Биометрические методы идентификации и аутентификации. Комбинированные решения биометрической аутентификации. Аутентификация по отпечатку пальца на мобильных устройствах

Для Андроид 23.06.2019
Для Андроид

Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

Принцип действия биометрической системы

Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

Уязвимости биометрических систем

Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

Естественные ограничения

В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.

Атаки злоумышленников

Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

Защищенность биометрического шаблона

Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

Требования к защищенности шаблона

Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

Методы защиты шаблонов

Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

За и против

Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

Головоломка приватности

Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

На сегодня удачных практических решений для подобных вопросов нет.

Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.

Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.

Биометрическая идентификация - это предъявление пользователем своего уникального биометрического параметра и процесс сравнения его со всей базой имеющихся данных. Для извлечения такого рода персональных данных используются .

Биометрические системы контроля доступа удобны для пользователей тем, что носители информации находятся всегда при них, не могут быть утеряны либо украдены. считается более надежным, т.к. не могут быть переданы третьим лицам, скопированы.

Технологии биометрической идентификации

Методы биометрической идентификации:

1. Статические, основанные на физиологических признаках человека, присутствующих с ним на протяжении всей его жизни:

  • Идентификация ;
  • Идентификация ;
  • Идентификация ;
  • Идентификация по геометрии руки;
  • Идентификация по термограмме лица;
  • Идентификация по ДНК.
  • Идентификация
  • Идентификация

Динамические берут за основу поведенческие характеристики людей, а именно подсознательные движения в процессе повторения какого-либо обыденного действия: почерк, голос, походка.

  • Идентификация ;
  • Идентификация по рукописному почерку;
  • Идентификация по клавиатурному почерку
  • и другие.

Одним из приоритетных видов поведенческой биометрии - манера печатать на клавиатуре. При её определении фиксируется скорость печати, давление на клавиши, длительность нажатия на клавишу, промежутки времени между нажатиями.

Отдельным биометрическим фактором может служить манера использования мыши. Помимо этого, поведенческая биометрия охватывает большое число факторов, не связанных с компьютером, - походка, особенности того, как человек поднимается по лестнице.

Существуют также комбинированные системы идентификации, использующие несколько биометрических характеристик, что позволяет удовлетворить самые строгие требования к надежности и безопасности систем контроля доступа.

Критерии биометрической идентификации

Для определения эффективности СКУД на основе биометрической идентификации используют следующие показатели:

  • - коэффициент ложного пропуска;
  • FMR - вероятность, что система неверно сравнивает входной образец с несоответствующим шаблоном в базе данных;
  • - коэффициент ложного отказа;
  • FNMR - вероятность того, что система ошибётся в определении совпадений между входным образцом и соответствующим шаблоном из базы данных;
  • График ROC - визуализация компромисса между характеристиками FAR и FRR;
  • Коэффициент отказа в регистрации (FTE или FER) – коэффициент безуспешных попыток создать шаблон из входных данных (при низком качестве последних);
  • Коэффициент ошибочного удержания (FTC) - вероятность того, что автоматизированная система не способна определить биометрические входные данные, когда они представлены корректно;
  • Ёмкость шаблона - максимальное количество наборов данных, которые могут храниться в системе.

В России использование биометрических данных регулируются Статьей 11 Федерального закона «О персональных данных» от 27.07.2006 г.

Сравнительный анализ основных методов биометрической идентификации

Сравнение методов биометрической аутентификации с использованием математической статистики (FAR и FRR)

Главными, для оценки любой биометрической системы, являются два параметра:

FAR (False Acceptance Rate) - коэффициент ложного пропуска, т.е. процент возникновения ситуаций, когда система разрешает доступ пользователю, незарегистрированному в системе.

FRR (False Rejection Rate) - коэффициент ложного отказа, т.е. отказ в доступе настоящему пользователю системы.

Обе характеристики получают расчетным путем на основе методов математической статистики. Чем ниже эти показатели, тем точнее распознавание объекта.

Для самых популярных на сегодняшний день методов биометрической идентификации средние значения FAR и FRR выглядят следующим образом:

Но для построения эффективной системы контроля доступа недостаточно отличных показателей FAR и FRR. Например, сложно представить СКУД на основе анализа ДНК, хотя при таком методе аутентификации указанные коэффициенты стремятся к нулю. Зато растет время идентификации, увеличивается влияние человеческого фактора, неоправданно возрастает стоимость системы.

Таким образом, для качественного анализа биометрической системы контроля доступа необходимо использовать и другие данные, получить которые, порой, возможно только опытным путем.

В первую очередь, к таким данным нужно отнести возможность подделки биометрических данных для идентификации в системе и способы повышения уровня безопасности.

Во- вторых, стабильность биометрических факторов: их неизменность со временем и независимость от условий окружающей среды.

Как логичное следствие, - скорость аутентификации, возможность быстрого бесконтактного снятия биометрических данных для идентификации.

И, конечно, стоимость реализации биометрической СКУД на основе рассматриваемого метода аутентификации и доступность составляющих.

Сравнение биометрических методов по устойчивости к фальсификации данных

Фальсификация биометрических данных это в любом случае достаточно сложный процесс, зачастую требующий специальной подготовки и технического сопровождения. Но если подделать отпечаток пальца можно и в домашних условиях, то об успешной фальсификации радужной оболочки - пока не известно. А для систем биометрической аутентификации по сетчатке глаза создать подделку попросту невозможно.

Сравнение биометрических методов по возможности строгой аутентификации

Повышение уровня безопасности биометрической системы контроля доступа, как правило, достигается программно-аппаратными методами. Например, технологии «живого пальца» для отпечатков, анализ непроизвольных подрагиваний – для глаз. Для увеличения уровня безопасности биометрический метод может являться одной из составляющих многофакторной системы аутентификации.

Включение в программно-аппаратный комплекс дополнительных средств защиты обычно довольно ощутимо увеличивает его стоимость. Однако, для некоторых методов возможна строгая аутентификация на основе стандартных составляющих: использование нескольких шаблонов для идентификации пользователя (например, отпечатки нескольких пальцев).

Сравнение методов аутентификации по неизменности биометрических характеристик

Неизменность биометрической характеристики с течением времени понятие также условное: все биометрические параметры могут измениться вследствие медицинской операции или полученной травмы. Но если обычный бытовой порез, который может затруднить верификацию пользователя по отпечатку пальца, - ситуация обычная, то операция, изменяющая рисунок радужной оболочки глаза – редкость.

Сравнение по чувствительности к внешним факторам

Влияние параметров окружающей среды на эффективность работы СКУД зависит от алгоритмов и технологий работы, реализованных производителем оборудования, и может значительно отличаться даже в рамках одного биометрического метода. Ярким примером подобных различий могут послужить считыватели отпечатков пальцев, которые в целом довольно чувствительны к влиянию внешних факторов.

