на величину до 20 дБ. В нем используются два компрессора, включенные последовательно, при записи и два дополняющих экспандера при воспроизведении. Первый каскад работает при уровнях сигналов, сравнимых с уровнями в системе "Долби В", а второй чувствителен к сигналам, уровень которых на 20 дБ ниже. Система "Долби С" начинает действовать примерно со 100 Гц и обеспечивает понижение шума на 15 дБ на частотах около 400 Гц, тем самым ослабляя эффект модуляции средних частот высокочастотными сигналами.
Система DBX. Система шумоподавления DBX - это система взаимно дополняющей обработки на входе и выходе магнитофона. При кодировании и декодировании в ней используется коэффициент компрессии 2:1. Согласование компрессора и экспандера упрощается благодаря единому коэффициенту компрессии, а также благодаря тому, что оценка уровня производится по полной мощности сигнала. В системе DBX используется то обстоятельство, что основная часть мощности программы обычно концентрируется на средних и низких частотах, а на высоких частотах большая мощность бывает лишь при высоком общем уровне громкости. В сигнал, подаваемый на компрессор, вводятся сильные предыскажения (с нарастающим повышением уровня в области высоких частот) для повышения общей мощности при записи. При воспроизведении же предыскажения устраняются путем понижения уровня на высоких частотах, а вместе с ним и уровня шумов. Во избежание перегрузки фонограммы мощными предыскаженными высокочастотными сигналами такие предыскажения вводятся в сигнал боковой цепи компрессора, в результате чего при высоких уровнях записываемый уровень высокочастотных сигналов с увеличением частоты понижается, а с уменьшением - повышается. Система DBX может повысить отношение сигнал/шум на высоких частотах на 30 дБ.
ЗВУКОЗАПИСЬ
В идеале процесс записи звука от входа записывающего устройства до выхода устройства воспроизведения должен быть "прозрачным", т.е. ничто не должно изменяться, кроме времени воспроизведения. Многие годы эта цель казалась недостижимой. Системы звукозаписи были ограничены в диапазоне и неизбежно вносили те или иные искажения. Но исследования привели к огромным улучшениям, и, наконец, с появлением цифровой звукозаписи достигнут почти идеальный результат.
Цифровая звукозапись. При цифровой звукозаписи аналоговый звуковой сигнал преобразуется в код из последовательностей импульсов, которые соответствуют двоичным числам (0 и 1) и характеризуют амплитуду волны в каждый момент времени. Цифровые аудиосистемы обладают огромными преимуществами перед аналоговыми системами в отношении динамического диапазона, робастности (информационной надежности) и сохранения качества при записи и копировании, передаче на расстояние и мультиплексировании и т.п.
Аналого-цифровое преобразование. Процесс преобразования из аналоговой формы в цифровую состоит из нескольких шагов.
Дискретизация. Периодически с фиксированной частотой повторения делаются дискретные отсчеты мгновенных значений волнового процесса. Чем выше частота отсчетов, тем лучше. По теореме Найквиста, частота дискретизации должна не менее чем вдвое превышать наивысшую частоту в спектре обрабатываемого сигнала. Чтобы не допустить искажений, связанных с дискретизацией, на входе преобразователя необходимо установить фильтр нижних частот с очень крутой характеристикой и частотой отсечки, равной половине частоты дискретизации. К сожалению, идеальных фильтров нижних частот не существует, и фильтр с очень крутой характеристикой будет вносить искажения, которые могут свести на нет преимущества цифровой техники. Дискретизацию обычно проводят с частотой 44,1 кГц, которая позволяет применять практически приемлемый фильтр для защиты от искажений. Частота 44,1 кГц была выбрана потому, что она совместима с частотой строчной развертки телевидения, а все ранние цифровые записи производились на видеомагнитофонах. Эта же частота 44,1 кГц является стандартной частотой дискретизации для проигрывателей компакт-дисков и большей части бытовой аппаратуры, за исключением устройств записи на цифровую аудиоленту (DAT), в которых используется частота 48 кГц. Такая частота выбрана специально для того, чтобы воспрепятствовать нелегальному переписыванию компакт-дисков на цифровую магнитную ленту. В профессиональном оборудовании используется главным образом частота 48 кГц. В цифровых системах, применяемых для целей вещания, обычно работают с частотой 32 кГц; при таком выборе полезный диапазон частот ограничивается величиной 15 кГц (из-за предела дискретизации), но частота 15 кГц считается достаточной для целей вещания.
Квантование. Следующий шаг состоит в том, чтобы преобразовать дискретные отсчеты в код. Это преобразование выполняется путем измерения амплитуды каждого отсчета и сравнения ее со шкалой дискретных уровней, называемых уровнями квантования, величина каждого из которых представлена числом. Амплитуда отсчета и уровень квантования редко в точности совпадают друг с другом. Чем больше уровней квантования, тем выше точность измерений. Различия между амплитудами отсчетов и квантования проявляются в воспроизводимом звуке как шум.
Кодирование. Уровни квантования считаются в виде единиц и нулей. 16-разрядный двоичный код (такой же, как используемый для компакт-дисков) дает 65536 уровней квантования, что позволяет иметь отношение сигнал/шум квантования выше 90 дБ. Получаемый сигнал отличается высокой робастностью, так как от воспроизводящего оборудования требуется лишь распознать два состояния сигнала, т.е. определять, превышает ли он половину максимально возможного значения. Поэтому цифровые сигналы можно многократно записывать и усиливать, не опасаясь ухудшения их качества.
Цифро-аналоговое преобразование. Чтобы цифровой сигнал преобразовать в звуковой, его нужно сначала преобразовать в аналоговую форму. Такое преобразование обратно аналого-цифровому преобразованию. Цифровой код преобразуется в последовательность уровней (соответствующих исходным уровням дискретизации), которые сохраняются и считываются с использованием исходной частоты дискретизации.
Передискретизация. Аналоговый выходной сигнал цифро-аналогового преобразователя непосредственно использовать нельзя. Его нужно сначала пропустить через фильтр нижних частот, чтобы не допустить искажений, связанных с гармониками частоты дискретизации. Один из способов устранения этой трудности - передискретизация: частота дискретизации повышается путем интерполяции, что дает дополнительные отсчеты.
Коррекция ошибок. Одно из основных преимуществ цифровых систем состоит в возможности исправлять или маскировать ошибки и дефектные места, причиной которых могут быть грязь или недостаточное количество магнитных частиц при записи, что вызывает щелчки и пропуски звука, к которым человеческое ухо особенно чувствительно. Для исправления ошибок предусматривается проверка на четность, для чего к каждому двоичному числу добавляется бит проверки на четность, чтобы число единиц было четным (или нечетным). Если из-за ошибки произошла инверсия, то число единиц не будет четным (или нечетным). Проверка на четность обнаружит это, и либо будет повторен предыдущий отсчет, либо будет выдано значение, промежуточное между предыдущим и следующим отсчетами. Такая процедура называется маскировкой ошибок.
Компакт-диск (CD). Компакт-диск оказался первой общедоступной цифровой аудиосистемой. Это миниатюрная грампластинка диаметром 120 мм с цифровой записью на одной стороне, воспроизводимой на лазерном проигрывателе. Полностью записанный диск звучит 74 мин. Он дает почти идеальное воспроизведение с частотной характеристикой от 20 Гц до 20 кГц и с превышающими 90 дБ динамическим диапазоном, отношением сигнал/шум и разделением между каналами. Проблема детонационного искажения звука для него не существует, так же как и проблема износа. Диски прочны, не требуют особой осторожности в обращении, не боятся пыли (в небольших количествах) и даже царапин, так как все это не наносит ущерба качеству воспроизведения. Первый оригинал компакт-диска (мастер-диск) изготавливают методом фотолитографии, используя лазер для выжигания питов (микроуглублений) на поверхности фоторезиста, нанесенного на стеклянный диск. В процессе производства питы становятся выступами отражающей нижней поверхности пластиковых дисков, на которую затем наносится слой прозрачного пластика толщиной 1,2 мм. Длина питов и расстояние между ними несут цифровую информацию. Питы идут по спирали длиной 5,7 км, которая начинается в центральной части диска, закручивается по часовой стрелке и доходит до края. Шаг спирали равен 1,6 мкм (примерно 1/40 диаметра человеческого волоса и около 1/60 среднего шага канавок записи на долгоиграющей пластинке). Информация в цифровом коде считывается лазерным лучом. Там, где луч попадает в промежутки между выступами, он отражается обратно и светоделительной призмой направляется на фотоприемник. Когда же считывающий лазерный луч попадает на выступ, он при отражении диффузно рассеивается (рис. 3). Поскольку компакт-диск представляет собой цифровую систему, выходной сигнал фотоприемника имеет лишь два значения: 0 и 1.



