Ионисторы (суперконденсаторы) – устройство, виды, применение. Подключение ионисторов к устройствам сбора энергии

Скачать на Телефон 23.07.2019
Скачать на Телефон

В настоящее время получили широкое распространение устройства, потребляющие высокую мощность в течение короткого интервала времени, например, электронные замки, реле, двигатели, импульсные излучатели. Для них не всегда можно использовать аккумуляторную батарею в качестве буферного источника энергии. Могут возникнуть сложности с формированием мощных кратковременных токов. Для таких ситуаций стали использовать ионисторы или суперконденсаторы, которые можно устанавливать вместо аккумулятора или в комбинации с ним. Для изготовления этих элементов применяется технология, основанная на использовании эффекта образования двойного электрического слоя. Этим они выгодно отличаются от батарей и аккумуляторов.

Промышленные ионисторы появились не так давно, но их массовым производством уже занимаются, как отечественные, так и зарубежные производители.

Что такое суперконденсаторы

Энергоемкие системы выдвигают высокие требования к источникам питания. Для различного современного оборудования требуется аккумулирование и подача определенной энергии. Чтобы решить такую задачу, используются аккумуляторы или подсоединенные к батарее суперконденсаторы. В последнем варианте ионисторы (молекулярные накопители энергии) играют роль страховки при падении напряжения. Суперконденсаторы отличаются не большой плотностью энергии и высокой мощностью, что обеспечивает эффективную разрядку на нагрузку. При включении прибора параллельно батарее, снижается импульсная нагрузка на неё, что позволяет продлить срок службы.

Суперконденсаторы представляют собой электрохимические конденсаторы с большими показателями удельной мощности. Они отличаются лучшими техническими характеристиками, чем аккумуляторы. Эти элементы быстрее заряжаются и разряжаются.

В дальнейшем разработчики планируют этими устройствами полностью заменить аккумуляторные батареи. Они могут стать альтернативными источниками питания в разных сферах, например, в производстве автомобилей. Суперконденсаторы применяют в ветроэнергетических конструкциях и солнечных батареях. Подобные приборы представляют собой сочетание стандартного конденсатора и аккумуляторной батареи.

Одно из отличий ионисторов от обычных конденсаторов - наличие двойного электрического слоя, что позволяет накапливать значительное количество энергии. В конструкции отлично сочетаются такие характеристики, как скорость зарядки и разрядки конденсатора и емкость аккумулятора. От обычных конденсаторы такие устройства отличаются отсутствием обычного диэлектрика между электродами.

Параметры

Ионисторы отличаются следующими характеристиками:

  1. Внутреннее сопротивление (измеряется в миллиОмах).
  2. Максимальный ток. (А).
  3. Номинальное напряжение (В).
  4. Емкость (Ф).
  5. Параметры саморазряда.

В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.

Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами.

Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов. В настоящее время они используются в некоторых электрических приборах.

По сравнению с литий - ионными аккумуляторами современные ионисторы характеризуются большим ресурсом и высокой скоростью разряда.

При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии.

Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор. При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше. Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений - использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов. В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах.

Установка прибора с более значительной удельной энергоемкостью позволит увеличить время работы мобильного оборудования, не увеличивая его параметры. Поэтому в смартфонах часто используются полимерные аккумуляторные батареи, которые являются лидерами в малогабаритных перезаряжаемых источниках питания.

Аккумуляторные батареи обладают ограниченным ресурсом. При интенсивном применении ресурс прибора является критичным фактором, который сокращает жизненный цикл оборудования. Поэтому к более перспективным устройствам относятся ионисторы. Они представляют собой идеальный накопитель электроэнергии.

Ионистор похож на электролитический конденсатор, но при тех же размерах имеет большую емкость. Подобные устройства могут накапливать большое количество энергии за короткий промежуток времени, что позволит сократить время подзарядки до минимального значения. Суперконденсаторы могут выдержать без видимой деградации несколько десятков тысяч циклов.

Благодаря незначительной токсичности материалов для изготовления ионисторов, их легче утилизировать, чем аналогичные варианты. Но из-за большого тока саморазряда данные приборы не годятся для очень продолжительного хранения электроэнергии. Ионисторы отлично подходят для беспроводных периферийных устройств. Здесь проявляют себя такие свойства, как эффективность и высокая скорость заряда.

Беспроводное устройство с ионистором требует ежедневной подзарядки. Но на данную процедуру потратится несколько минут.

Разновидности

Суперконденсаторы бывают следующих видов:

  1. Псевдоконденсаторы оснащены твердыми электродами. Емкость зависит не только от электростатических процессов, но и от фарадеевских реакций с перемещением зарядов.
  2. Гибридные представляют собой переходное устройство между аккумулятором и конденсатором. Они способны накапливать и отдавать заряд в двойном электрическом слое. Электроды делаются из различных материалов, а скопление зарядов произвоится по разным механизмам. Окислительно - восстановительные реакции повышают удельную емкость механизма.
  3. Двухслойные суперконденсаторы состоят из пористых электродов, разделенных сепаратором. Электрический заряд в таких устройствах определяется емкостью двойного электрического слоя. Электролит является соединяющим проводником с ионной проводимостью.