Если сравнивать остальные методы биометрической идентификации – самым чувствительным окажется распознавание лиц 2D: здесь критичным может стать наличие очков, шляпы, новой прически или отросшей бороды.

Системы, использующие метод аутентификации по сетчатке, требуют довольно жесткого положения глаза относительно сканера, неподвижности пользователя и фокусировки самого глаза.

Методы идентификации пользователя по рисунку вен и радужной оболочке глаза сравнительно стабильны в работе, если не пытаться использовать их в экстремальных условиях работы (например, бесконтактная аутентификация на большом расстоянии во время «грибного» дождя).

Наименее чувствительна к влиянию внешних факторов трехмерная идентификация по лицу. Единственным параметром, который может повлиять на работу подобной СКУД, является чрезмерная освещенность.

Сравнение по скорости аутентификации

Скорость аутентификации зависит от времени захвата данных, размеров шаблона и объема ресурсов, отведенных на его обработку, и основных программных алгоритмов применяемых для реализации конкретного биометрического метода.

Сравнение по возможности бесконтактной аутентификации

Бесконтактная аутентификация дает массу преимуществ использования биометрических методов в системах физической безопасности на объектах с высокими санитарно-гигиеническими требованиями (медицина, пищевая промышленность, научно-исследовательские институты и лаборатории). Кроме того, возможность идентификации удаленного объекта ускоряет процедуру проверки, что актуально для крупных СКУД с высокой поточностью. А также, бесконтактная идентификация может использоваться правоохранительными органами в служебных целях. Именно поэтому , но еще не достигли устойчивых результатов. Особенно эффективны методы, позволяющие захватывать биометрические характеристики объекта на большом расстоянии и во время движения. С распространением видеонаблюдения реализация подобного принципа работы становится все более легкой.

Сравнение биометрических методов по психологическому комфорту пользователя

Психологический комфорт пользователей – также достаточно актуальный показатель при выборе системы безопасности. Если в случае с двухмерным распознаванием лиц или радужной оболочкой – оно происходит незаметно, то сканирование сетчатки глаза – довольно неприятный процесс. А идентификация по отпечатку пальца, хоть и не приносит неприятных ощущений, может вызывать негативные ассоциации с методами криминалистической экспертизы.

Сравнение по стоимости реализации биометрических методов в СКУД

Стоимость систем контроля и учета доступа в зависимости от используемых методов биометрической идентификации крайне различается между собой. Впрочем, разница может быть ощутимой и внутри одного метода, в зависимости от назначения системы (функциональности), технологий производства, способов повышающих защиту от несанкционированного доступа и т.п.

Сравнение доступности методов биометрической идентификации в России

Идентификация как Услуга (Identification-as-a-service)

Идентификация как Услуга на рынке биометрических технологий понятие достаточно новое, но сулящее массу очевидных преимуществ: простота использования, экономия времени, безопасность, удобство, универсальность и масштабируемость – как и другие системы, базирующиеся на Облачном хранении и обработке данных.

В первую очередь, Identification-as-a-service представляет интерес для крупных проектов с широким спектром задач по безопасности, в частности, для государственных и местных правоохранительных органов, позволяя создать инновационные автоматизированные системы биометрической идентификации, которые обеспечивают идентификацию в режиме реального времени подозреваемых и преступников.

Облачная идентификация как технология будущего

Развитие биометрической идентификации идет параллельно развитию Облачных сервисов. Современные технологические решения направлены на интеграцию различных сегментов в комплексные решения, удовлетворяющие всем потребностям клиента, при чем, не только в обеспечении физической безопасности. Так что объединение Cloud-сервисов и биометрии в составе СКУД – шаг, полностью отвечающий духу времени и обращенный в перспективу.

Каковы перспективы объединения биометрических технологий с облачными сервисами?

Этот вопрос редакция сайт адресовала крупнейшему российскому системному интегратору, компании «Техносерв»:

"Начнем с того, что интеллектуальные комплексные системы безопасности, которые мы демонстрируем – и есть, собственно, один из вариантов облака. А вариант из фильма: человек один раз прошел мимо камеры и он уже занесен системы… Это будет. Со временем, с увеличением вычислительных мощностей, но будет.

Сейчас на одну идентификацию в потоке, с гарантированным с качеством, - нужно как минимум восемь компьютерных ядер: это чтобы оцифровать изображение и быстро сравнить его с базой данных. Сегодня это технически возможно, но невозможно коммерчески - такая высокая стоимость просто не сообразна. Однако, с повышением мощностей, мы придем к тому, что единую базу биоидентификации всё-таки создадут, " - отвечает Александр Абрамов, директор департамента мультимедиа и ситуационных центров компании "Техносерв".

Идентификация как Услуга Morpho Cloud

О принятии Облачных сервисов в качестве удобного и безопасного решения, говорит первое развертывание автоматизированной системы биометрической идентификации для государственных правоохранительных органов в коммерческой облачной среде, завершившееся в сентябре 2016 гола: MorphoTrak, дочерняя компания Safran Identity & Security, и Департамент полиции Альбукерке успешно развернули MorphoBIS в облаке MorphoCloud. Полицейские уже отметили значительное увеличение скорости обработки, а также возможность распознавания отпечатков значительно худшего качества.

Служба, разработанная MorphoTrak) базируется на Microsoft Azure Government и включает в себя несколько биометрические механизмов идентификации: дактилоскопическая биометрия, биометрия лица и радужной оболочки глаза. Кроме того, возможно распознавание татуировок, голоса, услуги (VSaaS).

Кибербезопасность системы отчасти гарантируется размещением на правительственном сервере уголовного правосудия Criminal Justice Information Services (CJIS), а отчасти совокупным опытом работы в области безопасности компаний Morpho и Microsoft.

"Мы разработали наше решение, чтобы помочь правоохранительным органам добиться экономии времени и увеличения эффективности. Безопасность, конечно, является ключевым элементом. Мы хотели, чтобы облачное решение отвечало бы жесткой политике безопасности правительства CJIS и нашли Microsoft идеальным партнером, чтобы обеспечить жесткий контроль над уголовными и национальными данными по безопасности, в рамках территориально-распределенной среды центров обработки данных." - говорит Франк Баррет, директор Cloud Services в MorphoTrak, LLC.

В результате Morpho Cloud является выдающимся примером аутсорсингового управления идентификацией , которая может обеспечить эффективность и экономичность улучшений в системах безопасности правоохранительных органов. Идентификация как сервис предоставляет преимущества, недоступные для большинства учреждений. Например, гео-распределенное аварийное восстановление данных, как правило, не целесообразно с точки зрения высокой стоимости проекта, и повышение уровня безопасности таким образом возможно только благодаря масштабу Microsoft Azure и Morpho Cloud.