Принцип действия компакт-диска требует предельной точности фокусировки лазерного луча и трекинга (отслеживания дорожки). Обе функции осуществляются оптическими средствами. Сервомеханизмы фокусировки и трекинга должны очень быстро действовать, чтобы компенсировать деформацию диска, его эксцентриситет и другие физические дефекты. В одном из конструктивных решений используется двухкоординатное устройство с двумя катушками, установленными под прямым углом в магнитном поле. Они обеспечивают перемещение объектива по вертикали для фокусировки и по горизонтали для трекинга. Специальная система кодирования преобразует 8-разрядный звуковой сигнал в 14-разрядный. Такое преобразование, уменьшая требуемую полосу, облегчает выполнение операций записи и воспроизведения, вводя при этом дополнительную информацию, необходимую для синхронизации. Здесь же проводится исправление ошибок, благодаря чему компакт-диск еще менее восприимчив к мелким дефектам. В большинстве проигрывателей для улучшения цифро-аналогового преобразования предусматривается передискретизация. В начале музыкальной программы на компакт-диск записывается сообщение о содержании диска, точках начала отдельных отрывков, а также о их числе и длительности звучания каждого отрывка. Между отрывками размещаются метки начала музыки, которые могут быть пронумерованы от 1 до 99. Длительность воспроизведения, выраженная в минутах, секундах и 1/75 долях секунды, закодирована на диске и считывается в обратном порядке перед каждым отрывком. Присваивание имен и автоматический выбор дорожек выполняются с помощью двух субкодов, указываемых в сообщении. Сообщение выдается при вставлении диска в проигрыватель (рис. 4).



Компакт-диск легко тиражировать. Как только сделан первый оригинал записи, копии можно штамповать в больших количествах. В 1997 появилась и к концу века получила распространение оптическая технология хранения информации на многослойных двусторонних цифровых универсальных дисках DVD. Это, по-существу, более емкий (до 4Гб) и более быстрый компакт-диск, который может содержать аудио, видео и компьютерные данные. DVD-ROM читается соответствующим дисководом, подключенным к компьютеру.
Устройства цифровой магнитной записи звука. Большой прогресс был достигнут и в области устройств цифровой магнитной записи. Диапазон частот (ширина полосы), требуемый для цифровой записи, намного выше, чем для аналоговой. Для цифровой записи/воспроизведения необходима полоса пропускания шириной от 1 до 2 МГц, что намного шире диапазона обычных магнитофонов.
Запись без магнитной ленты. Легкодоступные компьютеры с большим объемом памяти и дисковые накопители, позволяющие выполнять монтаж фонограммы в цифровой форме, дают возможность осуществлять звукозапись без использования магнитной ленты. Одно из преимуществ такого метода - легкость синхронизации записей для отдельных дорожек в многодорожечной записи. Компьютеры управляют звуком во многом так же, как текстовые процессоры словами, обеспечивая практически мгновенный вызов фрагментов в режиме произвольного доступа. Они позволяют также регулировать длительность аудиоматериала в некоторых случаях в пределах 50% без изменения высоты тона или, наоборот, изменять высоту тона без изменения длительности. Система "Синклавир" и устройство прямой записи на диск могут выполнить почти все функции студии многодорожечной звукозаписи без использования магнитной ленты. Компьютерная система такого типа предоставляет память с оперативным доступом. Жесткие диски обеспечивают оперативный доступ к библиотекам звукозаписей. Для хранения отдельных коллекций редакционных материалов, библиотек звукозаписей и материалов для обновления программных средств используются гибкие диски высокой плотности. Оптические диски служат для массового хранения записей звуковой информации с возможностью оперативного доступа к ним. Оперативная память (ОЗУ) используется для записи, редактирования и воспроизведения коротких инструментальных звучаний или звуковых эффектов; для этих задач имеется достаточный объем памяти, а дополнительная система оперативной памяти позволяет работать с многодорожечными фонограммами (до 200 дорожек). Система "Синклавир" управляется компьютерным терминалом с 76-нотной клавиатурой, чувствительной к скорости и давлению. В другом варианте управления используется мышь, которая вместе с монитором позволяет оператору точно выбирать точку фонограммы для проведения модификации, монтажа или стирания. Устройство прямой записи на диск может быть выполнено в виде автономных 4-, 8- и 16-дорожечных установок. В такой установке для записи звука используется комплект связанных жестких дисков. 16-дорожечная установка подобного типа позволяет осуществить запись длительностью до 3 ч при частоте дискретизации 50 кГц.
См. также
- Видеозапись это сохранение визуальных образов и звука на магнитной ленте (видеоленте) или на видеодиске. Впоследствии эта лента или диск используется для воспроизведения записанного материала на обычном телевизоре. Системы на видеолентах.… … Энциклопедия Кольера

  • Значение ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ: ВОСПРОИЗВЕДЕНИЕ ЗВУКА в Словаре Кольера

    ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ: ВОСПРОИЗВЕДЕНИЕ ЗВУКА

    К статье ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ

    Запись и воспроизведение звука - это область, в которой наука сочетается с искусством (звукорежиссера). Здесь есть две важные стороны: верность воспроизведения (как отсутствие нежелательных искажений) и пространственно-временная организация звучаний, поскольку задача воспроизведения звука электромеханическими средствами состоит не только в том, чтобы воссоздать звук, максимально приближенный к воспринимаемому в студии или концертном зале, но и в том, чтобы преобразовать его с учетом той акустической обстановки, в которой он будет прослушиваться.