Суперконденсаторы бывают разных форм и размеров. Основное назначение таких устройств - это дублирование главного источника при падении напряжения.

Для создания гибридных устройств применяются катоды особого вида. Их делают из графена гипероксидированного типа. Графен представляет собой двумерную модификацию углерода, в которой атомы размещены в один слой. Данный компонент отличается высокой химической стойкостью.

Принцип действия

Принцип действия ионистора похож с обычным конденсатором. Но эти приборы различаются применяемыми материалами. Обкладки делаются из пористого материала, который представляет собой отличный проводник. Это позволяет увеличить емкость устройства. В качестве диэлектрика применяется электролит, что позволяет уменьшить расстояние между обкладками и повысить емкость.

В суперконденсаторе заряд накапливается в результате формирования двойного электрического слоя на электроде при адсорбции ионов из электролитов.

В основе принципа работы - разложение разности потенциалов к токовыводам. При этом на катоде создаются отрицательные ионы, а на аноде - положительные. Сепаратор пропускает ионы электролита и предотвращает короткое замыкание между электродами. Электричество сохраняется статическим способом. В процессе заряда-разряда отсутствуют реакции электрохимического типа.

Суперконденсаторы способны накапливать большое количество энергии за короткий промежуток времени, что позволяет уменьшить время для подзарядки приборов.

Современные ионные аккумуляторы могут отдавать только 60 % электроэнергии, израсходованной на их зарядку. У суперконденсаторов данный показатель превышает 90 %. Другим важным преимуществом является большой ресурс. У многих видов аккумуляторов уменьшение емкости происходит после нескольких сотен циклов разряда - разряда. А ионисторы выдерживают до миллиона циклов без нарушений.

Конструкции элементарных ячеек позволяют создать модули различных размеров и любого напряжения. Устройства могут быть выполнены с охлаждением разного типа - воздушного, водяного и естественного.

Плюсы и минусы

Стоит выбрать суперконденсаторы, ради следующих преимуществ:

  1. Заряд и разрядка происходит быстро. Их можно применять, когда нет возможности поставить аккумулятор из - за продолжительной подзарядки.
  2. Ионисторы обладают большим количеством циклов заряда-разряда по сравнению с другим оборудованием.
  3. Для проведения подзарядки не требуются специальные устройства, что облегчает обслуживание.
  4. Приборы легче аккумуляторов и отличаются меньшими размерами.
  5. Обширный диапазон рабочих температур от -45 до 70 градусов.
  6. Продолжительный срок эксплуатации по сравнению с аккумуляторными батареями.
  7. Высокие значения емкостной плотности и КПД циклов разрядки.
  8. Экологическая чистота, долговечность и надежность.
  9. Превосходные параметры удельной мощности.
  10. Допускается полная разрядка.

Некоторые минусы вызывают сложности с эксплуатацией:

  1. Дорогостоящие элементы.
  2. Невысокие характеристики номинального напряжения. Чтобы справиться с проблемой требуется последовательное соединение нескольких элементов.
  3. При несоблюдении температурного режима устройство может быстро сломаться.

Устройство должно быть защищено от короткого замыкания, т.к. это может вызвать повышение температуры. В результате элементу понадобится замена.

Применение

Уникальные характеристики ионисторов находят применение в различных областях техники. .

Суперконденсаторы используются в следующих вариантах техники:

  1. Общественный транспорт. В электробусах вместо аккумуляторов устанавливаются ионисторы. Они заряжаются во время высадки и посадки пассажиров. Подобный транспорт способен объезжать пробки и обрывы контактных линий.
  2. Электромобили. Одна из проблем такого транспорта является длительное время зарядки. Суперконденсатор позволяет производить зарядку на кратковременных остановках.
  3. Бытовая электроника. Устройства применяются в фотовспышках и другом оборудовании. Они обеспечивают быструю подзарядку.
  4. Неполярные конденсаторы применяются в ветровых турбинах и кислотных батареях.
  5. Ионисторы используются в системах демпфирования энергетических нагрузок, а также в оборудовании запуска электродвигателей.
  6. Суперконденсаторы необходимы в комплексах, в которых предусмотрены критические нагрузки. Для вышек мобильной связи, больничных учреждений и для портового оборудования.
  7. Приборы применяются для источников резервного электроснабжения ПК, а также в микропроцессорах и мобильных телефонах.

Для улучшения работы автомагнитолы можно приобрести и поставить ионистор. Он позволяет сгладить колебания напряжения во время включения зажигания. В некоторых странах применяются автобусы без тяговых батарей, а все работы производятся ионисторами.