Биометрическая аутентификация на мобильных устройствах

Аутентификация по отпечатку пальца на мобильных устройствах

Исследование Biometrics Research Group, Inc . посвящено анализу и прогнозу развития рынка биометрической аутентификации в мобильных устройствах. Исследование спонсировано ведущими производителями рынка биометрии Cognitec, VoicePIN и Applied Recognition .

Рынок мобильной биометрии в цифрах

По данным исследования объем сегмента мобильной биометрии оценивается в 9 млрд. долл. к 2018 г. и $ 45 млрд к 2020 году по всему миру. При этом использование биометрических характеристик для аутентификации будет применяться не только для разблокировки мобильных устройств, а также для организации многофакторной аутентификации и мгновенного подтверждения электронных платежей.

Развитие сегмента рынка мобильной биометрии связано с активным использованием смартфонов с предустановленными сенсорами. Отмечается, что к концу 2015 года, мобильные устройства с биометрией будут использовать не менее 650 млн человек. Число пользователей мобильных с биометрическими датчиками согласно прогнозам, будет расти на 20.1% в год и к 2020 году составит не менее 2 млрд. человек.

Материал спецпроекта "Без ключа"

Спецпроект "Без ключа" представляет собой аккумулятор информации о СКУД, конвергентном доступе и персонализации карт

Для разблокировки экрана и защиты от посторонних, чаще всего используется числовой пароль или графический ключ. Однако все они имеют множество вариантов обхода, что не гарантирует 100% сохранность личной информации. С ростом развития технологий, на смену традиционным методам, пришли более совершенные – биометрические системы аутентификации (БСА).

В отличие от введения точного набора символов, БСА использует уникальные особенности человека, приобретенные с рождения, способных меняться со временем или внешним воздействием. Это исключает вероятность несанкционированного доступа к устройству, и увеличивает сохранность личной информации. В мобильной индустрии распространение получили технологии: распознавания отпечатков пальцев, радужной оболочки глаза и голоса.

Стоит отметить, что каждый метод нуждается в не сложной предварительной настройке. Её суть заключается в видении биометрических данных одного или нескольких пользователей, которые будут использоваться для разблокировки смартфона или планшета. Так же необходимо ввести числовой код разблокировки, на случай если по какой-то причине, считать биометрические данные будет невозможно.

Аутентификация по отпечаткам пальцев (Дактилоскопия)

Принцип работы заключается в сканировании и распознании уникальных и неповторимых для каждого, отпечатков пальцев. Для этого достаточно приложить палец к специальному сенсору, располагаемому на тыльной или лицевой стороне устройства. Весь процесс занимает доли секунды и не требует дополнительных действий.

Достоинства

  1. Самая высокая точность срабатывания, в сравнении с другими системами аутентификации.
  2. Не высокая стоимость сканирующего модуля.
  3. Простота эксплуатации.
  4. Многоцелевое использование. Возможность назначить на сканер дополнительную функцию: ответ на звонок, спуск затвора камеры и т.д.
  5. Самая высокая скорость считывания и распознания.

Недостатки

  1. Высокая степень отказа в случае повреждения папиллярного узора отпечатка пальцев.
  2. Сложность распознания при наличии на пальце влаги или грязи.
  3. В недорогих модулях, предварительно нуждается в нажатии кнопки питания, для пробуждения экрана.

Аутентификация по радужке глаза


Как и в случае с предыдущим пунктом, радужка глаза является уникальной особенностью каждого человека и не меняется с возрастом. Её рисунок очень сложен и позволяет отобрать более 200 точек для идентификации, тогда как для отпечатков пальцев не более 60-70. Метод является наиболее точным, среди всех существующих, так как найти одинаковые рисунки радужки, даже у близнецов, не возможно.

Для аутентификации используется сканирующий модуль в паре с камерой, а эффективное расстояние для считывания биоматериала от 10 см до одного метра. Камера делает несколько последовательных снимков, а система сравнивает их с теми, что находятся в базе данных. Весь процесс может занимать несколько секунд и зависит от мощности устройства.

Достоинства:

  1. Возможность проведения аутентификации на расстоянии.
  2. Радужная оболочка защищена от внешнего воздействия и не будет меняться со временем.
  3. На процесс сканирования не влияют очки, контактные линзы.
  4. Высочайшая точность определения, а значит и защита от подделки.

Недостатки:

  1. Высокая цена сканирующего модуля, как результат очень низкая степень распространения.
  2. Проведение идентификации в условиях низкой освещенности затруднительно или не возможно.

Аутентификация по голосу

Наиболее простой, доступный и распространенный метод идентификации, так как не требует дорогостоящей аппаратуры, достаточно микрофона и звуковой платы. Технология хорошо развита, а для определения владельца может быть использовано несколько шаблонов и комбинаций: по свободной речи или строго определенной фразы.

Обычно для разблокировки устройства не нужно предпринимать дополнительных действий, звуковой модуль всегда находится в режиме ожидания (более дорогие модели смартфонов или планшетов). Активация может срабатывать после нажатия кнопки питания (более дешевые модели).

Достоинства:

  1. Высокая дешевизна и самая широкая распространенность, ввиду ненадобности специального сканера или иного дорогостоящего оборудования.
  2. Отсутствие специальных требований и может использоваться даже в самых дешевых смартфонах и планшетах.
  3. Простота использования и практичность.

Недостатки:

  1. Низкая точность метода, из-за способности изменения голоса в зависимости от обстоятельств, возраста или болезни.
  2. Сложность проведения идентификации в условиях сильного шума.

Вывод и развитие технологии в будущем

Доступность к личной информации украденного или утерянного устройства, обусловлена редкой установкой пароля. Это неудобно, да и злоумышленник легко может подсмотреть код ранее или обойти защиту, используя известные уязвимости. Биометрические системы компенсируют этот недостаток и являются более улучшенными и комфортными для пользователя. Но и они пока далеки от совершенства и имеют ряд недостатков, которые компенсируются использованием нескольких методов идентификации. А благодаря регулярному исследованию и усовершенствованию сторонними компаниями, для промышленного и бытового использования, в будущем многие недостатки могут быть устранены.

