Элемент пельтье мощность. Отечественные модули Пельтье. Характеристики модулей ведущих фирм

Скачать на Телефон 24.05.2019
Скачать на Телефон

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Элемент Пельтье – это специальный термоэлектрический преобразователь, который работает по одноименному принципу Пельтье – возникновении разности температур во время подачи электрического тока. В английском языке чаще всего упоминается как ТЕС, что в переводе означает термоэлектрический охладитель.

Как работает элемент Пельтье

Работа элемента Пельтье базируется на контакте двух токопроводящих материалов, которые обладают разным уровнем энергии электронов в зоне проводимости. При подаче электрического тока через подобную связь, электрон приобретает высокую энергию , чтобы потом перейти в более высокоэнергетическую зону проводимости другого полупроводника. В момент поглощения этой энергии осуществляется охлаждение места охлаждения проводников. Если же ток протекает в обратном направлении – то это приводит к нагреванию места контакта и к обычному тепловому эффекту.

Если с одной стороны сделать хороший отвод тепла, например, при использовании радиаторных систем, то холодная сторона сможет обеспечить очень низкую температуру, которая на десятки градусов будет ниже температуры окружающего мира. Величина тока пропорциональна степени охлаждения. Если же сменить полярность электрического тока, то стороны (тёплая и холодная) просто поменяются местами.

В контакте с металлической поверхностью элемент Пельтье становится настолько малым, что его практически невозможно заметить на фоне омического нагрева и других эффектов теплопроводности. Именно поэтому на практике применяется два полупроводника.

Количество термопар может быть самым разнообразным – от 1 до 100 , за счёт чего можно сделать элемент Пельтье практически с любыми показателями холодильных мощностей.

Практическое применение

В наше время элементы Пельтье активно применяются для:

  1. холодильников;
  2. кондиционеров;
  3. автомобильных охладителей;
  4. кулеров для воды
  5. видеокарт ПК;

Элемент Пельтье получил широкое применение в различных холодильных системах, в том числе и среди холодильников и кондиционеров. Возможность достигать очень низких температур делает его превосходным решением для охлаждения электрических приборов или технического оборудования, подвергающегося нагреву. Сегодня разработчики применяют элементы Пельтье в акустических и звуковых системах, где они выполняют роль обычного куллера. Отсутствие интенсивных звуков делает процесс охлаждения практически бесшумным, что является прекрасным преимуществом элемента.

В наше время подобная технология пользуется большой популярностью за счёт очень мощной теплоотдачи . К тому же, современные элементы Пельтье отличаются очень компактными габаритами, а их радиаторы способны хранить нужную температуру на протяжении длительного времени. Ещё одним преимуществом элементов Пельтье является их долговечность, т.к. они состоят из цельных неподвижных элементов, что уменьшает вероятность поломок. Конструкция самого распространённого типа выглядит очень просто и включает в себя два медные проводника с контактами и соединительными проводами, также изолирующий элемент, который изготовляется из нержавеющей стали или керамических материалов.

Учитывая простоту конструкции, сделать элемент Пельтье своими руками в домашних условиях совсем несложно. Его можно будет использовать для холодильников или прочих приборов . Перед началом работ вам нужно подготовить две металлические пластины и проводку с контактами. Изначально подготовьте проводники, которые необходимо установить у основания элемента. Как правило, применяются проводники с маркировкой «РР».

Также стоит заранее позаботиться об полупроводниках на выходе. Они будут применяться для отдачи тепла на верхнюю пластину. В процессе установки задействуйте паяльник. На конечном этапе нужно присоединить два провода. Первый устанавливается у основания и прочно закрепляется возле крайнего проводника. Важно учесть, чтобы любые соприкосновения с пластиной были устранены.

Второй проводник прикрепляется у верхней части. Фиксируется он таким же образом, как и первый – к крайнему проводнику. Чтобы проверить функциональность устройства стоит применить тестер. Просто соедините два провода к прибору и проверьте вольтаж. Отклонение напряжения будет составлять где-то 23 В .