В ходе проведенных испытаний было выявлено, что подобные устройства превосходят свинцово-кислотные батареи в ветровых турбинах. Суперконденсаторы востребованы в системах бесперебойного питания, в которых необходимо обеспечить быструю передачу мощности.

В мире насчитывается примерно 66 крупнейших производителей ионисторов.

Перспективы использования

Ионисторы с каждым годом становятся все совершенней. Важным параметром, которому ученые уделяют особое внимание - является увеличение удельной емкости. Через какое - то время планируется подобными приборами заменить аккумуляторы. Такие элементы позволяют заменить батареи в различных технических сферах. Специалисты возлагают большие надежды на разработку графеновых устройств. Применение инновационного материала поможет уже в ближайшее время создать изделия с высокими показателями запасаемой удельной энергии.

Ионистор нового образца в несколько раз превосходит альтернативные варианты. Данные элементы имеют в своей основе пористую структуру. Применяется графен, на котором распределяются частицы рутения. Преимуществом графеновой пены является способность удержания частиц оксидов переходных металлов. Подобные суперконденсаторы работают на водном электролите, что позволяет обеспечить безопасность эксплуатации.

В перспективе новинки будут применяться в сфере изготовления персонального электрического транспорта. Приборы на основе графеновой пены могут перезаряжаться до 8000 раз без ухудшения качественных характеристик.

В сфере автомобильного строения проводятся разработки альтернативных разновидностей топлива и устройств накопления энергии высокой эффективности. Подобные приборы могут применяться для грузового транспорта, электрических автомобилей и поездов.

В автомобилестроении суперконденсаторные батареи находят следующие применения:

  1. Пусковое устройство подсоединяется параллельно стартерным батареям. Применяется для повышения эксплуатационного срока и улучшения пусковых характеристик двигателя.
  2. Для стабильного питания акустических систем большой мощности в автомобиле.
  3. Буферные батареи подходят для применения в гибридном транспорте. Они характеризуются небольшой емкостью и значительной выходной мощностью.
  4. Тяговые батареи актуальны при использовании в качестве основного источника питания.

Суперконденсаторы обладают множеством преимуществ по сравнению с аккумуляторами в автомобильной промышленности. Они превосходно выдерживают перепады напряжения. Приборы характеризуются легкостью, поэтому можно устанавливать большое их количество.

Для сферы микроэлектроники разрабатываются новые технологии по производству компактных суперконденсаторов. При производстве электродов применяются специальные методы осаждения на тонкую подложку из диоксида кремния специальной углеродистой пленки.

Использование суперконденсаторов позволяет внедрить в жизнь экологические технологии экономии энергии. В перспективе предусмотрено расширение сфер применения таких приспособлений для отраслей автотранспорта, мобильной техники и средств связи.

Ионистор, он же суперконденсатор или ультраконденсатор - конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита.

Международное обозначение EDLC - Electric double-layer capacitor .

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Перечень преимуществ ионисторов:

» малое внутреннее сопротивление

» большой срок службы

» нет ограничений по количеству циклов заряд/разряд

» относительно малая стоимость

» довольно широкий диапазон рабочих температур: от -25 до +70 °С

» быстрый процесс заряда и разряда

» работа при любом напряжении, что не превышает номинального

» использование простых способов заряда

» отсутствие контроля за режимом заряда

Перечень недостатков ионисторов:

» довольно малая энергетическая плотность

» не может обеспечить достаточного накопления электроэнергии

» весьма низкое напряжение на одной единицы элемента

» высокая степень саморазряда

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы - Юпитера.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58?9В, имеющий массу 0, 5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор - 86 400 Дж - в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато.

Главное достоинство ионисторов это - на несколько порядков большая емкость, чем у любых других классов конденсаторов. Ионисторы по диапазонам реализации удельной энергии и удельной мощности занимают промежуточное положение между химическими источниками тока и электролитическими конденсаторами, но в отличие от химических источников тока имеют более широкий температурный диапазон эксплуатации (сохраняют работоспособность при отрицательных температурах) и большое количество циклов в режиме "зарядка - разрядка".

то касается электролита ионисторов, он может быть водным или органическим. Ионисторы (суперконденсаторы, ультраконденсаторы), что содержат водный электролит, обладают довольно малым внутренним сопротивлением, но, есть также и значительный минус водного электролита, напряжение заряда для них ограничено до 1 Вольта. Ионисторы на органическом электролите обладает наиболее большим сопротивлением, но зато, они способены к работе с напряжением заряда от 2 до 3 Вольт.

Поскольку для питания электронных схем используется обычно более высокие напряжения, чем у ионистора, то для получения нужного значения их соединяют последовательно. Как Мы знаем, что величина обычных емкостей конденсаторов измеряется в приделах от пикофарад до микрофарад. Емкость ионисторов (суперконденсаторы, ультраконденсаторы) измеряется уже в фарадах (в одном фараде миллион микрофарад). В ионисторах возможно достичь плотности мощности на массу рабочего вещества от 1 до 10 Вт/кг. Это больше, чем у обычных конденсаторов, и меньше, чем у аккумуляторов.