  • 3.2.Процедура концептуального проектирования сфз яо
  • 3.3.Основы анализа уязвимости яо
  • 3.4. Вопросы для самоконтроля
  • 4. Подсистема обнаружения
  • 4.1. Периметровые средства обнаружения
  • 4.1.1. Тактико-технические характеристики периметровых систем
  • 4.1.2. Физические принципы действия периметровых средств
  • 4.1.3. Описание периметровых средств обнаружения
  • 4.2. Объектовые средства обнаружения
  • 4.2.1. Вибрационные датчики
  • 4.2.2. Электромеханические датчики
  • 4.2.3. Инфразвуковые датчики
  • 4.2.4. Емкостные датчики приближения
  • 4.2.5. Пассивные акустические датчики
  • 4.2.6. Активные инфракрасные датчики
  • 4.2.7. Микроволновые датчики
  • 4.2.8. Ультразвуковые датчики
  • 4.2.9. Активные акустические датчики
  • 4.2.10. Пассивные инфразвуковые датчики
  • 4.2.11. Датчики двойного действия
  • 4.3. Вопросы для самоконтроля
  • 5. Подсистема контроля и управления доступом
  • 5.1. Классификация средств и систем контроля и управления доступом
  • 5.1.1. Классификация средств контроля и управления доступом
  • 5.1.2. Классификация систем контроля и управления доступом
  • 5.1.3. Классификация средств и систем куд по устойчивости к нсд
  • 5.2. Назначение, структура и принципы функционирования подсистем контроля и управления доступом
  • 5.3. Считыватели как элементы системы контроля и управления доступом
  • 5.4. Методы и средства аутентификации
  • 5.5. Биометрическая аутентификация
  • 5.6. Вопросы для самоконтроля
  • 6. Подсистема телевизионного наблюдения
  • 6.1. Задачи и характерные особенности современных стн
  • 6.2. Характеристики объектов, на которых создаются стн
  • 6.3. Телекамеры и объективы
  • 6.3.1. Современные тк
  • 6.3.2. Объективы
  • 6.3.3. Технические характеристики тк
  • 6.3.4. Классификация тк
  • 6.4. Устройства отображения видеоинформации - мониторы
  • 6.5. Средства передачи видеосигнала
  • 6.5.1. Коаксиальные кабели
  • 6.5.2. Передача видеосигнала по «витой паре»
  • 6.5.3. Микроволновая связь
  • 6.5.4. Радиочастотная беспроводная передача видеосигнала
  • 6.5.5. Инфракрасная беспроводная передача видеосигнала
  • 6.5.6. Передача изображений по телефонной линии
  • Сотовая сеть
  • 6.5.7. Волоконно-оптические линии связи
  • 6.6. Устройства обработки видеоинформации
  • 6.6.1. Видеокоммутаторы.
  • 6.6.2. Квадраторы.
  • 6.6.3. Матричные коммутаторы
  • 6.6.4. Мультиплексоры
  • 6.7. Устройства регистрации и хранения видеоинформации
  • 6.7.1.Специальные видеомагнитофоны
  • 6.7.2. Цифровые системы телевизионного наблюдения
  • 6.7.3. Мультиплексор с цифровой записьюCaliburDvmRe-4eZTфирмыKalatel, сша.
  • 6.8. Дополнительное оборудование в стн
  • 6.8.1. Кожухи камер
  • 6.8.2. Поворотные устройства камер
  • 6.9. Особенности выбора и применения средств (компонентов) стн
  • 6.10.Вопросы для самоконтроля
  • 7. Подсистема сбора и обработки данных
  • 7.1. Назначение подсистемы сбора и обработки данных
  • 7.2. Аппаратура сбора информации со средств обнаружения – контрольные панели.
  • 7.3. Технологии передачи данных от со
  • 7.4. Контроль линии связи кп-со
  • 7.5. Оборудование и выполняемые функции станции сбора и обработки данных
  • 7.6. Дублирование / резервирование арм оператора сфз
  • 7.7. Вопросы для самоконтроля
  • 8. Подсистема задержки
  • 8.1. Назначение подсистемы задержки
  • 8.2. Заграждения периметра
  • 8.3. Объектовые заграждения
  • 8.4. Исполнительные устройства
  • 8.5. Вопросы для самоконтроля
  • 9.Подсистема ответного реагирования
  • 9.1. Силы ответного реагирования
  • 9.2. Связь сил ответного реагирования
  • 9.3. Организация систем связи с использованием переносных радиостанций
  • 9.4. Вопросы для самоконтроля
  • 10. Подсистема связи
  • 10.1.Современные системы радиосвязи
  • 10.1.1. Основы радиосвязи
  • 10.1.2. Традиционные (conventional) системы радиосвязи.
  • 10.1.3. Транкинговые системы радиосвязи
  • 10.2. Система связи сил ответного реагирования
  • 10.3. Организация систем связи с использованием переносных радиостанций
  • 10.4. Системы радиосвязи с распределенным спектром частот
  • 10.5. Системы радиосвязи, используемые на предприятиях Минатома России
  • 10.6. Вопросы для самоконтроля
  • 11. Оценка уязвимости систем физической защиты ядерных объектов
  • 11.1.Эффективность сфз яо
  • 11.2.Показатели эффективности сфз яо
  • 11.3.Компьютерные программы для оценки эффективности сфз яо
  • 11.4. Вопросы для самоконтроля
  • 12. Информационная безопасность систем физической защиты ядерных объектов
  • 12.1. Основы методология обеспечения информационной безопасности объекта
  • 12.2. Нормативные документы
  • 12.3. Классификация информации в сфз яо с учетом требований к ее защите
  • 12.4. Каналы утечки информации в сфз яо
  • 12.5. Перечень и анализ угроз информационной безопасности сфз яо
  • 12.6. Модель вероятного нарушителя иб сфз яо
  • 12.7. Мероприятия по комплексной защите информации в сфз яо
  • Подсистема зи
  • Организационные
  • Программные
  • Технические
  • Криптографические
  • 12.8. Требования по организации и проведении работ по защите информации в сфз яо
  • 12.9. Требования и рекомендации по защите информации в сфз яо
  • 12.9.1. Требования и рекомендации по защите речевой информации
  • 12.9.2. Требования и рекомендации по защите информации от утечки за счет побочных электромагнитных излучений и наводок
  • 12.9.3. Требования и рекомендации по защите информации от несанкционированного доступа
  • 12.9.4. Требования и рекомендации по защите информации в сфз яо от фотографических и оптико-электронных средств разведки
  • 12.9.5. Требования и рекомендации по физической защите пунктов управления сфз яо и других жизненно-важных объектов информатизации
  • 12.9.6. Требования к персоналу
  • 12.10. Классификация автоматизированных систем сфз яо с точки зрения безопасности информации
  • 12.10.1. Общие принципы классификация
  • 12.10.2. Общие требования, учитываемые при классификации
  • 12.10.3.Требования к четвертой группе Требования к классу «4а»
  • Требования к классу «4п»
  • 12.10.4. Требования к третьей группе Требования к классу «3а»
  • Требования к классу «3п»
  • 12.10.4.Требования ко второй группе Требования к классу «2а»
  • Требования к классу «2п»
  • 12.10.5. Требования к первой группе Требования к классу «1а»
  • Требования к классу «1п»
  • 12.11. Информационная безопасность систем радиосвязи, используемых на яо
  • 12.11.1 Обеспечение информационной безопасности в системах радиосвязи, используемых на предприятиях Минатома России
  • 12.11.2. Классификация систем радиосвязи, используемых на яо, по требованиям безопасности информации
  • Требования ко второму классу
  • Требования к классу 2а
  • Требования к первому классу
  • Требования к классу 1б
  • Требования к классу 1а
  • 12.12. Вопросы для самоконтроля
  • Список литературы
  • 5.5. Биометрическая аутентификация

    При рассмотрении систем биометрической аутентификации особое внимание должно быть уделено точностным характеристикам:

      вероятности ошибочного отказа сотруднику (False Reject Rate, FRR);

      вероятности ошибочного пропуска злоумышленника (False Acceptance Rate);

      ординате точки пересечения кривых FRR и FAR (Equal Error Rate).

