Как перевести число в шестнадцатеричную систему счисления. Перевод чисел из шестнадцатеричной системы в десятичную

Nokia 05.06.2019
Nokia

После изучения предыдущего раздела переформулировать алгоритм перевода чисел из шестнадцатеричной в десятичную систему счисления не составляет никакого труда. Помнить следует лишь о том, что для шестнадцатеричной системы счисления основанием является число 16 , и правило перевода в данном случае может быть сформулировано в следующем виде:

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа .

Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16 :

F45ED23C 16 = (15·16 7 )+(4·16 6 )+(5·16 5 )+(14·16 4 )+(13·16 3 )+(2·16 2 )+(3·16 1 )+(12·16 0 ) = = 4099854908 10

Для вычислений "вручную" и решения примеров и контрольных заданий вам могут пригодиться таблицы степеней оснований изучаемых систем счисления (2, 8, 10, 16), приведенные в Приложении.

Перевод чисел из десятичной системы в двоичную

Для перевода чисел из десятичной системы счисления в двоичную используют так называемый "алгоритм замещения", состоящий из следующей последовательности действий:

    Делим десятичное число А на2 . ЧастноеQ a записываем какмладший бит двоичного числа.

    Если частное q не равно0 , принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток (0 или1 ) записывается в разряды двоичного числа в направлении отмладшего бита кстаршему .

    Q =0 и остатокa =1 .

247 в двоичное. В соответствии с приведенным алгоритмом получим:

247 10 : 2 = 123 10

247 10 -246 10 =1 , остаток1 записываем вМБ двоичного числа.

123 10 : 2 = 61 10

123 10 -122 10 =1 , остаток1 записываем в следующий послеМБ разряд двоичного числа.

61 10 : 2 = 30 10

61 10 -60 10 =1 , остаток1

30 10 : 2 = 15 10

30 10 -30 10 =0 , остаток0 записываем в старший разряд двоичного числа.

15 10 : 2 = 7 10

15 10 -14 10 =1 , остаток1 записываем в старший разряд двоичного числа.

7 10 : 2 = 3 10

7 10 -6 10 =1 , остаток1 записываем в старший разряд двоичного числа.

3 10 : 2 = 1 10

3 10 -2 10 =1 , остаток1 записываем в старший разряд двоичного числа.

1 10 : 2 = 0 10 , остаток1 записываем в старший разряд двоичного числа.

Таким образом, искомое двоичное число равно 11110111 2 .

Перевод чисел из десятичной системы в восьмеричную

Для перевода чисел из десятичной системы счисления в восьмеричную используют тот же "алгоритм замещения", что и при переводе из десятичной системы счисления в двоичную, только в качестве делителя используют 8 , основание восьмеричной системы счисления:

    Делим десятичное число А на8 . ЧастноеQ запоминаем для следующего шага, а остатокa записываем какмладший бит восьмеричного числа.

    Если частное q не равно0 , принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток записывается в разряды восьмеричного числа в направлении отмладшего бита кстаршему .

    Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q =0 и остатокa меньше8 .

Например, требуется перевести десятичное число 3336 в восьмеричное. В соответствии с приведенным алгоритмом получим:

Таким образом, искомое восьмеричное число равно 6410 8 .

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали называть арабской.

Позиционная система счисления — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры , стандартная десятичная система счисления - это позиционная система. Допустим, дано число 453 . Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50 , а 3 — единицы и значению 3 . Легко заметить, что с увеличением разряда увеличивается значение. Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Шестнадцатеричная система счисления.

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления. Основанием шестнадцатеричной системы счисления является число 16.

Записывая числа в восьмеричной системе счисления мы получаем довольно компактные выражения, однако в шестнадцатеричной системе мы получаем выражения более компактными.

Первыми десятью цифрами из шестнадцати шестнадцатеричных цифрах является стандартный интервал 0 - 9 , последующие шесть цифр выражают при помощи первых букв латинского алфавита: A , B , C , D , E , F . Перевод из шестнадцатеричной системы в двоичную систему и в обратную сторону делают аналогично процессу для восьмеричной системы.

Применение шестнадцатеричной системы счисления.

Шестнадцатеричную систему счисления довольно хорошо используют в современных компьютерах, например с ее помощью указывают цвет: #FFFFFF — белый цвет.

Перевод чисел из одной системы счисления в другую.

Перевод чисел из шестнадцатеричной системы в десятичную.

Что бы перевести шестнадцатеричное число в десятичное , нужно заданное число привести к виду суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например , переведем шестнадцатеричное число 5A3 в десятичное. Здесь 3 цифры. Исходя их выше сказанного правила, приведем его к виду суммы степеней с основанием 16:

5A3 16 = 3·16 0 +10·16 1 +5·16 2 = 3·1+10·16+5·256 = 3+160+1280 = 1443 10

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот.