    В графическом представлении простейшую форму имеют звуковых колебания чистых тонов типа создаваемых камертоном. Им соответствуют синусоидальные кривые. Но большинство реальных звучаний имеет неправильную форму, которая однозначно характеризует звучание, так же, как отпечатки пальцев - человека. Всякое звучание может быть разложено на чистые тона разных частот (рис. 1). Эти тона состоят из основного тона и обертонов (гармоник). Основным тоном (с низшей частотой) определяется высота ноты. По обертонам мы различаем музыкальные инструменты, даже когда на них берется одна и та же нота. Обертоны особенно важны тем, что они создают тембр инструмента и определяют характер его звучания.

    Диапазон основных тонов большинства источников звука довольно узок, благодаря чему можно легко понимать речь и улавливать мотив, даже если у воспроизводящей аппаратуры ограниченная частотная полоса. Полнота же звучания обеспечивается лишь при наличии всех обертонов, а для их воспроизведения необходимо, чтобы не искажались соотношения между уровнями основного тона и обертонов, т.е. частотная характеристика воспроизводящей системы должна быть линейной во всем диапазоне слышимых частот. Именно такую характеристику (наряду с отсутствием искажений) и имеют в виду, когда говорят о высокой точности звуковоспроизведения (системы hi-fi).

    Громкость. Восприятие громкости звука зависит не только от его интенсивности, но и от многих других факторов, в число которых входят и субъективные, не поддающиеся количественной оценке. Важное значение имеет обстановка, окружающая слушателя, уровень внешнего шума, высота и гармоническая структура звучания, громкость предыдущего звучания, эффект "маскирования" (под впечатлением предыдущего звучания ухо становится менее чувствительным к другим звучаниям близкой частоты) и даже эстетическое отношение слушателя к музыкальному материалу. Нежелательные звуки (шумы) могут казаться более громкими, чем желательные той же интенсивности. Даже восприятие высоты звучания может зависеть от интенсивности звука.

    Восприятие различий в высоте музыкальных тонов определяется не абсолютной величиной частотных интервалов, а их отношением. Например, отношение двух частот, различающихся на октаву, в любой части звукоряда равно 2:1. Точно так же наша оценка изменений громкости определяется отношением (а не разностью) интенсивностей, так что изменения громкости воспринимаются как одинаковые, если одинаковы изменения логарифма интенсивности звука.

    Поэтому уровень громкости звука измеряется по логарифмической шкале (на практике - в децибелах). Уши человека способны воспринимать звук в колоссальном диапазоне мощности от порога слышимости (0 дБ) до порога болевого ощущения (120 дБ), соответствующего отношению интенсивностей 1012. Современное оборудование способно воспроизводить изменения громкости в пределах порядка 90 дБ. Но воспроизводить весь диапазон слышимости практически и не требуется. Большинство слушает музыку примерно на уровне негромкой речи, и вряд ли кому-нибудь было бы по себе в домашних условиях при нормальной громкости оркестра или рок-группы.

    Поэтому необходимо регулировать диапазон громкости, особенно при воспроизведении классической музыки. Это можно делать, постепенно понижая громкость перед крещендо (по партитуре) при сохранении нужного динамического диапазона. Для других музыкальных материалов, таких, как рок- и поп-музыка, широко применяются компрессоры, автоматически сужающие динамический диапазон усиливаемых сигналов. Но в дискотеках уровень звука нередко превышает 120 дБ, что может вызвать повреждение слуха и привести к полной глухоте. В этом отношении группа повышенного риска - поп-музыканты и звукооператоры. Особенно опасны наушники, так как они концентрируют звук.

    Большинство слушателей широковещательных программ предпочитают, чтобы все программы озвучивались примерно на одном и том же уровне громкости и им самим не нужно было регулировать громкость. Но громкость - субъективное восприятие. Некоторым громкая музыка способна досаждать больше, чем речь, хотя неразборчивая речь иногда сильнее раздражает, чем музыка той же громкости.

    Балансировка звука. В основе хорошего звуковоспроизведения лежит сбалансированность разных источников звука. Проще говоря, в случае одного источника звука суть хорошего звуковоспроизведения в том, чтобы сбалансировать прямой звук, приходящий к микрофону, с влиянием окружающей акустики и обеспечить правильный баланс между прозрачностью звучания и его полнотой, допускающий нужную степень подчеркивания в тех местах, где это требуется.

    Микрофонная техника. Первая задача звукорежиссера состоит в том, чтобы выбрать подходящее студийное помещение. Если приходится использовать неприспособленное помещение, то оно должно быть, как минимум, в 1,5 раза больше места, отводимого исполнителям. Следующий шаг - выработка общей схемы расположения микрофонов. При воспроизведении музыкальных программ это необходимо сделать, консультируясь с дирижером и исполнителями. Микрофонов должно быть как можно меньше, поскольку наложение их звуковых полей способно снизить прозрачность звука. Правда, во многих случаях нужный эффект достигается только при использовании большого числа микрофонов.

    Комбинации музыкальных инструментов редко бывают настолько сбалансированы, чтобы это отвечало требованиям прослушивания в домашних условиях. Акустика жилого помещения может оказаться далекой от идеала. Поэтому необходимо ознакомить руководителя оркестра с требованиями балансировки при воспроизведении с помощью микрофонов.

    Организация воспроизводимых звучаний определяется типом микрофона, его приближенностью к источнику и обработкой его выходного сигнала. Вопрос о близости расположения микрофона к источнику звука нужно решать, учитывая соотношение между прямым и побочными звуками (включая реверберацию) других, более мощных инструментов и качество звука. Большинство инструментов дают разные звучания на разных расстояниях и в разных направлениях. Чтобы получить резкую "атаку", которая требуется от поп-музыки, и обеспечить хорошее различение инструментов, приходится прибегать к многомикрофонной схеме. При этом предъявляются высокие требования к звукорежиссеру; он должен иметь музыкальную подготовку или хотя бы уметь читать партитуру.

    Бинауральный слух. Человек легко определяет направление на источник звука, поскольку звук обычно достигает одного уха раньше, чем другого. Мозг улавливает эту малую разницу во времени и небольшое различие в интенсивности звучания и по ним определяет направление на источник звука.

    Мы можем также определять, что звук пришел спереди, сзади, сверху или снизу. Это объясняется тем, что наши уши по-разному передают частотный состав звуков, приходящих в разных направлениях (а также тем, что слушатель редко держит голову абсолютно неподвижно и в вертикальном положении). Этим объясняется и то, что люди с глухотой на одно ухо сохраняют все-таки некоторую способность судить о направлении на источник звука.

    Бинауральный слух выработался у человека в качестве защитного механизма, но эта способность разделять звуки - важное условие понимания музыки. Если эту способность использовать при звукозаписи, то увеличивается впечатление верности и чистоты при воспроизведении.

    Стереофонический звук. Двухканальная стереофоническая система, рассчитанная на прослушивание через звуковые колонки, создает для бинаурального слуха раздельные звуковые потоки, которые несут информацию о направлении распространения первичного звука.

    В своей простейшей форме стереосистема состоит из двух микрофонов, расположенных рядом друг с другом и направленных под углом 45? к источнику звука. Сигналы микрофонов подаются на две звуковые колонки, разнесенные примерно на 2 м и одинаково удаленные от слушателя. Такая система создает "звуковую сцену" между колонками, на которой локализуются источники звука, расположенные перед микрофонами. Возможность локализации перед микрофонами источников звука, их разделения и отделения от реверберации намного повышает естественность и чистоту воспроизведения.