    Рисунок радужной оболочки. Радужная оболочка (окрашенная часть, ирис) каждого глаза абсолютно уникальна. Даже у однояйцовых близнецов рисунки радужек разные. Радужная оболочка защищена от внешней среды роговицей и тканевой жидкостью; в отличие от сетчатки, однако, радужная оболочка ясно видна на расстоянии. Случайные рисунки ириса созданы сплетением сетчатой структуры соединительной ткани и других видимых признаков (слоев, борозд, корон, впадин, пятен и т. п.) Рисунок ириса стабилен в течение всей жизни. Пример рисунка ириса показан на рис.5.2 (с сайта www.iriscan.com).

    Рис. 5.2. Рисунок ириса

    Система System 2000EAC фирмы IriScan использует технологию анализа радужной оболочки. Основной режим работы системы – идентификация. Процесс идентификации по ирису начинается с получения изображения глаза. Для считывания пользователю достаточно посмотреть на специальное отверстие с расстояния примерно 1 м. Далее на изображении выделяются границы зрачка и радужки, исключаются зоны, прикрытые веком, устраняются блики, определяется фокус для обработки изображения. Затем изображение ириса обрабатывается и кодируется. Поиск в базе данных осуществляется в реальном времени, поэтому скорость идентификации достаточно высока (при 10 тыс. зарегистрированных пользователей она составляет 2 сек). Непосредственно в устройстве может храниться информация о 1500 пользователей. При хранении данных на компьютере число пользователей не ограничено. Для работы в режиме аутентификации возможно подключение считывателей.

    Очки и контактные линзы не являются помехой работе системы. Реакция ириса на свет и естественное колебание зрачка делают невозможным обмануть систему при помощи подстановки фотографии.

    Основные характеристики системы приведены в табл.5.2.

    Таблица 5.2. Основные характеристики системы аутентификации по рисунку ириса глаза

    Расположение кровеносных сосудов сетчатки глаза. Ряд биометрических систем проводит автоматическую аутентификацию человека на основании уникальной картины расположения кровеносных сосудов сетчатки глаза (глазного дна). Исследованиями подтверждена уникальность рисунка кровеносных сосудов сетчатки глаза.

    При работе подобных систем пользователи должны смотреть в видоискатель прибора. Участок сетчатки сканируется неполяризованным светом низкой интенсивности, испускаемым ИК - диодами. Различная интенсивность отраженного света отображает расположение кровеносных сосудов.

    Продукт Icam 2001 компании EyeDentify относится к разряду рассматриваемых продуктов. Основные характеристики этой системы приведены в табл.5.3.

    Таблица 5.3. Основные характеристики системы аутентификации на основании уникальной картины расположения кровеносных сосудов сетчатки глаза

    Системы аутентификации на основе анализа особенностей глаза обладают очень высокой точностью. В частности, система фирмы IriScan считается самой точной биометрической системой в настоящее время. Недостатки подобных систем - высокая цена и неудобство использования. Процесс получения изображения глаза неприятен пользователям – многие стараются избежать аутентификации, защищая свои глаза.

    Область применения технологий аутентификации по особенностям глаза – объекты высокой степени секретности.

    Папиллярные узоры. Кожа человека состоит из двух слоев. Наружный слой называется эпидермисом, а второй, более глубокий, - дермой. Поверхность дермы, прилегающая к эпидермису, образует многочисленные выступы - так называемые дермальные сосочки. На ладонных поверхностях кистей, в частности пальцев, дермальные сосочки складываются в ряды. Поэтому эпидермис, повторяющий строение внешнего слоя дермы, на этих участках тела образует небольшие складки, отображающие и повторяющие ход рядов дермальных сосочков. Эти складки называются папиллярными линиями и отделяются друг от друга неглубокими бороздками. Папиллярные линии, особенно на поверхностях пальцев кисти, образуют различные узоры, называемые папиллярными узорами.

    Рисунок папиллярного узора на протяжении всей жизни человека остается неизменным, размер узора окончательно фиксируется к 18 – 20 годам. Папиллярный узор каждого пальца любого человека индивидуален и присущ только этому пальцу. После любых повреждений эпидермиса, не затрагивающих сосочков дермы, папиллярный узор в процессе заживления восстанавливается в прежнем виде. Если повреждены сосочки дермы, то образуется рубец, в определенной мере деформирующий в этом месте узор, но не изменяющий его первоначального общего рисунка и деталей строения в других местах.

    Для ввода образа отпечатка пальца используется несколько типов датчиков. Существуют датчики, измеряющие электроемкость выступов и впадин на коже пальца. Действие оптических датчиков основано на том факте, что зоны контакта выступающих папиллярных линий имеют более низкий коэффициент отражения света. Ультразвуковые датчики позволяют минимизировать влияние на результат распознавания грязи и пыли. Перспективна технология получения, обработки и хранения голограмм отпечатков.

    Характеристики наиболее популярных систем аутентификации по отпечаткам пальцев приведены в табл. 5.4.

    Таблица 5.4. Основные характеристики системы аутентификации по отпечаткам пальцев

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл

    Puppy Logon System

    Ultra-Scan 500 series

    Identicator DFR-90

    ЛОМО Интэк

    Академмедфонд

    В некоторых системах предусмотрена корректировка изображения в соответствии с состоянием кожи пальца – возможны настройки контрастности и яркости и регулировка уровня белого.

    Папиллярные узоры ладоней имеют меньше уникальных черт, чем узоры пальцев. Однако несколько продуктов, использующих такой принцип идентификации, находятся в стадии разработки или уже выходят на рынок. Все они разрабатываются для объектов с невысокими требованиями к уровню безопасности.

    Достоинства систем идентификации по папиллярным узорам - небольшие размеры устройств, удобство (можно встраивать сканеры даже в клавиши), невысокая (и постоянно снижающаяся) стоимость систем, высокая точность. К недостаткам технологии следует отнести возможность влияния на результат следов предыдущего отпечатка, порезов, грязи. В отечественных источниках указывают на психологическую проблему при применении дактилоскопии – у большинства людей снятие отпечатков пальцев устойчиво ассоциируется с криминалистикой.