Как сделать элементы Пельтье для холодильника?

Элементы Пельтье своими руками для холодильника изготавливаются также просто и быстро. Первое, что нужно учесть перед работами, это – материал пластины. Это должна быть прочная керамика. Что касается проводников, то их нужно подготовить не меньше 20-ти штук , что позволит добиться максимального перепада температур. При правильном расчете коэффициент полезного действия может быть увеличен на 70%.

Многое зависит от мощности используемого оборудования. Если холодильник работает на основе жидкого фреона, то проблем с мощностью никогда не будет. Элемент Пельтье, который был изготовлен своими руками устанавливается непосредственно возле испарителя, который установлен вместе с мотором. Для подобного монтажа вам понадобится запастись самым стандартным набором инструментов и прокладками. Они будут применены для элемента модели от пускового реле. С помощью подобного решения охлаждение в нижней части устройства произойдёт намного быстрее.

Стоит помнить, что перед тем как сделать элемент Пельтье для холодильника своими руками, вам нужно запастись достаточным количеством электрических проводников. Для того чтобы добиться разницы в температурах при разработке элемента своими руками, используйте не меньше 16 проводов . Обязательно обеспечьте им качественную изоляцию и только тогда подключайте к компрессору. Убедившись в надёжности и безопасности связи между проводами можно переходить к их соединению. После завершения установки ещё раз проверьте силу предельного напряжения с помощью тестера. Если работа элемента была нарушена, это первым делом скажется на терморегуляторе. Иногда случается его короткое замыкание.

Помимо холодильников, элементы Пельтье активно применяются и в автомобильных охладителях. Сделать качественный автомобильный холодильник своими руками тоже достаточно просто. Для этого необходимо найти хорошую керамическую пластину с толщиной не меньше 1.1 миллиметра. Провода должны быть немодульными. В качестве проводников лучше всего использовать медные провода с пропускной способностью не меньше 4 Ампера .

В связи с этим максимальное отклонение температур будет доходить до десяти градусов, что считается нормой. В частых случаях используются проводники с маркировкой «ПР20», которые сумели отличиться максимальной надёжностью и стабильностью работы. К тому же они подходят для различных типов контактов. При соединении устройства с конденсатором стоит применить паяльник.

Как сделать элемент Пельтье для кулера питьевой воды?

Кулер питьевой воды – это очень важное и необходимое устройство, которое вовремя охлаждает или нагревает питьевую воду. Чтобы ускорить процесс охлаждения , можно применить элемент Пельтье. Сделать его можно так же просто, как и для холодильника или автомобильного охладителя:

  • В качестве пластины стоит использовать исключительно керамическую поверхность.
  • В устройстве применяется не меньше 12 проводников, которые смогут выдерживать высокое сопротивление.
  • Для подключения нужно использовать два провода (желательно медные). Элемент устанавливается в нижней части кулера. К тому же он может соприкасаться с крышкой устройства. Но чтобы предотвратить возможные короткие замыкания фиксируйте всю проводку на решетке либо корпусе.

Элемент Пельтье для кондиционеров своими руками

Если речь идёт об элементе Пельтье для кондиционеров, то он может быть изготовлен только из проводника «ПР12». Дело в том, что этот тип проводников отлично выдерживает аномальные температуры и способен выдавать до 23В напряжения. Сопротивление при этом должно колебаться в пределах 3 Ом. Максимальные перепады температур будут достигать 10 градусов и КПД – 65 процентов. Проводники нужно укладывать в один ряд .

Стоит отметить, что элемент Пельтье может служить в качестве охладителя для видеокарты персонального компьютера. Для изготовления охладителя нужно взять 14 проводников, желательно из меди. Чтобы подключить элемент Пельтье к видеокарте ПК нужно задействовать немодульный проводник. Само устройство монтируется рядом с встроенным кулером на видеокарте. Для закрепления можно использовать маленькие металлические уголки, а для фиксации обычные гаечки.