    Такой подход дает удовлетворительные результаты только тогда, когда источник звука внутренне хорошо сбалансирован и благоприятны акустические условия. На практике обычно приходится использовать более двух микрофонов и микшировать (объединять) их сигналы для улучшения музыкального баланса, увеличения акустического разделения и придания звучанию необходимой степени атаки.

    Типичный комплект аппаратуры для классического оркестра состоит из стереопары микрофонов (для создания общей звуковой картины оркестра) и нескольких местных микрофонов, установленных ближе к отдельным группам инструментов. Выходные сигналы местных микрофонов тщательно микшируются с сигналом стереопары так, чтобы обеспечивалось необходимое акцентирование каждой группы инструментов без нарушения общего баланса. Кроме того, их выходные сигналы панорамируются в кажущееся положение, которое при использовании основной пары микрофонов соответствовало бы их реальному расположению на сцене. (Панорамирование - это изменение углового направления на источник звука. Оно сочетается с регулировкой уровня посредством потенциометра.)

    Многомикрофонные схемы еще шире применяются в случае легкой, а тем более поп-музыки, где обычно обходятся без общих микрофонных систем. И действительно, нет смысла гоняться за нюансами, если результат может быть достигнут при использовании переносного оборудования со звуковыми колонками, разнесенными всего лишь на шаг. Кроме того, запись поп-музыки производится, как правило, не в натуральной форме. Каждая группа инструментов, а то и каждый музыкант обслуживается отдельным микрофоном. Все инструменты рок-ансамбля - электронные. Звук разных инструментов, в том числе и клавишных синтезаторов, можно записывать либо с помощью микрофонов, установленных перед соответствующими колонками, либо путем прямой подачи сигналов первичных микрофонов на студийный пульт микширования. Эти сигналы могут быть либо сразу микшированы, либо предварительно записаны на отдельных дорожках многодорожечного магнитофона. Добавляется искусственная реверберация, осуществляется частотная коррекция и т.д. В результате оказывается мало сходства со звуком, воспринимаемым в студии, даже если все записывалось одновременно.

    Выходной сигнал панорамируется и регулируется (потенциометром) для создания определенного впечатления о положении источника звука, которое может совершенно не соответствовать фактическому положению музыкантов в студии. Но, что интересно, даже если стереофонический звук не соответствует реальной ситуации, он дает эффект, намного превосходящий эффект монофонического звука.

    Квадрафония. Улучшенное приближение к реальности можно получить методом квадрафонии, при котором четыре канала подключаются к четырем колонкам, попарно размещенным впереди слушателей и позади них. В простейшем варианте квадрафоническую систему можно рассматривать как две стереофонические, включенные навстречу друг другу. Сложные системы с матрицированием могут воспроизводить четыре канала с одной дорожки фонограммы при сохранении совместимости с воспроизведением стереозаписи.

    Звуковое окружение. В телевидении важное значение имеет так называемая система звукового окружения. Стереофонический звуковой сигнал с левым (А) и правым (В) каналами матрицируется путем их суммирования (в фазе), что дает сигнал М (моносигнал), и вычитания (сложения в противофазе), что дает сигнал S (стереосигнал). Сигнал А + В соответствует средней точке источника звука и совместим с монофоническими системами воспроизведения, а сигнал А - В несет информацию направленности. Система звукового окружения формирует также разностную компоненту М - S, которая содержит "внесценический" звук, а также реверберацию, и передается на колонки, размещенные сзади слушателя. Система звукового окружения проще квадрафонической системы, но позволяет получить эффект погруженности в звуковую среду с помощью обычного стереосигнала.

    Стереозвук для телевидения. Стереофоническая запись звука применяется в видеокассетах и в телевещании (особенно спутниковом) для телевизоров, снабженных специальным декодером.

    Может показаться, что стереозвук не очень подходит для телевидения, поскольку, как отмечалось выше, для эффективной стереофонии требуются две колонки, расположенные на расстоянии примерно 2 м друг от друга. Кроме того, из-за малых размеров экрана взгляд телезрителя направлен в основном в его центр, так что требуется иллюстрация расстояния по глубине, а не по ширине.

    Тем не менее, когда мы смотрим телевизор, мы знаем, что видим лишь малый сегмент источника звука. Точно так же, как в реальной жизни, когда, глядя в определенном направлении, мы не можем выключить звуки нашего окружения, нет ничего неестественного в том, что звуковая картина выходит за пределы телевизионного экрана.

    Коррекция звука. Как это ни парадоксально, но в аппаратуре с высокой верностью воспроизведения обычно предусматриваются устройства для искажения звука. Они называются эквалайзерами и предназначены для выравнивания (путем устранения дефектов) амплитудно-частотной характеристики сигнала. Коррекцию частотной характеристики проводят также для внесения в нее искажений, обеспечивающих нужную пространственно-временную организацию звучаний. Примером может служить т.н. "фильтр присутствия", который изменяет кажущееся расстояние до источника звука. Наш слух связывает ощущение близости (присутствия) с преобладанием частот в полосе от 3 до 5 кГц, соответствующей шипящим звукам (сибилянтам). В музыке подъем характеристики в полосе от 3 до 5 кГц может создать эффект атаки, хотя и ценой огрубления звука.

    Другой тип частотного корректора, позволяющего создать эффект присутствия, - это параметрический эквалайзер. Такое устройство позволяет ввести на частотной характеристике подъем или провал, регулируемый в пределах 14 дБ. При этом частоту и ширину полосы можно изменять в пределах всего спектра звуковых частот. Такой вид регулирования частотной характеристики может выполняться весьма точно и использоваться, например, для коррекции акустического резонанса в студии или в зале либо для подавления грохота или шипения.

    Еще более сложный вид коррекции частотной характеристики осуществляется графическим эквалайзером. При таком способе весь звуковой спектр делится на узкие полосы с центральными частотами, разделенными с интервалами в октаву или треть октавы. Для каждой полосы имеется свой регулировочный движок, дающий увеличение или уменьшение примерно до 14 дБ. Название "графический" связано с тем, что при выполнении коррекции положение регулировочных движков на пульте приблизительно соответствует форме частотной характеристики. Графические эквалайзеры особенно подходят для компенсации акустического окрашивания резонансами в студии или зале для прослушивания. Колонки, дающие плоскую амплитудно-частотную характеристику в безэховой камере, в других условиях могут звучать совсем по-иному. Графические эквалайзеры позволяют улучшить озвучивание в таких случаях.

    Уровень звука. Звуковой материал почти любого вида - записываемый, усиливаемый или передаваемый по радио или телевидению - нуждается в регулировке громкости. Это нужно для того, чтобы 1) не выйти за пределы динамического диапазона системы; 2) выделить и сбалансировать из эстетических соображений различные звучания данного источника звука; 3) установить диапазон громкости основного материала; 4) согласовать уровни громкости материала, записанного в разное время.

    Регулировку громкости лучше всего проводить, прослушивая материал через хорошую колонку и учитывая при этом показания измерителя уровня. Одних же показаний измерителя уровня при монтаже фонограмм недостаточно в силу субъективного характера восприятия звука. Такой измеритель нужен для калибровки слуха.