К основным недостаткам ионистора (суперконденсаторы, ультраконденсаторы) можно отнести его постоянное линейное снижение напряжения в течение всего времени его работы до полного разряда (за один цикл заряда и разряда). Из-за этого ионисторы не способны удерживать полный заряд. Общая степень его заряда исчисляется в процентах и будет зависеть, в первую очередь, от того, какое напряжение к нему изначально будет приложено.

Если ионистор заряжен до напряжения 8 вольт, а схема нормально может работать с минимальным напряжением 4 вольта, то получается, что используемый заряд составляет всего 50%. Оставшаяся электроэнергия в ионисторе оказывается совершенно бесполезной. Для увеличения степени использования накопленной энергии в ионисторе применяют различные виды преобразователей, но и этот путь неидеален, поскольку ведёт к удорожанию всей системы на 10-15%. Плюс, значительно снижается КПД.

Применение ионисторам нашлось в электропитании микросхем памяти, использование в цепях фильтрации. Они также хорошо работают в паре с батареями с целью защиты их от внезапных перепадов электрического тока нагрузки: при малых токах электрической нагрузки батарея работает на подзарядку ионистора, а как только произойдёт скачёк тока, ионистор выдаст накопленную электроэнергию, в итоге значительно снижается общая нагрузка на батарею.

Обычная схема включения ионистора в качестве резервного источника питания приведена на рис. 1. Диод VD1 предотвращает разряд ионистора C1 при Uпит=0. Резистор R1 ограничивает зарядный ток ионистора, защищая источник питания от перегрузки при включении. Он не потребуется, если источник питания выдерживает кратковременную нагрузку током 100...250 мА

Номинальное напряжение ионистра зависти от вида используемого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы соединяют последовательно. Но делать это самостоятельно не рекомендуется - параметры ионистров в такой связке должны быть очень близкими.

Внутреннее сопротивление Rвн ионистора может быть расчитано по формуле: Rвн=U/Iкз, где Rвн - в омах; U - напряжение на ионисторе, В; Iкз - ток короткого замыкания, А. Для ионистора К58-3 (японский аналог DC-2R4D225) Rвн=10...100 Ом.

Электрическую емкость ионистора расчитывают по формуле: C=I*t/Uном, где C - емкость, Ф; I - постоянный ток разрядки, А; Uном - номинальное напряжение ионистора, В; t - время разрядки от Uном до нуля, с.

Важнейший параметр ионистора - ток утечки. Особенно при использовании его в качестве резервного источника питания.

Рис. 1. Включение ионистора в качестве резервного источника питания.

Во многих случаях ионистор с успехом заменяет встраиваемые в прибор резервные источники питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов заряд-разряд.

Окружающая среда может служить источником бесконечного количества энергии самых разнообразных форм, включая пьезоэлектрическую, тепловую, фотогальваническую и энергию вибрации, однако мощность ее весьма мала и крайне далека от пиковой потребности передатчиков беспроводных сетей, таких как IEEE 802.15.4 (Zigbee), 802.11 (WLAN), или GSM/GPRS. Чтобы обеспечить датчик достаточной мощностью для каждого цикла измерений и передачи данных, энергию необходимо накапливать в буфере, в качестве которого удобнее всего использовать ионисторы. Такие устройства накопления энергии медленно заряжаются от маломощного источника и кратковременно отдают большую мощность, когда это необходимо.

Определение необходимой емкости ионистора

Типичное рабочее напряжение ионисторных элементов лежит в диапазоне от 2.3 до 2.8 В. Оптимальная стратегия, позволяющая эффективно и с минимальными издержками запасать необходимую для приложения энергию, реализуется ограничением напряжения заряда до уровня, несколько меньшего, чем допустимое напряжение ионистора.

Простой способ определения необходимой емкости ионистора заключается в том, чтобы рассчитать количество энергии, необходимое для обеспечения устройства достаточной мощностью P в периоды максимального потребления, и приравнять его к выражению

C - емкость ионистора (в фарадах),
V INITIAL - напряжение на ионисторе непосредственно перед началом периода пикового потребления,
V FINAL - напряжение на ионисторе в конце этого периода.

V INITIAL - ESR I LOAD

I LOAD - ток нагрузки.

Поскольку напряжение на нагрузке уменьшается, ток нагрузки для поддержания расчетного уровня мощности увеличивается. Руководствуясь Рисунком 1, разработчики могут описать разряд ионистора следующими выражениями:

V SCAP - напряжение на ионисторе.

Из приведенных выражений вытекает уравнение для тока нагрузки:

Затем разряд ионистора может быть легко смоделирован в Excel на основании формул

Этот расчет исключительно важен, особенно, если произведение тока нагрузки на ESR достаточно велико в сравнении с напряжением на ионисторе в конце цикла разряда. В этом случае простая оценка энергетического баланса может показать, что емкость ионистора слишком мала, причем с понижением рабочей температуры нехватка емкости будет проявляться сильнее, так как при низких температурах ESR становится в два-три раза больше, чем при комнатной температуре.