Если при работе замечаются какие-то интенсивные шумы и прочие неестественные звуки, стоит проверить работоспособность проводки и осмотреть каждый проводник.

Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту - ТЭМ; английский вариант - TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.

Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда - многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, - обо всем этом мы расскажем в данном материале.

Немного теории

Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.

Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.

Базовая схема устройства ТЭМ

Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому. Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.

Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой - p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов - основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

  • сравнительно небольшие габариты;
  • возможность работы и на охлаждение, и на нагревание системы;
  • отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

  • низкий КПД модулей;
  • необходимость наличия источни- ка тока для их работы;
  • большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
  • ограниченные габариты и полезные характеристики.

Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше - тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье - основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.

Модули Пельтье в ПК: практика

При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье. Причины зачастую кроются в неправильном расчете (или построении СО наугад). Дело в том, что любой ТЭМ имеет свои штатные характеристики, обычно выделяют два значения (рассмотрим их на примере модуля ТЕС1-12709 с заявленной максимальной мощностью 136 Вт), например, пишут, что ΔTmax Qcmax=0(°С) 66 и Qcmax ΔTmax=0(W) 89.2. Перефразируя данное выражение: модуль способен обеспечить максимальный перепад температур между сторонами, равный 89,2 ºС при отсутствии тепловой нагрузки и 0 ºС при наличии таковой на «холодную» сторону 66 Вт. Таким образом, полезная нагрузка модуля лежит в пределах от 0 до 66 Вт, в идеале - чем меньше - тем лучше и тем большую разницу температур обеспечит ТЭМ. В то же время любой модуль имеет другую характеристику - максимальную потребляемую мощность, которую тоже нужно отвести от него с помощью системы охлаждения. Для рассматриваемого ТЕС1-12709 Umax (В) равно 15.2 В, I max- 9 А. Следовательно, при указанных параметрах имеем энергопотребление 136,8 Вт, что, согласитесь, немало.

Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами - при полезной составляющей в 150-200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600-800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои - маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов - тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ. Для этой цели лучше всего подойдет промежуточный «буфер» - медная пластинка толщиной 5-7 мм, полностью закрывающая поверхность модуля. К слову, оптимальный режим эксплуатации элементов Пельтье обеспечивается при пониженных напряжении и потребляемом токе. Приближение этих параметров к максимальным существенно повышает тепловую отдачу пластины, однако не так ощутимо - полезную составляющую.

Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность - 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).

В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки. В последнем случае допустима эксплуатация ПК лишь для проведения кратковременных бенчинг-сессий. Теплоизоляция обеспечит повышение общего КПД установки.

Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение - 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.

Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, - они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов - ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.

Выводы

Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК - чипсетов и отдельных GPU).

На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей - предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.

Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы - промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».

Готовые СО на базе ТЭМ

Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.

Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше - возможно, все обернулось бы иначе.

Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)

Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20-30 ºС в режиме максимальной нагрузки.

Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.

Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода - под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.

Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007-2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.

XtremeLabs.org MONSTER T.E.C. Project

Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.

Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы - массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.

Первый пуск ТЭМ-чиллера в полевых условиях

Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5-7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.

С одной стороны, полученные результаты действительно впечатляют - подобные температуры при таких нагрузках способны обеспечить разве что чиллеры на основе систем фазового перехода, с другой - а стоит ли овчинка выделки? Чудовищная потребляемая мощность системы, громоздкая СО «горячего» контура, высокая общая стоимость оправдываются лишь концептуальным статусом XtremeLabs.org MONSTER T.E.C. Project, на данный момент находящимся в стадии доработки.

Термоэлектрический охладитель Пельтье.