    Области применения технологии – управление доступом в режимные помещения, к источникам информации (в т. ч. к компьютерам и вычислительным сетям), юридическое подтверждение права на использование различных документов и пластиковых карт.

    Форма кисти руки . В некоторых биометрических системах при аутентификации человека анализируется форма кисти руки, пальцев. Ведутся исследования в области автоматического измерения геометрических характеристик руки целиком.

    Несмотря на изменение формы кисти как с течением жизни человека, так и за относительно короткие сроки, практически постоянными остаются отношения размеров, форма пальцев, расположение суставов. В современных системах распознавания по форме руки применяется компенсация – образец корректируется при каждой успешной аутентификации. Принцип аутентификации по кисти руки человека поясняет рис. 5.5, а некоторые характеристики наиболее распространенных систем приведены в табл. 5.5.

    Рис. 5.5. Аутентификация по форме кисти руки

    Система Digi-2 фирмы BioMet Partners, Inc. идентифицирует человека по форме и трехмерным характеристикам двух пальцев (указательного и среднего), расположенных в форме латинской буквы V.

    Устройство ID3D HandKey фирмы Recognition Systems, Inc. анализирует ширину ладони и пальцев в нескольких местах, длину, ширину и толщину пальцев. Рука освещается инфракрасными лучами, а установленная сверху видеокамера регистрирует ее вид. В поле зрения камеры оказываются также боковое зеркало, дающее информацию о толщине ладони. В случае, когда сканирование полной кисти невозможно (например, отсутствует палец), устройство может работать с частью кисти. Ошибка первого рода составляет для устройства 0,1%, а на испытаниях, проведенных Сандийской Национальной лабораторией, вероятность трехкратного отказа зарегистрированному пользователю составила 0,03%. Возможное количество пользователей для автономного устройства – 20736, при хранении базы на компьютере число пользователей не ограничено.

    Существует отечественный аналог этого устройства - "ГЕОР".

    Таблица 5.5. Основные характеристики систем аутентификации по кисти руки

    Системы аутентификации по форме руки просты и удобны в эксплуатации. К недостаткам следует отнести громоздкость считывателей и меньшую, чем, например, у сканеров отпечатков пальцев, точность. Области применения – аутентификация посетителей в офисах, производственных помещениях, т. е. в местах, где из-за грязи затруднено применение сканеров отпечатков пальцев.

    Особенности лица. Наиболее распространенный метод аутентификации лиц основан на так называемых картах линий одинаковой интенсивности. Эти карты состоят из линий, соединяющих элементы изображения с равным уровнем яркости (интенсивности отраженного света). Аутентификация человека выполняется путем сравнения формы линий одинаковой интенсивности. Метод имеет ряд достоинств: легко реализуется программными и аппаратными средствами, позволяет отражать в описании трехмерную структуру лица, обеспечивает высокую точность распознавания личности, даже если человек в очках или с бородой.

    Применяется метод аутентификации человеческого лица по профилю, извлеченному из трехмерных данных изображения лица. Точность распознавания в данном методе слабо зависит от расстояния между наблюдаемым объектом (лицом) и камерой, а также от угла поворота головы.

    В табл. 5.6 приведены некоторые характеристики наиболее распространенных систем аутентификации по лицу.

    Таблица 5.6. Основные характеристики систем аутентификации по лицу

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл., включая стоимость видеооборудования

    Программа TrueFace Logon компании Miros Software сравнивает изображение с видеокамеры с эталонным, записанном, например, на смарт-карте. Слабая освещенность или цвет кожи программе не помеха. Алгоритм приспосабливается к изменениям прически, наличию или отсутствию очков, выражению лица и т. д. Программа разрабатывалась для аутентификации пользователей в корпоративных вычислительных сетях.

    Программа FaceIt PC для ОС Windows 95 корпорации Visionics Corp. сканирует изображение лица в режиме реального времени, что увеличивает стоимость оборудования (требуется плата захвата видеоизображения и предъявляются повышенные требования к производительности компьютера). Программа способна анализировать движущиеся лица, может выделять лицо в группе людей. Утверждается, что предусмотрена защита от обмана системы посредством предъявления фотографии. Время идентификации в режиме «движущегося изображения» составляет 0,1-0,2 сек, а в режиме «статического изображения» - 3 сек.

    Системы аутентификации, анализирующие особенности лица , отвечают практически всем требованиям, предъявляемым к биометрическим системам. Такие БС просты и удобны в использовании, имеют приемлемую скорость работы, хорошо воспринимаются пользователями, дешевы. Недостатки – возможность ввести систему в заблуждение, сильная зависимость точности распознавания от освещенности.

    Области применения - криминалистика, сфера компьютерной безопасности.

    Термографическая карта лица. Метод лицевой термографии базируется на результатах исследований, показавших, что вены и артерии лица каждого человека создают уникальную температурную карту. Специальная инфракрасная камера сканирует фиксированные зоны лица. Результат сканирования – термограмма – является уникальной характеристикой человека. Даже у однояйцовых близнецов термографическая картина различается. На точность системы не влияет ни высокая температура тела, ни охлаждение кожи лица в морозную погоду, ни естественное старение организма человека. Термограмма сохраняется после пластической операции, не зависит от освещенности (можно проводить идентификацию даже в темноте).

    Компания Technology Recognition Systems разработала аппаратно – программную систему идентификации человека по термографической карте лица. Система обладает очень высокой надежностью. Главный недостаток системы - очень высокая стоимость инфракрасных видеокамер (комплект для предприятия предлагается за 55 тыс. долл).

    Рисунок вен за запястье. Рисунок сухожилий и сосудов на запястье человека индивидуален. На этом основано устройство аутентификации, сканирующее поверхность запястья с помощью инфракрасного излучения.

    Преимущество предлагаемой технологии – невозможность случайного или умышленного повреждения рисунка сосудов запястья, в отличие, например, от рисунка отпечатков пальцев.

    В настоящий момент надежность и практичность указанной технологии не доказана.

    Форма уха. Результаты исследований, опубликованные в Европе, США и Японии, показывают, что уши людей сильно различаются по морфологическим и анатомическим признакам. Параметры ушей в целом формируются в возрасте 16–17 лет. Несмотря на то, что уши немного изменяются и далее на протяжении всей жизни человека, для практических приложений этим изменением можно пренебречь.

    В настоящее время проблема наследования особенностей ушей носит лишь теоретический характер.

    Особенности голоса. Использование технологии распознавания человека по голосу основано на анализе таких характеристик голоса, как тембр, спектр сигнала, акцент, интонация, сила звука, скорость речи, вибрации в гортани, носовые звуки и т.д.