Необходимо также помнить, что емкость и ESR ионистора изменяются со временем вследствие старения. Емкость постепенно падает, а внутреннее сопротивление возрастает. Скорость старения зависит от напряжения на элементе и температуры. Разработчикам следует учитывать это, выбирая ионистор с запасом по обоим параметрам, исходя из расчетного срока службы датчика.

Зарядка ионистора

Для источника энергии разряженный ионистор представляет собой короткозамкнутую нагрузку. К счастью, многие устройства сбора энергии, такие, например, как фотогальванические элементы и микрогенераторы, могут работать на нулевое сопротивление, а значит, способны заряжать ионистор с нуля. Если же источником энергии служит пезо- или термоэлектрический преобразователь, способностью выдерживать короткое замыкание по выходу должна обладать микросхема, стоящая между источником и ионистором.

Промышленность создала множество контроллеров MPPT (Maximum Power Point Tracking - слежение за точкой максимальной мощности), обеспечивающих максимально эффективное использование устройств сбора энергии. Но все они, являясь, по сути, специализированными DC/DC преобразователями, рассчитаны на заряд аккумуляторов постоянным напряжением .

Однако, в отличие от аккумулятора, ионистор наиболее эффективно заряжается не постоянным напряжением, а током, причем максимальным, т.е. всем, который только в состоянии отдать источник. На Рисунке 2 приведена схема простого и эффективного зарядного устройства, применимого в тех случаях, когда напряжение холостого хода солнечной батареи не выходит за границы, допустимые для ионистора. Диод предохраняет ионистор от разряда через солнечную батарею в темное время суток. Если напряжение холостого хода источника энергии превышает рабочее напряжение ионистора, для его защиты потребуется шунтовой регулятор напряжения (Рисунок 3). Шунтовой (параллельный) регулятор - самый простой и дешевый способ защиты ионистора от перегрузки по току. После того, как ионистор зарядится, энергия источника становится ненужной, и регулятор просто рассеивает ее в виде тепла.

Устройство сбора энергии подобно шлангу с бесконечным источником воды, через который заполняется бочка, являющаяся аналогом ионистора. Если шланг не вынуть из бочки после ее заполнения, вода просто начнет переливаться через край. Это сравнение иллюстрирует еще одно принципиальное отличие ионистора от аккумулятора, энергетическая емкость которого ограничена, что требует точного управления зарядкой с помощью последовательного регулятора напряжения.

В изображенной на Рисунке 2 схеме в начальный момент напряжение на ионисторе равно 0 В, вследствие чего солнечная батарея закорочена. По мере заряда ионистора ток уменьшается в соответствии с вольтамперной характеристикой фотогальванического элемента. Ионистор всегда заряжается до максимально возможного уровня, так как забирает самый большой ток, который только способен отдать источник. В схеме на Рисунке 3 использована микросхема , в которой помимо компаратора содержится источник опорного напряжения. Микросхема исключительно экономична, так как потребляет порядка 3 мкА и имеет открытый сток на выходе, при выключенном регуляторе представляющий собой обрыв. Диод Шоттки выбран из-за низкого прямого падения напряжения при малых токах. Если прямой ток не превышает 10 мкА, напряжение на диоде не выйдет за пределы 0.1 В.

Микрогенераторы идеально подходят для промышленных приложений, в особенности таких, как контроль уровня вибраций вращающихся механизмов, которые, по определению, не могут не вибрировать при работе. На Рисунке 4 показана вольтамперная характеристика микрогенератора, весьма напоминающая характеристику фотогальванического элемента. Микрогенератор содержит диодный мост, не позволяющий ионистору разряжаться через генератор, что позволяет сделать схему заряда очень простой (Рисунок 5).

Напряжение холостого хода 8.5 В заставило выбрать двухэлементные ионисторы HZ202 с рабочим напряжением 5.5 В. Шунтовой регулятор защищает ионистор от перенапряжения и, одновременно, выполняет функцию слаботочной схемы активной балансировки, гарантирующей равное распределение токов между элементами. Специально для заряда ионисторов в схемах сбора энергии Linear Technology выпускает микросхемы , LTC3108 и LTC3625 , а Texas Instruments - .

Ток утечки

Некоторые устройства сбора энергии выдают ток, измеряемый единицами микроампер, поэтому нельзя не принимать во внимание утечки ионисторов. Рисунок 6 показывает, что ионисторы могут иметь ток утечки менее 1 мкА, что позволяет использовать их в схемах извлечения энергии.