    Микширование сигналов микрофонов. При монтаже фонограммы обычно производится микширование выходных сигналов микрофонов и других преобразователей звука, число которых при записи может достигать 40. Микширование производится двумя основными способами. При микшировании в режиме реального времени можно для упрощения сгруппировать микрофоны, относящиеся, например, к вокальной группе, и регулировать уровень их звучания групповым звукомикшером. В другом варианте сигналы отдельных микрофонов направляются на входы многоканального магнитофона для последующего сведения в один стереофонический сигнал.

    Второй способ позволяет точнее выбирать точки микширования, работая не в присутствии музыкантов, причем на многодорожечных магнитофонах можно воспроизводить одни дорожки при одновременной синхронной записи на других. Поэтому изменения можно вносить в нужные места фонограммы без переписывания всей программы. Все это можно делать без копирования оригинальной записи, так что она остается образцом для сравнения до окончательного микширования.

    Автоматизированное микширование звука. Чтобы обеспечить высокую точность на заключительной операции перехода от многих дорожек записи к одной, некоторые звукорежиссерские пульты оснащают автоматическими микшерами. В таких системах в компьютер вводятся данные всех электронных регуляторов уровня при первой попытке микширования. Затем запись воспроизводится с автоматическим выполнением этих функций микширования. В ходе воспроизведения могут быть произведены нужные регулировки и скорректированы параметры программы компьютера. Такой процесс повторяется до достижения нужного результата. После этого выходной сигнал сводится в программную стереофонограмму.

    Автоматическое управление. Автоматическое микширование не следует путать с автоматическим управлением, которое выполняется с использованием ограничителей и компрессоров, поддерживающих звуковой сигнал в требуемых пределах. Ограничитель - это устройство, которое пропускает программу без изменений, пока не достигается некоторый порог. Когда же сигнал на входе превышает данный порог, коэффициент усиления системы понижается и сигнал более не усиливается. Ограничители обычно используются в передатчиках для защиты электронных схем от перегрузки, а в ЧМ-передатчиках - для предотвращения чрезмерной девиации частоты с наложением на соседние каналы.

    Компрессоры, т.е. регуляторы, автоматически осуществляющие сужение динамического диапазона усиливаемых сигналов, действуют аналогично ограничителям, понижая коэффициент усиления системы, но делают это менее резко. Упрощенные компрессоры имеются во многих кассетных магнитофонах. Компрессоры же, используемые в профессиональной звукозаписи, снабжаются органами управления для оптимизации их действия. Но никакое автоматическое регулирование не в состоянии заменить тонкости и остроты восприятия, присущих человеку.

    Динамическое шумоподавление. При аналоговой звукозаписи всегда возникают трудности с шумами, в основном в форме шипения. Для подавления системного шума записывать программу всегда следует при достаточно высоком уровне громкости. Для этого применяется метод компандирования, т.е. сужения динамического диапазона программы при записи и расширения его при воспроизведении. Это позволяет повышать средний уровень при записи, а при воспроизведении понижать уровень сравнительно тихих пассажей (и вместе с ними шума). При разработке эффективной системы компандирования возникают трудности двоякого рода. Одна из них - это трудность согласования компрессора и экспандера во всем диапазоне частот и громкости. Другая - предотвращение повышения и понижения уровня шума вместе с уровнем сигнала, так как это делает шум более заметным. В системах шумоподавления Долби весьма остроумно решаются эти проблемы несколькими разными способами. В них учитывается эффект "маскирования": чувствительность слуха на той или иной частоте существенно понижается во время и непосредственно после более громких звучаний на близких частотах (рис. 2).

    "Долби А". Метод "Долби А" - это промежуточная обработка, осуществляемая на входе и выходе звукозаписывающей аппаратуры, результатом которой является нормальная (плоская) характеристика на выходе. Метод "Долби А" применяется главным образом в профессиональной звукозаписи, в особенности на многодорожечные магнитофоны, в которых уровень шума повышается с увеличением числа используемых дорожек.

    Проблема согласования компрессора и экспандера решается созданием двух параллельных путей - одного через линейный усилитель, а другого через дифференциальную цепь, выходной сигнал которой добавляется к "прямому" сигналу при записи и вычитается при воспроизведении, в результате чего действие компрессора и экспандера оказывается взаимно дополняющим. Дифференциальная схема разбивает частотный спектр на четыре полосы и каждую полосу обрабатывает отдельно, так что подавление осуществляется только там, где это требуется, т.е. в полосе, в которой сигнал программы недостаточно громок, чтобы маскировать шум. Так, например, музыка обычно концентрируется в нижней и средней полосах частот, а шипение магнитной ленты - на высоких частотах и слишком удалено по частоте, чтобы эффект маскирования был существенным.

    "Долби В". Метод "Долби В" применяется главным образом в бытовой аппаратуре, в частности в кассетных магнитофонах. В отличие от метода "Долби А", записи по методу В выполняются с характеристикой Долби, рассчитанной на воспроизведение на аппаратуре с дополнительной характеристикой. Как и при методе "Долби А", здесь имеются прямой путь для программы и боковая цепь. В боковую входит компрессор с предваряющим активным фильтром верхних частот на частоты от 500 Гц и выше.

    В режиме записи компрессор повышает уровень сигналов, лежащих ниже порогового значения, и они добавляются к сигналу боковой ветви. Активный фильтр создает в своей полосе пропускания усиление, нарастающее до 10 дБ на частоте 10 кГц. Таким образом, высокочастотные сигналы низкого уровня записываются с превышением первоначального уровня, достигающим 10 дБ. Подавитель выбросов предотвращает воздействие переходных процессов на постоянную времени компрессора.

    Декодер системы "Долби В" аналогичен кодеру, используемому при записи, но в нем выходной сигнал боковой ветви компрессора суммируется с сигналом основной цепи в противофазе, т.е. вычитается из него. При воспроизведении уровень высокочастотных сигналов низкого уровня, а также уровень шипения магнитной ленты и системный шум, добавляющиеся при записи, понижаются, что приводит к повышению отношения сигнал/шум на величину до 10 дБ.

    Важное различие между методом Долби и простой системой введения предыскажений (повышения высокочастотной характеристики) при записи и коррекции предыскажений при воспроизведении состоит в том, что характеристика "Долби В" влияет только на звуковые сигналы низкого уровня. Материал, закодированный по методу "Долби В", можно воспроизводить на аппаратуре, не имеющей системы шумоподавления Долби, если понизить высокочастотную характеристику для компенсации характеристики Долби, но это приводит к потере высоких частот в более громких пассажах.

    "Долби С". Метод "Долби С" представляет собой дальнейшее усовершенствование метода "Долби В", позволяющее понизить шум на величину до 20 дБ. В нем используются два компрессора, включенные последовательно, при записи и два дополняющих экспандера при воспроизведении. Первый каскад работает при уровнях сигналов, сравнимых с уровнями в системе "Долби В", а второй чувствителен к сигналам, уровень которых на 20 дБ ниже. Система "Долби С" начинает действовать примерно со 100 Гц и обеспечивает понижение шума на 15 дБ на частотах около 400 Гц, тем самым ослабляя эффект модуляции средних частот высокочастотными сигналами.