Принцип действия заимствовал из нета: В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К/

Описание
Элемент пельтье представляет из себя термоэлектрический преобразователь, который при подаче напряжения способен создать разность температур на пластинах, то есть перекачать тепло или холод. Представленный элемент Пельтье применяется при охлаждении компьютерных плат (при условии эффективного отведения тепла), для охлаждения или нагрева воды. Так же элементы Пельтье используются в переносных и автомобильных холодильниках.

Элемент Пельтье, работающий от 12 Вольт.

Для нагрева необходимо просто поменять полярность.
Размеры пластины Пельтье: 40 х 40 х 4 миллиметра.
Рабочий диапазон температур: от -30 до +70?..
Рабочее напряжение: 9-15 Вольт.
Потребляемая сила тока: 0.5-6 А.
Максимальная потребляемая мощность: 60 Вт.
Забавная вещица, подключаем 12v +- холодит меняем полярность греет. Используется во многих авто холодильниках, во всяком случае у меня такой. Можно приделать компактную схему в бардачок что б летом шоколад не таял! Для использования и эффективного применения нужно использовать радиатор охлаждения - в качестве теста применил радиатор от компьютерного процессора, можно с куллером. Чем лучше охлаждение тем эффект Пельтье сильнее и эффективнее. При подключении к авто акб на 12v ток потребления составил 5 ампер. Одним словом элемент прожорлив. Так как еще не собрал всё схему, а провел лишь пробные тесты, без приборных замеров температур. Так при режиме охлаждения в течении 10ти минут появилась легкая изморозь. В режиме подогрева вода в металлической чашки закипела. Эффективность конечно же этого охладителя низка, но цена девайса и возможность по экспериментировать делают покупку оправданной. Остальное на фото

Элементом Пельтье называют термопару, иначе говоря, устройство изменяющее температуру и работающее в соответствии с одноимённым принципом Пельтье, то есть, демонстрируя разность температур, возникающую с момента подачи электроэнергии. В англоязычных источниках фигурирует в роли термоэлектрического охладителя. Обратный данному эффекту носит название эффекта Зеебека.

Принцип работы устройства

Элемент Пельтье функционирует благодаря взаимодействию одного токопроводящего материала с другим, отличным по энергетическому уровню электронов в проводящей области. Прохождение по такому каналу связи наделяет электрон большим энергетическим запасом, что после позволяет ему перейти в проводящую область с более высоким энергетическим уровнем. Поглощение этой энергии приводит к понижению температуры в точке соединения проводников. Когда же происходит обратное движение тока, контакт нагревает, что находит выражение в виде стандартного теплового эффекта.

При условии, что по одной стороне подключён теплоотвод, в момент эксплуатации радиаторной системы вторая сторона даёт сильное охлаждения (до десятков градусов ниже температурного уровня окружающей среды). Между величиной тока и степенью охлаждения наблюдается прямая зависимость. При смене полярности также меняются положениями стороны нагрева и охлаждения.

Когда элемент Пельтье взаимодействует с деталями, выполненными из металла, то оказываемый им эффект уменьшается во много раз, и температурный контраст становится мало заметен под действием разнообразных явлений связанных с теплопроводностью цепи. По этой причине практическое применение подразумевает использование сразу двух полупроводников.

Сочетать термопары можно в любых количествах в пределах сотни, что делает возможным создание элемента Пельтье любой холодильной мощности.

Термоэлектрический модуль

Особенно явно эффект Пельтье можно наблюдать при использовании p- и n- полупроводников. В соответствии с направлением электротока при переходе через p-n-соединения происходит поглощение, либо выделение энергии.

Именно такая конструкция применяется в ТЭМ (термоэлектрическом модуле). Единичный элемент термоэлектрического модуля – это , конструкция которой представляет собой объединение p- и n- проводника. Если последовательно соединить несколько подобных элементов, то поглощение теплоты будет происходить на n-p-контакте, а выделение на p-n-контакте. В результате возникает уже описанная ранее ситуация с разностью температур. Согласно общепринятому принципу горячей является та сторона, к которой подведены провода и на схеме она всегда расположена внизу.