    В зависимости от того, необходима ли идентификация (узнавание) или аутентификация (подтверждение) личности, применяются различные методы распознавания.

    Существуют методы идентификации говорящего, как зависимые от содержания речи, так и не зависимые от него. В некоторых методах точность распознавания увеличена благодаря использованию текстовой подсказки, когда проверяемый человек повторяет фразу, «произнесенную» машиной.

    Существует так называемый гибридный метод анализа речи. С помощью данного метода можно объединять акустическую и лингвистическую обработку (т. е. обработку звука и выделение слов и фраз).

    В других комбинированных методах параллельно с анализом голосовых признаков обрабатываются изображения формы рта. В качестве признаков речевого сигнала используется спектр мощности сигнала, а в качестве дополнительной информации - признаки геометрической формы рта.

    Основная техническая проблема при распознавании голоса – зашумленность сигнала.

    Характеристики некоторых биометрических систем голосовой аутентификации приведены в табл 5.7.

    Таблица 5.7. Основные характеристики систем голосовой аутентификации

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Определяется стоимостью программного обеспечения и составляет в среднем 50 – 200 долл.

    «Кристалл»

    Texas Instruments

    Системы аутентификации по голосу позволяют на базе обычного телефонного оборудования и недорогих звуковых плат проводить аутентификацию удаленных пользователей. Аутентификация по голосу оказалась наиболее подходящей биометрической технологией для системы платежей по кредитным картам проекта CASCADE .

    Достоинством таких систем является низкая цена оборудования (причем необходимое аппаратное обеспечение входит в стандартную комплектацию современных компьютеров). Недостатки - малая скорость работы, более низкая надежность по сравнению с большинством биометрических методов. На результатах проверки может сказываться небрежность, физическое и эмоциональное состояние человека, болезнь и т. п. (это относится ко всем биометрическим системам, основанным на анализе психологических параметров организма).

    Область применения технологии - управление удаленным доступом в закрытые программные системы.

    Особенности почерка. Методы распознавания по особенностям почерка делятся на две группы: анализ только изображения и анализ изображения вместе с анализом динамики письма.

    При анализе почерка выполняются такие этапы работы, как считывание и оцифровывание знаков, сегментация (в процессе сегментации производится сглаживание, устранение помех), подавление шумов, выделение непроизводных элементов, распознавание, идентификация символов. Сначала выделяются отдельные строки текста, затем отдельные знаки, а на последнем этапе - признаки выделенных знаков.

    При анализе почерка интерес представляют такие его особенности, как расположение точек над знаками, палочек у символов, точек поворота, положение мест отрыва пера от бумаги, точек пересечения, петель, прямолинейных участков, сегментов, длины и положения линий подъема и спуска и т. п. В качестве признаков могут использоваться такие структурные характеристики знаков, как отверстия, вогнутости контура, концевые точки.

    При анализе особенностей динамики письма сбор информации может происходить двумя способами. Во-первых, может использоваться перо со средствами восприятия силы его нажима на поверхность. Во-вторых, информация может быть получена при использовании чувствительной пластины со средствами восприятия положения точки на поверхности пластины. При появлении на поверхности написанных от руки символов регистрируются одновременно динамические усилия, воздействующие на кончик узла при письме, и положение наносимых обозначений относительно точки отсчета. Далее могут анализироваться такие динамические характеристики письма, как скорость, ускорение, порядок штрихов и т. д.

    Табл. 5.8 содержит данные о некоторых биометрических системах аутентификации человека по почерку.

    Ручка SmartPen разработана фирмой IMEC . Ручка беспроводная, в нее вмонтирован радиопередатчик с криптографической защитой. Ручкой можно расписываться на обычной бумаге.

    Ручка, разработанная фирмой IBM , имеет три пьезоэлектрических датчика: один измеряет давление вдоль оси пера, два других – ускорение. За 12,5 сек выполняется около 1000 измерений параметров.

    Таблица 5.8. Основные характеристики биометрических системах аутентификации человека по почерку

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл.

    «Кристалл»

    Известны биометрические системы, анализирующие до 42 статических и динамических параметров подписи.

    Системы аутентификации по почерку имеют относительно невысокую стоимость. Недостатком таких систем является то, что на результатах распознавания может сказываться физическое и эмоциональное состояние человека. Системы имеют невысокую скорость работы.

    Области применения этих БС – удостоверение подписей и подтверждение личности в банковской и компьютерной сфере.

    Динамические характеристики работы на клавиатуре. Рассматриваемая биометрическая технология основана на уникальности динамических характеристик («клавиатурного почерка») каждого человека.

    В системах аутентификации по динамическим характеристикам измеряются промежутки времени между нажатиями клавиш, длительности их удержания и взаимного перекрытия.

    Приближенная оценка вероятностей ошибок первого и второго рода для данной биометрической технологии составляет соответственно FRR=9%, FAR=8%.

    Недостаток биометрической технологии лежит в юридической области - при использовании программного обеспечения, анализирующего клавиатурный почерк, возможен скрытый контроль над сотрудниками (наблюдение за активностью их работы на компьютере). Другой недостаток – система может быть эффективно использована только лицами, обладающими устойчивым клавиатурным почерком и имеющими достаточно высокую скорость ввода.

    Область применения – системы управления доступом к компьютерам и терминалам.

    Биометрическими системами аутентификации называются системы, предназначенные для удостоверения личности пользователя на основе его биометрических данных. Такие системы максимально эффективно справляются с предоставлением доступа в особо охраняемые зоны, где нет возможности выставить персональную охрану по тем или иным соображениям. Их можно комбинировать с система автоматического оповещения, сигнализации и охранными системами.

    Методы биометрической идентификации (аутентификации)

    На сегодняшний день существует и используется множество методов биометрической аутентификации (идентификации). Они делятся на два вида.

    1. Статистические методы. Основаны на уникальных (физиологических) характеристиках, которые не меняются на протяжении человеческой жизни и никак не могут быть утеряны. Также исключено копирование мошенниками.
    2. Динамические методы. Основываются на характеристиках обыденного поведения определенного человека. Менее распространены, чем статические и практически не используются.