    Система DBX. Система шумоподавления DBX - это система взаимно дополняющей обработки на входе и выходе магнитофона. При кодировании и декодировании в ней используется коэффициент компрессии 2:1. Согласование компрессора и экспандера упрощается благодаря единому коэффициенту компрессии, а также благодаря тому, что оценка уровня производится по полной мощности сигнала. В системе DBX используется то обстоятельство, что основная часть мощности программы обычно концентрируется на средних и низких частотах, а на высоких частотах большая мощность бывает лишь при высоком общем уровне громкости. В сигнал, подаваемый на компрессор, вводятся сильные предыскажения (с нарастающим повышением уровня в области высоких частот) для повышения общей мощности при записи. При воспроизведении же предыскажения устраняются путем понижения уровня на высоких частотах, а вместе с ним и уровня шумов. Во избежание перегрузки фонограммы мощными предыскаженными высокочастотными сигналами такие предыскажения вводятся в сигнал боковой цепи компрессора, в результате чего при высоких уровнях записываемый уровень высокочастотных сигналов с увеличением частоты понижается, а с уменьшением - повышается. Система DBX может повысить отношение сигнал/шум на высоких частотах на 30 дБ.

    Кольер. Словарь Кольера. 2012

    Смотрите еще толкования, синонимы, значения слова и что такое ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ: ВОСПРОИЗВЕДЕНИЕ ЗВУКА в русском языке в словарях, энциклопедиях и справочниках:

    • ВОСПРОИЗВЕДЕНИЕ в Толковом словаре психиатрических терминов:
      Возникновение в сознании зафиксировавшихся в памяти в процессе жизненного опыта объектов, мыслей, чувств. В. является одним из компонентов структуры памяти …
    • ВОСПРОИЗВЕДЕНИЕ в Медицинских терминах:
      (син. репродукция) в психологии возникновение в сознании образа какого-либо объекта, воспринимавшегося ранее и отсутствующего в данный момент, а также прежних …
    • ВОСПРОИЗВЕДЕНИЕ в Энциклопедическом словаре Брокгауза и Евфрона:
      см. …
    • ВОСПРОИЗВЕДЕНИЕ
      ? см. …
    • ВОСПРОИЗВЕДЕНИЕ
      воспроизведе"ние, воспроизведе"ния, воспроизведе"ния, воспроизведе"ний, воспроизведе"нию, воспроизведе"ниям, воспроизведе"ние, воспроизведе"ния, воспроизведе"нием, воспроизведе"ниями, воспроизведе"нии, …
    • ВОСПРОИЗВЕДЕНИЕ
      1. ‘изображение фрагмента реальности в произведении искусства’ Syn: показ, индикация, отражение, отображение (кн.), воссоздание (кн., приподн.), повторение, подражание 2. Syn: …
    • ВОСПРОИЗВЕДЕНИЕ в Тезаурусе русского языка:
      1. ‘изображение фрагмента реальности в произведении искусства’ Syn: показ, индикация, отражение, отображение (кн.), воссоздание (кн. , приподн. …
    • ВОСПРОИЗВЕДЕНИЕ в Словаре синонимов Абрамова:
      воссоздание, повторение, подражание, копия, снимок, слепок. Ср. . См. повторение, …
    • ВОСПРОИЗВЕДЕНИЕ
      возобновление, воскрешение, воспроизводство, воссоздание, восстановление, выражение, звуковоспроизведение, изображение, изография, исполнение, копия, матрицирование, обрисовка, обрисовывание, отображение, отражение, передача, повторение, подражание, репродукция, …
    • ВОСПРОИЗВЕДЕНИЕ в Новом толково-словообразовательном словаре русского языка Ефремовой:
      ср. 1) Процесс действия по знач. глаг.: воспроизводить, воспроизвести, воспроизводиться (1,2), воспроизвестись. 2) Копия, репродукция. 3) Размножение, создание …
    • ВОСПРОИЗВЕДЕНИЕ в Словаре русского языка Лопатина:
      воспроизвед`ение, …
    • ВОСПРОИЗВЕДЕНИЕ в Полном орфографическом словаре русского языка:
      воспроизведение, …
    • ВОСПРОИЗВЕДЕНИЕ в Орфографическом словаре:
      воспроизвед`ение, …
    • ВОСПРОИЗВЕДЕНИЕ в Толковом словаре русского языка Ушакова:
      воспроизведения, ср. (книжн.). 1. только ед. Действие по глаг. воспроизвести-воспроизводить. Воспроизведение представлений (псих.). Воспроизведение новых органов взамен утраченных (регенерация; биол.). …
    • ВОСПРОИЗВЕДЕНИЕ в Толковом словаре Ефремовой:
      воспроизведение ср. 1) Процесс действия по знач. глаг.: воспроизводить, воспроизвести, воспроизводиться (1,2), воспроизвестись. 2) Копия, репродукция. 3) Размножение, создание …
    • ВОСПРОИЗВЕДЕНИЕ в Новом словаре русского языка Ефремовой:
      ср. 1. процесс действия по гл. воспроизводить, воспроизвести, воспроизводиться 1., 2., воспроизвестись 2. Копия, репродукция. 3. Размножение, создание …
    • ВОСПРОИЗВЕДЕНИЕ в Большом современном толковом словаре русского языка:
      I ср. 1. процесс действия по гл. воспроизводить I, воспроизводиться I 1. 2. Результат такого действия. II ср. 1. процесс …
    • ЗАПИСЬ
      ТРЕТЕЙСКАЯ - см. ТРЕТЕЙСКАЯ ЗАПИСЬ …
    • ЗАПИСЬ в Словаре экономических терминов:
      ДВОЙНАЯ - см. ДВОЙНАЯ БУХГАЛТЕРИЯ; ДВОЙНАЯ …
    • ЗАПИСЬ в Словаре экономических терминов:
      АКТОВ ГРАЖДАНСКОГО СОСТОЯНИЯ - письменные сведения об актах гражданского состояния, зафиксированные в установленном законом порядке компетентными органами с целью удостоверения …
    • ЗАПИСЬ в Словаре экономических терминов:
      - письменная фиксация операций, сделок, бухгалтерских проводок,изменений в …
    • ЗАПИСЬ в Энциклопедическом словаре:
      , -и, ж. 1. см. записать. 2. То, что записано. Неразборчивая з. Тетрадь с записями. Музыкальные записи. 3. Документ о …
    • ЗАПИСЬ в Энциклопедии Брокгауза и Ефрона:
      ? термин, которым в эпоху удельного порядка княжеского владения и в Московском государстве обозначались всякого рода письменные обязательства, как одного …
    • ЗАПИСЬ в Полной акцентуированной парадигме по Зализняку:
      за"пись, за"писи, за"писи, за"писей, за"писи, за"писям, за"пись, за"писи, за"писью, за"писями, за"писи, …
    • ЗАПИСЬ в Тезаурусе русской деловой лексики:
    • ЗАПИСЬ в Тезаурусе русского языка:
      1. Syn: писание, отметка 2. Syn: регистрация, протокол, учет 3. Syn: переписывание, …
    • ЗАПИСЬ в словаре Синонимов русского языка:
      Syn: писание, отметка Syn: регистрация, протокол, учет Syn: переписывание, …

    Тема 4. Устройства записи и воспроизведения звука

    I . Основные сведения об электроакустике .

    Электроакустика занимается методами и устройствами преобразования звуковых (акустических) колебаний в электрические и обратно.

    Акустические колебания возникают в упругих средах под действием механических колебании какого-либо тела (например, струны, диффузора, громкоговорителя и др.).