Рис.1: Термоэлектрический модуль Пельтье

В ТЭМ термопары фиксируются между парой пластин из керамических материалов. Каждая из веток спаивается с медными проводящими площадками (шинками), которые в свою очередь скрепляются с теплопроводящим материалом, например, оксидом алюминия.

Определять уровень рабочего напряжения модуля следует, исходя из количества составных элементов. Наиболее распространённым вариантом является 127-парные модульные конструкции с наибольшим уровнем напряжения в 16 Вольт. Но для их работы обычно достаточно 75% от этого значения. Мало того именно эта цифра является наиболее подходящей, поскольку отвечает и требованиям к рабочим условиям, и является достаточно экономичной. При повышении напряжения мощность почти не увеличится, а вот энергопотребление ощутимо возрастёт.

Применение на практике

На сегодняшний день применение элемента Пельте особенно актуально в устройствах следующих типов:

  • Холодильники;
  • Кондиционеры;
  • Автомобильные охладители;
  • Кулеры для воды;
  • Видеокарты для персонального компьютера.

В целом, можно сказать, что элемент Пельтье стал неотъемлемой частью разнообразных холодильных и кондиционирующих систем. Использование этого устройства является отличным подходом к решению проблемы перегрева оборудования. В настоящее время элемент Пельтье также может быть использован для охлаждения акустической и звуковой системы, поскольку его работа является совершенно бесшумной и идеально подходит для таких целей.

Есть несколько качеств элемента Пельтье, которые пользуются большим спросом:

  • Они обеспечивают достаточно мощную теплоотдачу;
  • Имеют весьма скромные размеры, что позволяет использовать их практически в любых устройствах;
  • Способны к сохранению одного и того же температурного режима на протяжении продолжительного срока (благодаря радиаторам);
  • Отличаются изрядной долговечность, поскольку укомплектованы из ряда цельных недвижимых компонентов.

Самая простая составляющая элемента выглядит как пара медных проводников, к которым подключены контакты, соединительные провода, оснащённые изолирующим элементом (для его изготовления используется нержавеющая сталь или керамика).

Как самостоятельно изготовить элемент Пельтье

Простота конструкции этого устройства располагает к тому, чтобы изготовить его самостоятельно. Тем более, что сфера его практического применения практически не ограничена: холодильники, кондиционеры и другая техника.

Предварительно следует заготовить пару пластин из металла, а также понадобится проводка с контактами. Прежде всего, запаситесь проводниками, которые будут установлены рядом с основанием устройства. Для этих целей лучше всего подойдут PP-проводники.

Далее, не забудьте, что на выходе должны быть установлены полупроводники, которые будут подавать тепло к верхней пластине. Для монтажа элемента потребуется паяльник. На финальном этапе понадобится подключить пару проводов. Один локализуется около основания и надёжно крепится рядом с крайним проводником. Значимо, чтобы не было никаких соприкосновений с пластиной.

Место крепления второго проводника располагается рядом с верхней частью и закрепляется аналогичным образом – у крайнего проводника.

Для проверки элемента на предмет работоспособности нужно будет воспользоваться тестером. Прибор подсоединяется к проводам и производится замер вольтажа. Стандартный показатель отклонения напряжения достигает примерно 23 Вольт.

Мощность элемента Пельте находится в прямой зависимости от его габаритов, это следует учитывать при самостоятельной сборке или монтаже. Установка недостаточно мощного элемента не предотвратит поломку техники, а лишь отсрочит её. В то же время избыточная мощность вызывает падение уровня температуры до критического уровня, когда влага, находящаяся в воздухе может начать конденсировать и оседать на поверхности устройств, что особенно опасно для электронных приборов.

Помимо этого, другая сторона модуля является источником достаточно большого количества тепла, поэтому для обеспечения его безопасной работы требуется вентилятор довольно большой мощности.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.

Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью, а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника, а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.



Рекомендуем почитать

Наверх