После зарядки ионистора ток утечки постепенно, по мере того, как ионы диффундируют в поры угольного электрода, снижается, стремясь к равновесному значению, зависящему от емкости, напряжения и времени. Ток утечки пропорционален емкости элемента и в установившемся режиме подчиняется эмпирическому правилу, согласно которому при комнатной температуре он составляет 1 мкА/Ф. Так, из Рисунка 6 мы видим, что ионисторы емкостью 150 мФ по истечении 160 часов имеют ток утечки 0.2 и 0.3 мкА. С ростом температуры ток утечки экспоненциально увеличивается. Время установления равновесного состояния при увеличении температуры уменьшается вследствие роста активности ионов. Таким образом, совершенно очевидно, что для возможности начала зарядки полностью разряженных ионисторов требуется определенный минимальный ток в диапазоне от 5 до 50 мкА. При выборе ионистора для устройства сбора энергии разработчики не должны забывать про этот очень важный параметр.

Балансировка элементов

Если в какой-то схеме напряжение превышает допустимое для ионисторной ячейки, составляя, скажем, 5 или 12 В, несколько элементов придется соединять в последовательную батарею. В этом случае потребуется схема балансировки ионисторных ячеек, без которой напряжения на элементах батареи будут различаться из-за некоторого разброса токов утечки и неодинакового характера их зависимости от напряжения. При последовательном включении токи утечки элементов должны быть одинаковыми, для чего ячейки стремятся соответствующим образом перераспределять заряды между собой. При этом напряжение на какой-то из них может выходить за разрешенные границы. Проблема будет усугубляться различиями в температуре и возрасте элементов. Простейшая схема балансировки получается при включении резистора, параллельно каждому элементу. В зависимости от тока утечки ионистора, типичное сопротивление этого резистора может быть от 1 до 50 кОм. Однако для большинства устройств сбора энергии ток, протекающий через резисторы балансировки, окажется недопустимо большим. Гораздо лучше подходит для таких приложений изображенная на Рисунке 7 слаботочная схема активной балансировки.

Для работы изображенного на схеме операционного усилителя с rail-to-rail входами и выходом требуется ток порядка 750 нА. Резистор R3 ограничивает выходной ток в случае короткого замыкания одной из ячеек. После 160 часов балансировки ионисторов HW207 вся схема потребляет от 2 до 3 мкА.

Температурные характеристики

Важнейшим преимуществом ионисторов в приложениях для сбора энергии является их широкий диапазон рабочих температур. Например, ионисторы могут использоваться с вибропреобразователями при отрицательных температурах или c солнечными панелями в ясный зимний день. В типичном случае ESR ионисторов при -30°C увеличивается в два-три раза по сравнению с ESR при комнатной температуре. Для сравнения, внутреннее сопротивление аккумуляторов при таких температурах может достигать нескольких килоом.

Подключение дополнительных аккумуляторов

В одних приложениях ионисторы могут служить альтернативой аккумуляторам, в других - средством их поддержки. В некоторых ситуациях ионистор не сможет запасать достаточное количество энергии, и потребуется использовать аккумулятор. Например, если источником энергии является солнце, необходимо устройство накопления, способное не только обеспечивать передатчик пиковой мощностью, но и поддерживать работу всей системы продолжительное время в течение ночи. Если требуемая пиковая мощность превышает максимальную мощность, которую в состоянии отдать аккумулятор, что типично, скажем, для вызовов GSM или для маломощных передатчиков, работающих при низкой температуре, решить проблему можно с помощью ионистора, заряжаемого от аккумулятора. Этим не только решается проблема энергетического баланса, но и увеличивается ресурс аккумулятора, степень разряда которого никогда не будет глубокой. Энергия запасается в ионисторах за счет физического накопления заряда, в отличие от аккумуляторов, работа которых основана на химических реакциях, поэтому количество циклов перезаряда ионисторов практически неограниченно.

Когда заряжаемый от аккумулятора ионистор используется как источник импульсной мощности, очень важно правильно оценивать и учитывать величину интервалов между пиками потребления тока. Если интервалы относительно малы, энергетически эффективнее держать ионистор в режиме постоянного заряда. При более редкой периодичности пиков целесообразнее заряжать ионистор непосредственно перед началом разряда. Этот интервал зависит от ряда факторов, включая величину заряда, накапливаемого ионистором до установления равновесного уровня тока утечки, характеристику саморазряда и пиковое потребление схемы. Но все это имеет смысл лишь в том случае, когда моменты максимального потребления тока известны заранее. Если же они наступают вследствие непредсказуемых событий, такие как отказ аккумулятора или внешнее воздействие, оптимизировать режим использования ионистора невозможно.

На сегодняшний день аккумуляторные технологии значительно продвинулись и стали более совершенными по сравнению с прошлым десятилетием. Но все же, пока что аккумуляторные батареи остаются расходным материалом, потому как имеют небольшой ресурс.

Мысль о том, чтобы использовать, конденсатор для накопления и хранения энергии не нова и первые эксперименты проводились с электролитическими конденсаторами. Ёмкость у электролитических конденсаторов бывает значительной – сотни тысяч микрофарад, но все же ее недостаточно для того, чтобы длительное время питать хоть и не большую нагрузку, притом присутствует значительный ток утечки, обусловленный особенностями конструкции.