    Человеческое ухо воспринимает частоты от 16 Г и до 20000 Гц.

    Одними из характеристик звуковых колебаний являются:

    - громкость - звуковое ощущение, определяемое силой звука и его частотой;

    - высота тона - звуки человеческой речи лежат в диа­пазоне частот от 8О до 1200 Гц;

    Для воспроизведения грамзаписи используют электриче­ские звукосниматели, которые преобразуют механические колебания иглы в переменный электрический ток соответс­твующей частоты.

    Грамзапись воспроизводится с помощью электропроигрывающих устройств (ЭПУ).

    III. Магнитный принцип записи и воспроизведения звука.

    Первое упоминание о попытке осуществить магнитную запись относится к 1888 г., когда было предложено устрой­ство для записи звука на насыщенную железными опилками хлопковую нить при ее перемотке с одной катушки на другую.

    Через 10 лет датский физик В. Паульсен осуществил запись звука на стальную струну. Качество записи было невы­соким, а продолжительность звучания составляла 55 секунд.

    И только спустя 30 лет с появлением магнитной ленты в 1928 г. (придумали наносить порошковый слой окиси железа, который хорошо намагничивается, вначале на бумагу, а затем и на эластичную ленту) и магнитных головок с малым воздушным зазором в 1932 г. удалось получить довольно ка­чественную магнитную запись звука.

    Магнитный принцип записи основан на свойстве ферромаг­нетиков сохранять (запоминать) намагниченность в течение длительного времени.

    Рис. 3. Схема магнитной записи

    Мимо воздушного зазора в магнитной записывающей голов­ки протягивают с некоторой постоянной скоростью эластичную ленту 1, покрытую ферромагнитным слоем, частички которого могут рассматриваться как отдельные элементарные магнитики. Но обмотке 4 пропускают ток сигнала, форма ко­торого повторяет форму акустического сигнала. В магнитопроводе 3 и воздушном зазоре D появляется переменное маг­нитное поле, в котором происходит намагничивание элемента­рных магнитиков. Так в изменяющейся по длине ленты намаг­ниченности закрепляется акустический сигнал, т. е. записы­вается, звук.

    Воспроизведение записи происходит в обратном порядке:

    Рис.4 Схема воспроизведения звука

    Структурная схема монофонического магнитофона:

    Магнитная лента МЛ перематывается с одной катушки K1 на другую K2 лентопротяжным механизмом с постоянной скоростью. Первая головка на пути ленты - стирающая ГС. В режиме запи­си на ее обмотку от генератора стирания и подмагничивания ГСП поступает переменный ток частотой 25-80 кГц. При этой магнитная лента попадает в довольно сильное магнитное поле стирающей головки ГС и существующая на ней запись разрушается, а лента размагничивается.

    В записывающую головку ГЗ поступает усиленный усилителем записи УЗ ток сигнала микрофона и происходит запись этого сигнала на магнитную ленту.

    Считывание записи происходит воспроизводящей головкой ГВ.

    Образовавшийся в ее обмотке сигнал усиливается усилителей воспроизведения УВ и преобразуется в звук громкоговорителей.

    IV . Магнитофоны.

    Аппараты, предназначенные для записи и воспроизведения звука магнитным способом – магнитофоны - широко применяют в науке, технике, быту.

    Магнитофоны различают:

    По назначению - профессиональные и бытовые;

    По типу исполнения - стационарные и переносные;

    По системе питания - сетевые, батарейные и универсальные;

    По системе записи и воспроизведения - моно - и стереофонические;

    По числу дорожек записи - одно-, двух-, трех-, четырех-, многодорожечные;

    В зависимости от конструкции устройства для размещения носителя записи - катушечные и кассетные.

    Качество магнитофонов определяется их механическими и электроакустическими параметрами.

    Основные механические параметры магнитофонов:

    Скорость движения ленты - регламентируется стандар­том и составляет 19,05; 9,53; 4,76 и 2,38 см/с;

    Неравномерность движения ленты служит причиной иска­жений звука и оценивается детонацией (отношение амплитуды колебаний скорости движения ленты к ее среднему значению, выраженное в %).

    Детонация бытовых магнитофонов 0,1-0,8%.

    Основные электрические параметры :

    Напряжение питания (3);

    Частотная характеристика (диапазон воспроизводимых частот) (Ги);

    Выходная мощность (Вт).

    Магнитофоны должны обеспечивать:

    I. Запись:

    От микрофона;

    Звукоснимателя;

    Радио- и телевизионного приемника;

    Другого магнитофона.

    Сигналы от этих устройств подаются на входные гнез­да магнитофонов, обозначенные соответствующими символа­ми, либо на универсальный разъем входа звукового сигнала.

    II. Воспроизведение записи через:

    Линейный выход (электрическое воспроизведение);

    Внутренний громкоговоритель при наличии его в ма­гнитофоне (акустическое воспроизведение);

    Выносные акустические системы.

    - головные телефоны (наушники)

    Современный стационарный кассетный магнитофон обычно включает в себя:

    Систему шумопонижения;

    Цифровой счетчик ленты, электронное управление лентопротяжным механизмом;

    Индикатор уровня записи и воспроизведения (светоди­одный иди люминисцентный) ;

    Ручную регулировку уровня записи;

    Переключатель типов ленты.

    Преимущества магнитного принципа записи:

    Возможность воспроизведения звука сразу же после записи;

    Возможность стирания записи и на этот же участок нанести новую;

    Возможность наложения записей одна на другую; многократное использование магнитной ленты;

    Магнитная фонограмма отличается малым шумом при воспроизведении.

    К некоторым недостаткам магнитного способа записи можно отнести: - трудности контроля и монтажа фонограммы в связи с тем, что она невидима глазом;

    Трудности размножения копий (необходимость переза­писи для каждой копии).

    V . Оптико-механическая (лазерная) запись и воспроизведение звука.

    Последние достижения лазерной техники, микроэлектроники , микрооптики, цифровой обработки сигналов позволили создать принципиально новую систему записи - "Компакт-диск" (СД) - с бесконтактным считыванием"информации с помощью лазерного луча и цифровой ее обработкой. Эта система обладает несра­вненно более высокими параметрами воспроизведения звука, чем традиционная аналоговая (см. табл.):

    Основное параметры проигрывателей

    Техническая характеристика

    Проигрыватель

    лазерный

    аналоговый

    Номинальный диапазон воспроизводимых частот, Гц

    Число проигрываний без заметного ухудшения качества

    не ограничено

    Длительность звучания диска, мин.

    Записываемый сигнал звуковой частоты с помощью аналого-цифро­вого преобразователя преобразуется в последовательность нулей и единиц. Этот сигнал претерпевает затем целый ряд дополнительных преобразований и записывается на цифровой магнитофон. Полученная на ленте, называемой мастер-лентой, сигналограмма является инфо­рмационным подлинником будущего СД-носителя в системе оптической записи.