Для перевода многозначного двоичного числа в шестнадцатеричную систему необходимо разделить его на тетрады справа налево и поменять все тетрады соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную необходимо поменять каждую все цифры на соответствующие тетрады из таблицы перевода, которую вы найдете ниже.

Например :

010110100011 2 = 0101 1010 0011 = 5A3 16

Таблица перевода чисел.

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;
  • записываем все остатки от деления в обратном порядке;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на соответствующую степень разряда;
  • для перевода числа в восьмеричную разбиваем число на триады.

Например, 1000110 = 1 000 110 = 1068

  • для перевода числа из двоичной системы счисления в шестнадцатеричную разбиваем число на группы по 4 разряда.

Например, 1000110 = 100 0110 = 4616.

Таблицы для перевода:

Двоичная СС

Шестнадцатеричная СС

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Двоичная СС

ПЕРЕВОД ЧИСЕЛ ИЗ ВОСЬМЕРИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ

Восемь раз отмерь, один раз переведи.

А. Алешин

Алгоритм перевода чисел из восьмеричной в десятичную систему счисления аналогичен уже рассматривавшемуся нами в разделе Перевод чисел из двоичной системы в десятичную. Различие состоит лишь в том, что для восьмеричной системы счисления основанием является число 8 , а правило перевода в данном случае может быть сформулировано в следующем виде:

Для перевода восьмеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания восьмеричной системы счисления на соответствующие цифры в разрядах восьмеричного числа .

Например, требуется перевести восьмеричное число 2357 в десятичное. В этом числе 4 цифры и 4 разряда (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 8 :

2357 8 = (2·8 3)+(3·8 2)+(5·8 1)+(7·8 0) = 2·512 + 3·64 + 5·8 + 7·1 = 1263 10

К аждый О хотник Ж елает З нать, Г де С идит Ф азан.
Запишите в шестнадцатеричной системе счисления все цвета,
встречающиеся в этом мнемоническом правиле. Слабо?

А. Алешин

После изучения предыдущего раздела переформулировать алгоритм перевода чисел из шестнадцатеричной в десятичную систему счисления не составляет никакого труда. Помнить следует лишь о том, что для шестнадцатеричной системы счисления основанием является число 16 , и правило перевода в данном случае может быть сформулировано в следующем виде:

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа .

Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16 :

F45ED23C 16 = (15·16 7)+(4·16 6)+(5·16 5)+(14·16 4)+(13·16 3)+(2·16 2)+(3·16 1)+(12·16 0) = 4099854908 10

Для вычислений "вручную" и решения примеров и контрольных заданий вам могут пригодиться таблицы степеней оснований изучаемых систем счисления (2, 8, 10, 16), приведенные вПриложении.

Для перевода чисел из десятичной системы счисления в двоичную используют так называемый "алгоритм замещения", состоящий из следующей последовательности действий:



1. Делим десятичное число А на 2 . Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит двоичного числа.

2. Если частное q не равно 0 , принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток (0 или 1 ) записывается в разряды двоичного числа в направлении от младшего бита к старшему .

3. Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a = 1 .

Например, требуется перевести десятичное число 247 в двоичное. В соответствии с приведенным алгоритмом получим:

247 10: 2 = 123 10
247 10 - 246 10 = 1, остаток 1 записываем в МБ двоичного числа.
123 10: 2 = 61 10
123 10 - 122 10 = 1, остаток 1 записываем в следующий после МБ разряд двоичного числа.
61 10: 2 = 30 10
61 10 - 60 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
30 10: 2 = 15 10
30 10 - 30 10 = 0, остаток 0 записываем в старший разряд двоичного числа.
15 10: 2 = 7 10
15 10 - 14 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
7 10: 2 = 3 10
7 10 - 6 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
3 10: 2 = 1 10
3 10 - 2 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
1 10: 2 = 0 10 , остаток 1 записываем в старший разряд двоичного числа.

Представление чисел в ЭВМ: естественная и нормальная формы (+методичка)

В ЭВМ используются следующие формы представления данных:
числа с фиксированной точкой (запятой) или естественная форма;
числа с плавающей точкой (запятой) или нормальная форма;
десятичные числа;
символьные данные.

При естественной форме, иначе называемой формой с фиксированной запятой, числа вюодвпся в виде целой и дробной частей, разделенных запятой (точкой). Положение последней строго фиксировано: запятая находится либо -перед цифрой старшего разряда, либо после цифры младшего разряда. Первый вариант относится к представлению чисел, которые по модулю (без учета знака) меньше единицы, второй вариант представления распространяется только на целые числа. Порядковые номера разрядов идут слева направо, начиная с нулевого. Его называют знаковым разрядом, и в этом разряде О сооггоетствует знаку плюс, а 1 - знаку минус.