Современные технологии не стоят на месте, и был изобретен ионистор, это конденсатор, имеет сверхбольшую емкость – от единиц фарад и до десятков тысяч фарад. Ионисторы емкостью единицы фарад используются в портативной электронике, для обеспечения бесперебойного питания слаботочных цепей, например микроконтроллера. А ионисторы емкостью десятки тысяч фарад используются совместно с аккумуляторами для питания различных электродвигателей. В такой комбинации ионистор позволяет уменьшить нагрузку на аккумуляторные батареи, что значительно увеличивает их срок службы аккумулятора и одновременно увеличивает стартовый ток, который способна отдать гибридная система питания двигателя.

Появилась необходимость запитать датчик температуры, таким образом, чтобы не менять в нем батарейку. Датчик питается от батареи типоразмера АА и включается для отправки данных на погодную станцию один раз в 40 секунд. В момент отправки датчик потребляет в среднем 6 мА в течение 2 секунд.

Возникла идея использовать солнечную батарею и ионистор. Исходя из выявленных характеристик потребления датчика, были взяты следующие элементы:
1. Солнечная батарея 5 Вольта и ток примерно 50 мА (Солнечная батарея Советского производства возрастом примерно 15 лет)
2. Ионистор: Panasonic 5.5 Вольт и емкостью 1 фарад.
3. Ионисторы 2 шт: DMF 5.5 Вольт и общей емкостью 1 фарад.
4. Диод Шотки с прямым падением напряжения при малом токе 0.3 В.
Диод Шотки необходим для того чтобы предотвратить разряд емкости через солнечную батарею.
Ионисторы соединены параллельно, и общая емкость составляет 2 фарады.


Фото 1.

Эксперимент №1 – Подключил микроконтроллер с монохромным ЖК-дисплеем и общим током потребления 500 мкА. Хотя микроконтроллер с дисплеем и заработали, но я заметил, что старые солнечные элементы крайне не эффективны, ток заряда в тени был недостаточным для того, чтобы хоть сколько-нибудь зарядить ионисторы, напряжение на 5ти вольтовой солнечной батареи в тени было меньше 2 вольт. (По некоторым обстоятельствам микроконтроллер с дисплеем на фото не показаны).

Эксперимент №2
Для повышения шанса на успех я приобрел на радиорынке новые солнечные элементы номиналами 2 В, током 40 мА и 100 мА, китайского производства залитые оптической смолой. Для сравнения данные батареи в тени уже выдавали 1,8 вольт, при этом не большой ток заряда, но все же заметно лучше заряжающий ионистор.
Спаяв конструкцию уже с новой батареей, диодом шотки и конденсаторами я положил ее на подоконник для того, чтобы конденсатор зарядился.
Притом, что солнечный свет напрямую не попадал на батарею, уже через 10 минут конденсатор зарядился до 1,95 В. Взял датчик температуры, вынул из него батарею и подключил ионистор с солнечной батареей к контактам батарейного отсека.


Фото 2.

Датчик температуры сразу же заработал и передал на метеостанцию комнатную температуру. Убедившись, что датчик работает, закрепил на него конденсатор с солнечной батареей и повесил на место.
Что же было дальше?
Все светлое время суток датчик исправно работал, но с наступлением темного времени суток, уже через час, датчик перестал передавать данные. Очевидно, что запасенного заряда не хватало даже на час работы датчика и потом выяснилось почему…

Эксперимент №3
Решил немного доработать конструкцию таким образом, чтобы ионистор (вернул сборку ионисторов 2 фарады) был полностью заряжен. Собрал батарею из трех элементов, получилось 6 вольт и ток 40 мА (при полном освещении солнцем). Данная батарея в тени уже давала до 3,7 В вместо предыдущей 1,8 В (фото 1) и ток заряда до 2 мА. Соответственно ионистор заряжаясь до 3,7 В и имел уже значительно больше запасенной энергии в сравнении с Экспериментом №2.


Фото 3.

Все бы хорошо, но мы теперь имеем на выходе до 5,5 В, а датчик питается от 1,5 В. Необходим DC\DC преобразователь, что в свою очередь вносит дополнительные потери. Тот преобразователь, который у меня был в наличии, потреблял порядка 30 мкА и на выходе давал 4,2 В. Пока мне не удалось найти нужный преобразователь, для того чтобы запитать датчик температуры уже от модернизированной конструкции. (Нужно будет подобрать преобразователь и повторить опыт).

О потерях энергии:
Выше упоминалось, что ионисторы имеют ток саморазряда, в данном случае у сборки 2 фарада он составлял 50 мкА, так же сюда добавляются потери в DC\DC преобразователе порядка 4% (заявленная эффективность 96%) и его холостой ход 30 мкА. Если не брать во внимание потери на преобразование, мы уже имеем потребление порядка 80 мкА.
Отнестись к энергосбережению необходимо особо внимательно, потому как экспериментальным путем установлено, что ионистор емкостью 2 фарады заряженный до 5,5 В и разряженный до 2,5 В имеет так скажем «аккумуляторную» емкость 1 мА. Иначе говоря – потребляя 1 мА с ионистора в течении часа, мы его разрядим с 5,5 В до 2,5 В.