    Статистические

    • По отпечатку пальца – метод распознавания уникальности папиллярных линий (узоров) на пальце человека. Система при помощи сканера получает отпечаток, затем оцифровывает его и после этого сравнивает с ранее введенными шаблонами (наборами рисунков).
    • По сетчатке глаза – метод сканирования и распознавания уникального рисунка кровеносных сосудов глазного дна человека. Для такой процедуры используется излучение низкой интенсивности. Излучение через зрачок направляется к кровеносным сосудам, которые находятся на задней стенке глаза. Из получаемого сигнала выделяются особые точки, информация о которых хранится в шаблоне системы.
    • По радужной оболочке глаза – метод определения человеческой уникальности особенностей оболочки. Данная технология разработана для минимизации сканирования сетчатки глаза, так как при нем используются инфракрасные лучи и ярки свет, которые негативно влияют на здоровье глаза.
    • Геометрия руки – форма кисти. При помощи этого метода используется несколько характеристик, поскольку отдельные параметры не являются уникальными. Сканируются: тыльная сторона руки, пальцев (толщина, длина, изгибы) а также структура костей и суставов.
    • Геометрия лица – метод сканирования, при котором выделяются контуры бровей и глаз, губ и носа, а также иных элементов лица. После этого вычисляется расстояние между этими элементами и строится трехмерная модель лица. Требуется от двенадцати до сорока определенных элементов, характерных для определенного человека, чтоб создать и воссоздать уникальный шаблон.
    • По термограмме лица – уникальное распределение температурных полей на лице. Используется с помощью инфракрасных камер. Из-за откровенно невысокого качества подобные системы широко не распространены.

    Динамические

    • По голосу – простой в применении метод с использованием лишь аудиокарты и микрофона. На сегодняшний день для такой системы существует множество способов построения шаблонов. Широко используется в бизнес-центрах.
    • По почерку – основан на специфическом движении руки во время росписи (подписания документов и так далее). Для создания шаблонов и сохранения используются специальные, восприимчивые к давлению ручки.

    Комбинированные (мультимодальные)

    Подобные методы применяются в сложных, строгих и комплексных системах безопасности. В таких случаях используются несколько типов биометрических характеристик человека (пользователя), которые соединяются в одной системе.

    Биометрические системы безопасности

    Суть биометрических систем безопасности в доказательстве, что Вы – это Вы. Эти системы исключают возможность того, что сама система может принять Вас за кого-то другого. В силу уникальности человеческих характеристик, биометрические системы используются для предотвращения различных видов мошенничества, взлома и нежелательного доступа.

    Биометрические системы безопасности могут работать в двух режимах, в зависимости о того, что пользователь собирается предоставить системе.

    1. Верификация — сравнение пользователя с готовым биометрическим шаблоном.
    2. Идентификация — сравнение пользователя с множеством других. После получения биометрических данных система ищет в базе информацию для определения личности пользователя.

    Биометрические системы контроля доступа используются:

    • на крупных предприятиях;
    • на определенных объектах, требующих повышенной безопасности;
    • для учета рабочего времени;
    • для регистрации посещаемости;
    • для ограничения доступа к особым помещениям.

    Биометрические системы контроля доступа

    Терминалы, считывающие отпечаток пальца

    Применяются для организации ограничений на доступ в помещения. Зачастую такие устройства используются для учета рабочего времени. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, множество вариантов сканеров (считывателей отпечатков) и дополнительных функций.

    Возможности:

    • хранение в базе данных от 100 до 3 000 шаблонов отпечатков пальцев;
    • сохранение тысячи записей посещаемости.

    Основные принципы работы:

    • программирование пользователей происходит с помощью специальной карты или при подключении к компьютеру;
    • для переноса файлов посещаемости на компьютер используется USB;
    • возможно построение сетевых систем распределения доступа по интерфейсу Ethernet.

    Терминалы распознавания изображения (геометрия лица)

    Подобный биометрический контроль доступа позволяет бесконтактно идентифицировать пользователя. Успешно применяются на предприятиях, где качество отпечатков пальцев неудовлетворительно для распознавания, в связи с рабочим процессом. В зависимости от типа и модели могут иметь различный внешний вид корпуса, разные степени защиты, особенности дизайна и набор дополнительных функций.

    Возможности:

    • инфракрасные оптические системы позволяют распознавать пользователя при темном или плохом освещении;
    • встроенные беспроводные коммуникации (GPRS, Wi-Fi) для оперативного контроля;
    • электронные замки, датчики тревоги, датчики дверей, резервные батареи для расширения функционала;
    • до 100 000 шаблонов лица.

    Терминалы со встроенной системой распознавания по радужной оболочке глаза

    Позволяют обеспечить идентификацию (аутентификацию) пользователя в реальном времени. Сканируют как в статике, так и в движении. Пропускная способность — до двадцати человек в минуту. Эти терминалы используются для учета рабочего времени, контроля доступа и часто в финансово-платежных системах для того, чтобы подтвердить транзакции.

    Базовые характеристики (меняются в зависимости от модели устройства):

    • питание POE+ (через Ethernet);
    • регистрация и проверка проходит в самом терминале;
    • сканирование происходит встроенными камерами;
    • память событий до 70 000 записей;
    • доступны различные дополнительные интерфейсы (например, Wiegand).

    Считыватели с распознаванием по венам на пальце

    Поскольку вены находятся внутри тела человека, их изображение подделать невозможно. Распознавание возможно даже при наличии царапин и порезов. Поэтому такие биометрические системы безопасности и контроля доступа являются практически самым надежным способом идентификации пользователя. Использование систем данного класса рекомендуется на особо ответственных объектах.

    Возможности:

    • терминал может использоваться в качестве прямого контроллера электронного замка;
    • может выступать в качестве считывателя с подключением к сторонним контроллерам;
    • различные режимы контроля доступа, помимо распознавания рисунка вен на пальце: бесконтактная карта, код или комбинация того и другого;

    Системы распознавания рисунка вен на ладони

    Подобные устройства обеспечивают высокую точность распознавания и исключают возможность подделать идентификатор.

    Принцип работы:

    • ладонь освещается светом, который близок к инфракрасному;
    • этот свет поглощается обескислороженным гемоглобином внутри вен, проявляя рисунок;
    • для авторизации пользователя, уникальные образцы узоров вен сверяются с существующими (ранее зарегистрированными) шаблонами (образцами) в базе данных;

    Биометрические терминалы по геометрии руки

    Для идентификации пользователей используются уникальные трехмерные характеристики геометрии их ладоней. Процесс идентификации состоит из одного действия – нужно приложить руку на специальную плоскость терминала.

    Возможности (варьируются в зависимости от модели):

    • скорость идентификации менее одной секунды;
    • простота регистрации шаблонов;
    • вывод информации на принтер (через различные встроенные интерфейсы);
    • автономная память на более чем 5 000 событий;
    • возможность входа по принуждению.

    Преимущества использования биометрических систем безопасности

    • высокая достоверность;
    • простые процедуры сканирования;
    • большой выбор моделей, доступных к продаже;
    • доступные цены на популярные устройства.

    Биометрические СКУД позволяет не только контролировать доступы в локальные зоны, но и позволяют также контролировать и вести табель учета рабочего времени, предоставлять обратную связь персоналу об опозданиях и задержках, что стимулирует их на повышение ответственности к рабочему процессу.



    Рекомендуем почитать

    Наверх