Нормальная или полулогарифмическая форма, иначе называемая формой с плавающей запятой, предполагает ввод чисел в полулогарифмическом виде - число состоит нз двух частей: мантиссы числа, обозначаемой буквой т, и порядка числа, который обозначается буквой р, причем т<1, а р - всегда целое. Положение запятой в числе зависит от порядка р (отсюда н название формы - с плавающей запятой). Например, одно и то же десятичное числа можио П1рвдстав,ить в таких варнангах:

0,81756423-10» р = 0; 8,17564230,10-1. р=-1; 0,08175642.101 P==-fl.

Когда в мантиссе перед запятой стоит нуль, а после запятой - цифра, отличная от нуля, то такую форму называют нормализованной.

Действия над числами, представленными в нормальной форме, сложнее, чем иад числами с фиксированной запятой. Но зато форма «с плавающей запятой>-позволяет охваггить очень ширлжий диапазон чисел.

Числа с фиксированной точкой

В общем случае разрядная сетка ЭВМ для размещения чисел в форме с фиксированной точкой показана на рисунке.
На рисунке показано п разрядов для представления целой части числа и r разрядов - для дробной части числа.

A) фиксированная

При заданных п иr диапазон изменения модулей чисел, коды которых могут быть представлены в данной разрядной сетке, определяется неравенством

Использование формы с фиксированной точкой для представления смешанных (с целой и дробной частью) чисел в ЭВМ практически не встречается. Как правило, используются ЭВМ либо с дробной арифметикой (п=0), либо с целочисленной арифметикой (r=0).

Форма представления чисел с фиксированной точкой упрощает аппаратную реализацию ЭВМ, уменьшает время выполнения машинных операций, однако при решении задач на машине необходимо постоянно следить за тем, чтобы все исходные данные, промежуточные и окончательные результаты находились в допустимом диапазоне представления. Если этого не соблюдать, то возможно переполнение разрядной сетки, и результат вычислений будет неверным. От этих недостатков в значительной степени свободны ЭВМ, использующие форму представления чисел с плавающей точкой, или нормальную форму.

Числа с плавающей точкой
b) рис 14.б с плавающей точкой

В нормальной форме число представляется в виде произведения X=mq p
где т - мантисса числа;
q - основание системы счисления;
р - порядок.

Для задания числа в нормальной форме требуется задать знаки мантиссы и порядка, их модули в q-ичном коде, а также основание системы счисления. Нормальная форма представления чисел неоднозначна, ибо взаимное изменение т и р приводит к плаванию точки (запятой). Отсюда произошло название формы представления чисел.

Для однозначности представления чисел в ЭВМ используется нормальная нормализованная форма, в которой положение точки всегда задается перед значащей цифрой мантиссы, т. е. выполняется условие

В общем случае разрядную сетку ЭВМ для размещения чисел в нормальной форме можно представить в виде, изображенном на рис. Разрядная сетка содержит:

· разряд для знака мантиссы;

· r цифровых разрядов для q-ичного кода модуля мантиссы;

· разряд для кода знака порядка;

· s разрядов для q-ичного кода модуля порядка.

Диапазон представления модулей чисел в нормальной нормализованной форме определяется следующим неравенством:

Пример :

133,21 = 10 2 *1.3321, 10 2 - порядок, 1.3321- мантисса.
1332.1 = 10 3 *1.3321
0.13321 = 10 -1 *1.3321

Одно и то же число может быть записано в различных формах

452,34 = 452340·10 -3 = 0,0045234·10 5 = 0,45234·10 3

Естественная форма Нормальная форма

В конкретной ЭВМ диапазон представления чисел с плавающей точкой зависит от основания системы и числа разрядов для представления порядка.
При этом у одинаковых по длине форматов чисел с плавающей точкой с увеличением основания системы счисления существенно расширяется диапазон представляемых чисел.
Точность вычислений при использовании формата с плавающей точкой определяется числом разрядов мантиссы r. Она увеличивается с увеличением числа разрядов.
При представлении информации в виде десятичных многоразрядных чисел каждая десятичная цифра заменяется двоично-десятичным кодом. Для ускорения обмена информацией, экономии памяти и удобства операций над десятичными числами предусматриваются специальные форматы их представления: зонный (распакованный) и упакованный . Зонный формат используется в операциях ввода-операций. Для этого в ЭВМ имеются специальные команды упаковки и распаковки десятичных чисел.



Рекомендуем почитать

Наверх