О скорости заряда прямым солнечным светом:
Ток, получаемый от солнечной батареи тем выше, чем лучше батарея освещена прямыми солнечными лучами. Соответственно скорость заряда ионистора увеличивается в разы.


Фото 4.

Из показаний мультиметра видно (0.192 В, начальные показания), через 2 минуты конденсатор зарядился до 1,161 В, через 5 минут до 3,132 В и еще через 10 минут 5,029 В. В течении 17 минут ионистор был заряжен на 90%. Нужно отметить, что освещение солнечной батареи было неравномерным в течении всего времени и происходило через двойное оконное стекло и защитную пленку батареи.

Технический отчет по Эксперименту №3
Технические характеристики макета:
- Солнечная батарея 12 элементов, 6 В, ток 40 мА (при полной засветке солнцем), (в тени пасмурной погоды 3,7 В и ток 1 мА с нагрузкой на ионистор).
- Ионисторы соединены параллельно, суммарная емкость 2 Фарад, допустимое напряжение 5,5 В, ток саморазряда 50 мкА;
- Диод Шотки с падением прямого напряжения 0,3 В, используется для развязки по питанию солнечную батарею и ионистор.
- Размеры макета 55 х 85 мм (пластиковая карта VISA).
От данного макета удалось запитать:
Микроконтроллер с ЖК-дисплеем (ток потребления 500 мкА при 5,5 В, время работы без солнечной батареи, приблизительно 1,8 часа);
Датчик температуры, время работы световой день с солнечной батареей, потребление 6 мА в течении 2 секунд каждые 40 секунд;
Светодиод светился 60 сек при среднем токе 60 мА без солнечной батареи;
Так же был испробован DC\DC преобразователь напряжения (для стабильного питания), с которым удалось получить 60 мА и 4 В, в течении 60 секунд (при заряде ионистора до 5,5 В, без солнечной батареи).
Полученные данные говорят о том, что ионисторы в данной конструкции имеют приблизительную емкость 1 мА (без подпитки от солнечной батареи с разрядом до 2,5 В).

Выводы:
Данная конструкция позволяет накапливать энергию в конденсаторах для беспрерывного питания микропотребляющих устройств. Накопленная емкость 1 мА на 2 фарады емкости конденсатора должно хватить для обеспечения работоспособности микропроцессора с низким потреблением в темное время суток в течение 10 часов. При этом суммарный ток потерь и потребления нагрузкой не должен превышать 100 мкА. Днем ионистор подзаряжается от солнечной батареи даже в тени и способен питать нагрузку в импульсном режиме током до 100 мА.

Отвечаем на вопрос в заголовке статьи - Может ли ионистор заменить аккумулятор?
– может заменить, но пока со значительными ограничениями по току потребления и режиму работы нагрузки.

Недостатки:

  • малая емкость запаса энергии (приблизительно 1 мА на каждые 2 Фарад емкости ионистора)
  • значительный ток саморазряда конденсаторов (ориентировочная потеря 20% емкости за сутки)
  • габариты конструкции определяются солнечной батареей и суммарной емкостью ионисторов.
Достоинства:
  • отсутствие изнашиваемых химических элементов (аккумуляторов)
  • диапазон рабочих температур от -40 до +60 градусов Цельсия
  • простота конструкции
  • не высокая стоимость
После всех проделанных экспериментов пришла идея модернизировать конструкцию следующим образом


Фото 5.

С одной стороны платы располагаются солнечная батарея, с другой стороны сборка ионисторов и DC\DC преобразователь.

Технические характеристики:

  • Солнечная батарея 12 элементов, 6 В, ток 60 мА (при полной засветке солнцем);
  • Ионисторы суммарная емкость 4; 6 или 16 Фарад, допустимое напряжение 5,5 В, суммарный ток саморазряда соответственно 120\ 140\ (пока не известно) мкА;
  • Диод Шотки сдвоенный с падением прямого напряжения 0,15 В, используется для развязки по питанию солнечной батареи и ионистора;
  • Размеры макета: 55 х 85 мм (пластиковая карта VISA);
  • Расчетная емкость без подпитки от солнечных батарей при установке конденсаторов 4; 6 или 16 Фарад, составляет примерно 2\ 3\ 8 мА.

P. S. Если вы заметили опечатку, ошибку или неточность в расчетах - напишите нам личным сообщением, и мы оперативно все исправим.

Продолжение следует…

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке - суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы - Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор - 86 400 Дж - в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов - ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них - десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой - с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор - это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы - кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod .r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес - почти втрое больше обычного - в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.



Рекомендуем почитать

Наверх