    Оптическая запись осуществляется на поверхность диска с помо­щью луча миниатюрного полупроводникового лазера, который за доли микросекунды испаряет материал, формируя микроминиатюрный кратер - углубление диаметром примерно 0,6 мкм (диаметр человеческого волоса примерно 50 мкм). В отсутствие луча поверхность диска ос­тается неизменной. Таким образом, запись импульсов производится в виде точек или их отсутствия к в целой представляет собой пос­ледовательность расположенных по спирали своеобразных следов - питов. Спираль начинается от центра внутри диска и запись идет к краю его с шагом между двумя соседними дорожками в 1,6 мкм, а вся фонограмма занимает кольцо с внутренним диаметром 56 мм и внешним 116 мм. Затем поверхность диска металлизируют и он прев­ращается в мастер-диск, с которого снимают никелевую копию и после обработки используют в качестве матрацы при тиражировании партии компакт-дисков.

    Считывание (воспроизведение) точек с диска производится с по­мощью маломощного полупроводникового лазера. Считывающий луч от­ражается от нетронутой поверхности диска и рассеивается при по - падании в точку. Отраженный от поверхности диска луч направляет­ся на фотодиод, который воспринимает сигнал или не воспринимает его, если луч рассеивается, попав в точку. Двоичный сигнал, сни­маемый с выхода фотодиода, обрабатывается и преобразуется в зву­ковой.

    В настоящее время созданы стационарные, переносные и автомобильные, автономные и встраиваемые в радиокомплексы, профессиональные и полупрофессиональные модели. Проигрыватель компакт-ди­сков обеспечивает максимально возможное качество звучания даже в бытовых условиях.

    СД-проигрыватель должен иметь:

    Индикацию текущего времени воспроизведения диска;

    Ускоренный поиск требуемого фрагмента;

    Возможность программирования порядка воспроизведения.

    Большинство современных музыкальных центров комплектуется встроенными лазерными проигрывателями. Интерес представляют ап­параты, совмещенные с кассетными магнитофонами и позволяющие делать высококачественную перезапись. Для дискотек, звукозаписывающих студий, радиозалов разработаны звуковые лазерные проигрыватели с "многозарядными" кассетами на 10-120 дисков. Такие аппараты могут быть запрограммированы на неделю непрерывной работы с автомати­ческой сменой дисков.

    VI . Использование звуковых технических средств в учебном

    процессе

    Звуковые технические средства обучения (грампластинки, магнитные записи) также как и средства статической про­екции, все шире применяются в учебном воспитательном процессе. Эти средства развивают у учащихся устойчивость внимания, слуховую память, воображение, формируют навыки наблюдения за словом, воспитывают эстетический вкус.

    Звуковые технические средства начали применяться главным образом при изучении иностранных языков. Возмож­ность записи речи обучающегося и анализа ошибок, сравне­ние ее с образцовой речью позволила усовершенствовать методику преподавания иностранного языка.

    Сейчас звуковые технические средства довольно широко используются на уроках русского языка , литературе, исто­рии.

    На занятиях по литературе звукотехника позволяет демонстрировать образцы художественного чтения, фрагменты драматических произведений в исполнении мастеров театра, кино, эстрады. Наибольший педагогический эффект достига­ется тогда, когда звуковые технические средства используются в комплексе с визуальными техническими средствами (диафильмами, диапозитивами, репродукциями).

    При изучении истории звуковые средства позволяют вос­производить записи речей и выступлений политических дея­телей, крупных ученых и др.

    Анализируя фонд звуковых пособий для урока, можно вы­делить следующие основные их типы:

    1. Записи программных художественных произведений.

    2. Записи музыкальных произведений.

    3. Документальные звукозаписи.

    4. Тематические звуковые пособия – это, прежде всего, специальные учебные радиопередачи, согласованные со шко­льными программами и посвященные отдельным изучаемым те­мам, а также познавательные и научно-популярные радиопе­редачи, которые могут быть использованы на уроках и во внеклассной работе .

    5. Звукозаписи для организации самостоятельной дея­тельности учащихся на уроке - это записанные на магнит­ную ленту диктанты и различные задания для самостоятель­ной работы учащихся. Обычно такие записи готовит сам учитель. Такие звукозаписи приучают школьников работать в нужном темпе, концентрируют внимание на выполнение работы , дисциплинируют их.

    "Человеческое слово могуче. Но речь живая, слово звучащее гораздо сильнее, чем слово печатное. Оно бога­то интонациями, оно согрето чувством, оно делается более убедительным". Эти слова А. В. Луначарского в значительной степени относятся к звукозаписям и радиопередачам. Выра­зительное слово, музыкальное оформление, использование шумовых эффектов делают звуковые пособия эффективным средством эмоционального воздействия на учащихся.

    Схема работы учителя на уроке с применением звукоза­писей проста:

    подготовка к восприятию звукового материала

    ¯

    прослушивание звукозаписей

    ¯

    последующая работа .

    Однако она вмещает большое разнообразие методических приемов в зависимости от цели использования звукозаписи на уроке.

    Приемы использования магнитофона на уроках.

    1. Магнитофон при объяснении нового материала.

    В этом случав используется записи программных художественных произведений, документальные звукозаписи, тематические звуковые пособия, которые могут сочетаться с демонстрацией экспериментов, кинофрагментов, слайдов, диапозитивов.

    Во многих случаях использование звукозаписи помогает учителю создать нужный эмоциональный фон урока (музыкальные произ­ведения), а процесс постановки проблемной задачи живым и ярким.

    После прослушивания звукозаписи полезно задать учащимся вопроси, организовать самостоятельную работу.

    2. Магнитофон при опросе учащихся.

    С помощью магнитофона целесообразно проводить фронтальный опрос, который обычно проводится в виде диктантов.

    3 сочетании с проекционной аппаратурой можно эффективно проводить кратковременные самостоятельные работы.

    Представляет интерес и индивидуальный опрос учащихся при помощи магнитофона. Заключается он в том, что вызванный для ответа ученик записывает свой ответ на магнитную ленту. Ценность такого опроса состоит в том, что в течение урока можно опросить гораздо больше учащихся, а также в том, что отвечаю­щий может сам регулировать время обдумывания задания, пользу­ясь кнопкой остановки ленты.

    Контрольные вопросы

    1. Что такое звук? Какими параметрами характеризуются звуковые колебания?

    2. Каков частотный диапазон звуковых колебаний?

    3. Перечислите принципы записи звука.

    4. Расскажите о физических основах лазерного способа записи и воспроизведения звука и о его достоинствах перед другими.

    5. В чем суть магнитного принципа записи?

    6. Какое устройство называют магнитофоном? Его функции, основные параметры.

    7. Начертите функциональную схему магнитофона и объясните принцип ее действия.

    8. Ассортимент магнитофонов.

    9. Перечислите входные гнезда магнитофона, нарисуйте их условные обозначения.

    10. Перечислите выходные гнезда магнитофона, их условные обозначения.

    11. Назовите преимущества магнитного принципа записи.

    12. Перечислите и охарактеризуйте методические приемы использования на уроках основных звуковых средств обучения.

    1. С помощью технического паспорта ознакомьтесь:

    1. с основными параметрами магнитофона;

    2. функциональными кнопками;

    3. входными и выходными гнездами;

    4. определите, с каких устройств можно записывать звуковой сигнал на магнитную ленту с помощью данного магнитофона.

    5. ознакомьтесь с функциональными и сервисными кнопками лазерного СД - плеера.

    II. Осуществите запись на кассету:

    С тюнера;

    С проигрывателя для компакт-дисков.



    Рекомендуем почитать

    Наверх